Golder Associates Inc.

5100 West Lemon Street, Suite 1°14 Tampa, FL USA 33609 Telephone (813) 287-1717 Fax (813) 287-1716 www.golder.com

PSD PERMIT APPLICATION CRYSTAL RIVER ENERGY COMPLEX POLLUTION CONTROL PROJECT UNITS 4 AND 5

Submitted to:

Florida Department of Environmental Protection

Submitted on behalf of:

Progress Energy Florida 100 Central Avenue St. Petersburg, Florida 33701

Submitted by:

Golder Associates Inc. 5100 West Lemon Street Suite 114 Tampa, Florida 33609

Distribution:

4 Copies - Florida Department of Environmental Protection

2 Copies Progress Energy Florida1 Copy - Golder Associates Inc.

August 2006

053-9555

TABLE OF CONTENTS

1.0	INTR	NTRODUCTION1			
2.0 PROJECT DESCRIPTION			3		
	2.1	Fuels	4		
		2.1.1 Sub-Bituminou	s Coal4		
		2.1.2 Petroleum Coke	2 5		
		2.1.3 Fuel Additive	6		
	2.2 Heat Input				
	2.3	Proposed Control Equip	oment Upgrades and Additions7		
		2.3.1 Schedule	7		
		2.3.2 Low NO _X Burn	ers8		
			8		
			System9		
			9		
			figuration9		
			s10		
	2.4		ions and Stack Parameters12		
	2.5		ns		
			on Characteristics		
			ing Emissions		
	2.6		and Stack Sampling Facilities		
	2.7	Excess Emissions	16		
3.0	AIR QUALITY REVIEW REQUIREMENTS AND APPLICABILITY17				
	3.1	•	cal AAQS17		
	3.2	, ,	17		
		-	rements17		
			ology Review18		
			Analysis21		
		•	onitoring Requirements23		
			ation/GEP Stack Height24		
		3.2.6 Additional Imp	act Analysis24		
			lated Values25		
	3.3	Nonattainment Rules	25		
	3.4	Emission Standards	26		
		3.4.1 New Source Pe	erformance Standards26		
			27		
		3.4.3 Florida Air Per	mitting Requirements27		
		3.4.4 Local Air Regu	ılations27		
	3.5	Source Applicability	27		
		3.5.1 Area Classifica	ation27		
		3.5.2 PSD Review	28		
		3.5.3 Other Clean A	r Act Requirements30		
4.0	CON	TDOLTECUNOLOGY	Y REVIEW32		
4.0	CON	IVOL IECUNOLOG	. KL + 1L ++		

	4.1		ability	
	4.2	New S	ource Performance Standards	32
	4.3	Best A	vailable Control Technology (BACT)	32
		4.3.1	Carbon Monoxide and Volatile Organic Compounds	
		4.3.2	Sulfuric Acid Mist (SAM)	35
		4.3.3	Impact Analysis	
		4.3.4	PM/PM ₁₀ BACT Analysis	
		4.3.5	ESPs	
5.0	AMB	IENT M	MONITORING ANALYSIS	46
	5.1	PM_{10}	Ambient Monitoring Analysis	47
	5.2		nbient Monitoring Analysis	
	5.3		nd NO ₂ Background Analysis	
6.0	A IR	OUALIT	ΓΥ IMPACT ANALYSIS	49
	6.1		icant Impact Analysis Approach	
	0.1	6.1.1	Site Vicinity	
		6.1.2	PSD Class I Areas	
	6.2		onstruction Monitoring Analysis Approach	
	6.3	Air M	odeling Analysis Approach	50 50
	0.5	6.3.1	General Procedures	
		6.3.2	PSD Class I Analysis	
	6.4		Selection	
	6.5		prological Data	
	6.6		ion Inventory	
	0.0	6.6.1	Significant Impact Analysis for Applicable PSD Pollutants	
		6.6.2	Modeling Analysis for Project's Non-PSD Pollutants	
		6.6.3	AAQS And PSD Class II Analyses	
		6.6.4	PSD Class I Analysis	
	6.7		ng Downwash Effects	
			tor Locations	
	6.8	•		
		6.8.1	Site Vicinity	
	<i>c</i> 0	6.8.2	Class I Area	
	6.9		l Results	
		6.9.1	PSD Class II Significant Impact Analysis	
		6.9.2		
		6.9.3	Cumulative AAQS Analysis	
		6.9.4	Cumulative PSD Class II Increment Analysis	
	6.10	6.9.5 Conch	Cumulative PSD Class I Increment Analysisusions	
7.0			AL IMPACT ANALYSIS	
	7.1		ets Due to Associated Direct Growth	
		7.1.1	Introduction	
		7.1.2	Residential Growth	
		7.1.3	Commercial Growth	
		7.1.4	Industrial Growth	
		7.1.5	Air Quality Discussion	
	7.2	Impac	cts on Soils, Vegetation, Wildlife, and Visibility in the Project Vicinity	
		7.2.1	Impacts on Vegetation and Soils	72

	7.2.2 Impacts on Wildlife
	7.2.3 Impacts on Visibility
7.3	Impacts to PSD Class I Areas
7.5	7.3.1 Identification of AQRVs and Methodology
	7.3.2 Impacts to Soils
	7.3.3 Impacts to Vegetation
	7.3.4 Particulate Matter
	7.3.5 Carbon Monoxide
	7.3.6 VOC Emissions and Impacts to Ozone
	7.3.7 Summary
	7.3.8 Impacts to Wildlife
8.0 RE	FERENCES79
	LIST OF TABLES
Table 2-1	Ultimate and Proximate Analysis of Representative Fuels and Design Fuel
Table 2-2	Air Pollutant Emissions for Criteria Pollutants from Crystal River Units 4 and 5—
	Existing Units
Table 2-3	Air Pollutant Emissions for Criteria Pollutants from Crystal River Units 4 and 5-
	Proposed Units
Table 2-4	CBO Process Emissions
Table 2-5	Summary of Emissions from the Material Handling Operations for Crystal River
Tabl3 2-6	Maximum Emissions Due to the Project Compared to the PSD Significant Emission
	Rates
Table 3-1	National and State AAQS, Allowable PSD Increments, and Significant Impact Levels
Table 3-2	PSD Significant Emission Rates and <i>De Minimis</i> Monitoring Concentrations
Table 5-1	Summary of Maximum PM ₁₀ Concentrations Measured Near the PGN Crystal River
Table 5-2	Plant Summary of Maximum C. Concentrations Massured Near the PCN Crystal Piver Plant
Table 5-2	Summary of Maximum O ₃ Concentrations Measured Near the PGN Crystal River Plant Summary of Maximum SO ₂ Concentrations Measured Near the PGN Crystal River Plant
Table 5-4	Summary of Maximum NO ₂ Concentrations Measured Near the PGN Crystal River Plant
Table 6-1	Major Features of the AERMOD Model, Version 04300
Table 6-2	Major Features of the CALPUFF Model, Version 5.711a
Table 6-3	Summary of Facilities with PM ₁₀ Emissions Included in the AAQS and PSD Class II
14010 0 5	Increment Analysis
Table 6-4	Summary of Facilities with SO ₂ Emissions Included in the AAQS and PSD Class II
140100	Increment Analysis
Table 6-5	Summary of Facilities with NOx Emissions Included in the AAQS and PSD Class II
	Increment Analysis
Table 6-6	Summary of Facilities with PM ₁₀ Emissions Included in the PSD Class I Increment
	Analysis at the Chassahowitzka NWA
Table 6-7	Summary of Facilities with SO ₂ missions Included in the PSD Class I Increment Analysis
	at the Chassahowitzka NWA
Table 6-8	Summary of Facilities with NOx Emissions Included in the PSD Class I Increment
	Analysis at the Chassahowitzka NWA
Table 6-9	Project Building Dimensions Used in the Modeling Analysis
	Maximum PM ₁₀ , CO, SO ₂ , and NO ₂ Concentrations Predicted for Crystal River Units 4
	and 5 by Operating Load with New Stack Height of 550 ft

Table 6-11 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for the Project with New Stack Height of 550 ft

053-9555

- Table 6-12 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for Crystal River Units 4 and 5 by Operating Load at the PSD Class I Area of the Chassahowitzka NWA using AERMOD with New Stack Height of 550 ft
- Table 6-13 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for the Project at the PSD Class I Area of the Chassahowitzka NWA using AERMOD with New Stack Height of 550 ft
- Table 6-14 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for the Units and 4 at the PSD Class I Areas of the Chassahowitzka and St. Marks NWA using CALPUFF with New Stack Height of 550 ft
- Table 6-15 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for the Project at the PSD Class I Areas of the Chassahowitzka and St. Marks NWA using CALPUFF with New Stack Height of 550 ft
- Table 6-16 Maximum PM₁₀ Concentrations Predicted for the Project at the PSD Class I Areas of the St. Marks NWA using CALPUFF with New Stack Height of 550 ft
- Table 6-17 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for Comparison to the AAQS
- Table 6-18 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for Comparison to the PSD Class II Increments
- Table 6-19 Maximum PM₁₀, SO₂, and NO₂ Concentrations Predicted for Comparison to the PSD Class I Increments at the Chassahowitzka NWA
- Table 6-20 Contribution of Crystal River Units 4 and 5 to Time Periods Predicted to Exceed the 24-Hour Allowable SO₂ Increment at the Chassahowitzka NWA
- Table 7-1 Summary of .Maximum Pollutant Concentrations Predicted for the Project for the AQRV Analysis, PSD Class I Area of the Chassahowitzka and St. Marks NWA
- Table 7-2 Examples of Reported Effects of Air Pollutants at Concentrations Below National Secondary Ambient Air Quality Standards

LIST OF FIGURES

- Figure 1-1 Site Location and Boundary
- Figure 2-1 Site Layout of the Proposed Project
- Figure 2-2 CBO Process Schematic
- Figure 7-1 Population and Household Unit Trends in Citrus County
- Figure 7-2 Retail and Wholesale Trade Trends in Citrus County
- Figure 7-3 Labor Force Trend in Citrus County
- Figure 7-4 Hotel and Motel Trend in Citrus County
- Figure 7-5 Vehicle Miles Traveled (VMT) Estimates for Motor Vehicles for Citrus County
- Figure 7-6 Manufacturing and Agriculture Trends in Citrus County
- Figure 7-7 Electrical Power Generation Capacity in Citrus County
- Figure 7-8 Mobile Source Emissions (Tons per Day) of CO, VOC, and NO_x in Citrus County
- Figure 7-9 Measured Annual Average PM₁₀ Concentrations (1977 to 2005) and Total Suspended Particulate Concentrations (1977 to 2005) (2nd Highest Values)—Pinellas County
- Figure 7-10 Measured 24-Hour Average PM₁₀ Concentrations (1977 to 2005) and Total Suspended Particulate Concentrations (1977 to 2005) Pinellas County
- Figure 7-11 Measured 1-hour Average Carbon Monoxide Concentrations (2nd Highest Values) from 1977 to 2004 Pinellas County
- Figure 7-12 Measured 8-hour Average Carbon Monoxide Concentrations (2nd Highest Values) from 1977 to 2004 Pinellas County

- Figure 7-13 Measured 1-hour Average Ozone Concentrations (2nd Highest Values) from 1977 to 2004 Pinellas and Marion Counties
- Figure 7-14 Measured 8-hour Average Ozone Concentrations (3-year Average of the 4th Highest Values) from 1997 to 2004 Pinellas and Marion Counties

APPLICATION FOR AIR PERMIT- LONG FORM

LIST OF APPENDICES

Appendix A	Expected Performance and Emission Information
Appendix B	Best Available Control Technology
Appendix C	CALPUFF Model Description and Methodology
Appendix D	Emission Inventory Data for Background Sources
Appendix E	Receptor Location Figures and Building Profile Input Program (BPIP) Files
Appendix F	Model Summary and Input Files

1.0 INTRODUCTION

Progress Energy Florida (Progress Energy) is considering numerous environmentally-beneficial upgrades to Units 4 and 5 at the Crystal River Energy Complex. Due to the scheduling of the various upgrades that are under consideration, an application was previously submitted on April 25, 2006 to address the installation of a selective catalytic reduction (SCR) system on Units 4 and 5. Construction on the SCR system is anticipated to commence in September of 2006, thereby becoming the critical path item for permitting.

This application addresses additional upgrades summarized in the paragraphs below, which include the installation of low NO_X burners, flue gas desulfurization systems (FGD) and alkali injection systems on both units, upgrades to the existing ESPs and, finally, a carbon burnout (CBOTM) system. In addition, Progress Energy is requesting the flexibility to fire additional fuel blends (i.e., subbituminous coal and petroleum coke), as well as a fuel additive that is designed to improve unit performance and reduce emissions. These additional fuel types and blends for Units 4 and 5 will be delivered by either rail or barge. The existing coal storage area has adequate storage capacity for the proposed fuel blends.

Finally, this application requests an increase (approximately eight percent) in the current heat input value referenced in the air permit for both Unit Nos. 4 and 5. Specifically, it is requested that the referenced maximum heat input for both units be revised to 7,200 mmBtu/hr vs. the current 6,665 mmBtu/hr rating provided in the TV permit. Progress Energy proposes to continue monitoring heat input with fuel flow and heating value measurements, as has been done historically. Both of these units have always been capable of achieving this maximum requested value, however, Progress Energy has not pursued a revision to the higher heat input rating due to the protection afforded by the heat input permitting note currently provided in the TV permit. As the Department's policy is to now remove this permitting note during TV renewals, Progress Energy felt this an opportune time to request the heat input revision.

Units 4 and 5 were permitted under the Power Plant Siting Act (PPSA) in 1978 (PA 77-09), and installed the Best Available Control Technology. These units are also subject to New Source Performance Standards (40 CFR Part 60, Subpart D). The Crystal River facility is currently authorized to operate under FDEP Title V Air Operation Permit No. 0170004-011-AV, with an effective date of January 1, 2005 and expiration date of December 31, 2009.

This PSD Report is divided into the following major sections:

- Section 1.0 provides the Project introduction;
- Section 2.0 presents a description of the proposed Project, including air emissions and stack parameters;
- Section 3.0 provides a review of the requirements applicable to the Project;
- Section 4.0 includes a discussion of BACT;
- Section 5.0 discusses the ambient air monitoring analysis (pre-construction monitoring) required by PSD regulations;
- Section 6.0 presents a summary of the air modeling approach and results used in assessing compliance of the proposed facility with ambient air quality standards (AAQS), and PSD increments; and
- Section 7.0 provides the additional impact analyses for soils, vegetation, and visibility.

Finally, this application contains the information required by Rule 62-213.420(3), F.A.C., including FDEP Form No. 62-210.900(1), Effective: 02/02/06, Application for Air Permit – Long Form.

2.0 PROJECT DESCRIPTION

The Crystal River Energy Complex is located North of Crystal River and West of U.S. Highway 19 in Citrus County, Florida. Progress Energy currently operates four solid fuel-fired steam boilers (Emission Units ID Nos. 001, 002, 003 and 004) at the Crystal River Energy Complex. In addition to the four solid fuel-fired boilers, the site's emission sources include natural draft and mechanical draft cooling towers; solid fuel handling and storage activities; and fly ash and bottom ash handling and storage facilities.

Currently under consideration are upgrades to further improve the environmental performance of the existing Units 4 and 5 (EU Nos. 004 and 003, respectively) by installing new/upgraded air emission control devices and a new fly ash beneficiation system. Specifically, Progress Energy is considering the addition of new emission control technologies for each unit, as well as upgrades to existing control equipment, as follows:

- Install low-NO_x burners;
- Add SCR systems for nitrogen oxide (NO_x) removal (addressed in previous application);
- Add alkali injection systems for SO₃ control;
- Add FGD systems for sulfur dioxide (SO₂) control;
- Upgrade existing ESPs;
- Construct a new stack to accommodate the new Project configuration; and
- Install a single carbon burn out (CBOTM) unit to reburn fly ash generated, minimizing the onsite landfilling of this fly ash and recovering its available heating value. The CBOTM will also assist in minimizing adverse effects of the SCR systems and burner upgrades, such as elevated ammonia and carbon content in the fly ash.

These proposed activities would accomplish substantial environmental goals, namely: (1) allow for the reduction of NO_X and SO₂ emissions to meet the expected allowance allocations under the Clean Air Interstate Rule (CAIR), effective in 2009 and 2010, (2) allow for the reduction of mercury emissions to meet the expected allowance allocations under the Clean Air Mercury Rule (CAMR), effective in 2010 and (3) maximize the reuse of fly ash, and thereby minimize the landfilling of this material.

Due to the timing of these various upgrades that are under consideration, a previous application, submitted on April 25, 2006, addressed the installation of SCR systems on Units 4 and 5. Construction on the SCR systems is anticipated to commence in September of 2006, thereby becoming the critical path item for permitting. The additional upgrades summarized above are more fully discussed in the following paragraphs.

2.1 Fuels

The primary fuel will be the Illinois Basin bituminous coals, delivered to the plant by rail. In an effort to continue expanding fuel diversity and ultimately enhancing market options through supplier flexibility at the Crystal River facility, Progress Energy requests to fire a blend of up to 50 percent by weight sub-bituminous coal, as well as a blend up to 30 percent by weight petroleum coke. Typical ultimate and proximate analyses of coals and petroleum coke representative of the types of fuels proposed for the Project are shown in Table 2-1. The amounts and qualities of each type and shipment of fuel will vary depending upon availability and economics, and design values are shown for Highland No. 9 coal, and the co-firing of 30 percent by weight petroleum coke with coal and 50 percent by weight co-firing of sub-bituminous coal. No. 2 oil will be used for startup and flame stabilization.

2.1.1 Sub-Bituminous Coal

A test burn of an approximately 20 percent sub-bituminous blend was conducted on Crystal River Unit 5 during May 2006. This test burn was conducted following approval of a modified air permit by the Florida Department of Environmental Protection (FDEP) allowing testing of a sub-bituminous blended product. A test report, included in Appendix A of this application, was submitted to the Department on July 20, 2006.

There were no substantial issues raised during this trial. Full load was achieved and LOI (loss on ignition) was as good as or better than the base line coal performance measurements. Major emissions constituents, such as NO_X, SO₂, and opacity, were equivalent to or better than the same constituents utilizing the baseline coal. In addition, detailed stack testing of CO, PM and ash resistivity testing were conducted to meet the Florida Department of Environmental Protection (FDEP) requirements. PM was basically unaffected by the sub-bituminous blend as compared to the baseline. CO levels were low during both the baseline tests (about 4-6 ppm) and with the 20 percent

sub-bituminous blend (about 33 ppm). Even such a small difference (if a real result) can translate into a projected large increase on an annual basis. In other words, although this test represents only a snapshot in time, if projected on an annual as absolute/continuous values, the differences can appear unrealistically large. However, in a statistical comparison of the CO test results (40 CFR 60, Appendix C), the two fuel types yield statistically similar results. Other observations during the trial burn are summarized below:

- Coal Unloading: The blend was observed unloading from barge and along conveyors. The large percentage of bituminous coal (~80 percent) in the blend was effective in controlling dust.
- **Handling**: No problems were encountered with coal handling. Performed similar to current Crystal River coal.
- Fugitive Dust: Coal blend was not dusty and fugitive dusting was not an issue.
- Soot blowing: Routine soot blowing operations were continued during trial. A small ash accumulation was observed in an area where soot blowers were non-operational. Accumulation was removed with air lance and did not reform during trial. Therefore, the accumulation may have been formed prior to the sub-bituminous blend.
- ESP Performance and Adjustments: No problems with ESP performance or opacity during the sub-bituminous blend burn.
- Ash handling and storage: Ash quality and LOI were well within acceptable limits to be able to utilize ash product.

2.1.2 Petroleum Coke

The characteristics of the petroleum coke and proposed blend are presented in Table 2-1. The sulfur content of the blend is not expected to exceed the maximum level assumed for the Highland No. 9 coal. A trial burn of the proposed fuel blend may be necessary under this requested air construction permit to provide reasonable assurance to the Department that all proposed emission limits will be met.

The maximum annual fuel usage for Units 4 and 5 is estimated to be about 5.08 million tons/year (TPY) based on a 100 percent capacity factor. A conservative capacity factor for projected operation of Units 4 and 5 is estimated at about 85 percent, which is comparable to the highest two-year average established for the baseline. The existing coal storage area has adequate storage capacity for the proposed fuel blends and will maintain sufficient fuel for a targeted 40 to 60 days of operation, with a potential for 90 days of operation.

It is the intention of Progress Energy to utilize the same fuel blends in both Units 4 and 5. Burning the same fuel in both units maximizes the co-use of existing coal handling areas and equipment (for example, rail lines, unloading facilities, storage areas, conveyor systems, etc.), avoiding the need to construct separate facilities dedicated solely to one unit or the other.

2.1.3 Fuel Additive

Finally, Progress Energy requests a permit revision to allow the use of a fuel additive to improve unit performance and reduce emissions, as well as the LOI. The additive is proposed to be applied to the coal as a spray in the gravimetric feeders. The optimum dosage will be measured and determined with respect to fuel quality. Key coal parameters include slag viscosity, ash porosity and iron content. The characteristics of the fuel additive, manufactured by Environmental Energy Services (EES), Inc., are provided in an attachment in Appendix A.

2.2 Heat Input

This application requests an increase (approximately eight percent) in the current heat input value referenced in the air permit for both Unit Nos. 4 and 5. Specifically, it is requested that the referenced maximum heat input for both units be revised to 7,200 MMBtu/hr (vs. the current 6,665 MMBtu/hr rating provided in the TV permit). Both of these units have always been capable of achieving this maximum requested value; however, Progress Energy has not pursued a revision to the higher heat input rating due to the protection afforded by the heat input permitting note currently provided in the TV permit. Specifically, Progress Energy understands that the permitting note was historically included to clarify that the heat input value was not a continuous limit, but was included to ensure that testing was conducted at worst-case (maximum) operating levels. As the Department's policy is to now remove this permitting note during TV renewals, Progress Energy felt this an opportune time to request the heat input revision.

The hourly heat input data (as reported in the AORs) is currently based on the average monthly fuel heating values from an internal report (referred to as the Mooper report) and the fuel heating value. The coal data is from the coal mill feeder scales. As the measurement method proposed for future operation is similar to the current measurement method, Progress Energy does not expect actual heat input levels (and therefore emissions) to increase on an annual basis as a result of this request. As stated previously, both of these units have always been capable of achieving this maximum requested

value, however, Progress Energy has not pursued a revision to the higher heat input rating due to the heat input permitting note currently provided in the TV permit.

If the existing permitting note is removed, Progress Energy requests that compliance with the heat input value be based on fuel flow measurements and fuel analysis (as is currently done) on a 30-day rolling average basis. Over a six-month study period, the CEMS heat input readings averaged 15 percent higher than the heat input based on the heating value of coal and the coal tonnage throughput. On an hourly basis, the percent difference between the CEMS and the heat input based on the heating value of coal and the coal tonnage throughput varied considerably. Therefore, it is requested that coal throughput and the coal heating value be used to determine continuous compliance with the revised heat input limit, based on a 30-day rolling average. The CEMs will *not* be used for determining heat input due to the historical inaccuracy.

2.3 Proposed Control Equipment Upgrades and Additions

As mentioned above, Progress Energy is planning specific additions and upgrades to Units 4 and 5, which include burner modifications, the addition of SCR systems, FGD system installations, alkali injection systems, ESP upgrades and a CBOTM unit.

2.3.1 Schedule

The proposed schedule for these modifications was developed to maintain the reliability of Units 4 and 5 and minimize down time, and is proposed (approximately) as follows:

Proposed Modification	Commence Construction	Commence Operation
Unit 4 SCR	September 2006	November 2008
Unit 5 SCR	December 2006	April 2009
Unit 4 Alkali	September 2006	November 2008
Unit 5 Alkali	December 2006	April 2009
Unit 4 LNB	March 2008	November2008
Unit 5 LNB	March 2009	April 2009
Unit 4 FGD	December 2006	November 2009
Unit 5 FGD	December 2006	April 2009
CBO TM Process	June 2007	November 2008

The FGD systems for Units 4 and 5 are anticipated to commence construction as early as December 2006. Therefore, this application is filed within four months of the initial application package to ensure that construction on the remaining items can commence by the December 2006 date. The reason that these additional control systems were not addressed in the initial application for the SCR was due to the lack of specific engineering design data that would allow for the appropriate air quality modeling analysis to be conducted.

2.3.2 Low NO_x Burners

Progress Energy is proposing to install new low NO_X burners, replacing the existing burners. The burners will optimize the fuel and air flows and be of a proven design previously utilized to achieve emissions requirements when firing fuels similar to those currently fired and proposed to be fired at the Crystal River site. The burners will be engineered by The Babcock & Wilcox Company. The burner design specs are provided in Appendix B. The existing burner inlet system will be modified to ensure even airflow distribution with the new burners. Emissions of NO_X will be reduced and other pollutant emissions will be comparable to emissions associated with the existing permit limits.

The low- NO_X burner installation, in addition to the SCR system installation detailed in a previous application, will allow Progress Energy to substantially reduce NO_X emissions from Crystal River. Installation of the SCR system will allow Progress Energy to meet its annual obligation under the Clean Air Interstate Rule by reducing NO_X emissions as opposed to relying on the purchase of allowances. In sum, the NO_X reductions anticipated from the installation of the low NO_X burners and SCR systems will allow Progress Energy to reliably meet its current and pending regulatory obligations.

2.3.3 FGD System

Progress Energy is proposing to install wet limestone FGD systems on both Units 4 and 5. The proposed FGD systems are intended to achieve an FGD removal efficiency of approximately 97 percent. Installation of the FGD system will allow Progress Energy to meet its annual obligation under the Clean Air Interstate Rule by reducing SO₂ emissions as opposed to relying on the purchase of allowances. Progress Energy intends to commence construction on the FGD installations as early as December 2006, and expects the systems to be operational by April 2009 and November 2009 for Units 5 and 4, respectively.

2.3.4 Alkali Injection System

An alkali injection system (e.g., ammonia, SBS or Trona) will be installed on Units 4 and 5 to mitigate the impacts of SO₃ formation resulting from the operation of the boiler and SCR systems. Final vendor selection of the alkali injection system has not yet been made; however, design criteria will be based on a minimum removal efficiency of 85 percent.

2.3.5 ESP Upgrades

When the Unit 4 and 5 electrostatic precipitators are rebuilt to top rapping, the expected particulate removal efficiency will be higher than originally designed. In the top rap configuration, Progress Energy proposes to increase the treatment length from about 87.5 ft to 98 ft. As the collecting plate height will remain at a nominal 49 ft, the total collecting plate area will increase by over 10 percent. In addition, the rebuild arrangement proposed will increase the number of electrical fields in the direction of gas flow. These two modifications will allow the rebuilt ESP to accommodate increased inlet dust loading without increasing emissions. The migration velocity currently correlates to a collection efficiency of 99.82 percent (the original specification). Assuming about 10 percent more collecting plate area in each ESP, the calculated collection efficiency would increase to about 99.91 percent. At this increased collection efficiency, PM emissions are not anticipated to increase over the current levels even if the inlet dust loading is increased (i.e., due to increase in ammonium bisulfate and the installation of the CBO).

2.3.6 New Stack Configuration

As a result of the proposed Project, saturated flue gas from the proposed absorbers will condense on the chimney liner. The droplets are pushed upward by the moving flue gas and pulled downward by gravity. Droplets that collect on rough surfaces can be reintroduced into the gas stream if the force from the exiting gas is larger than gravity and surface tension. The droplets discharge through the top of the chimney. When the drops are large enough they fall back to grade in the area surrounding the chimney. This is commonly referred to as stack rain-out.

The existing stacks have an interior liner diameter of 25'-6" at the discharge point. This would yield an exit velocity of 77 feet per second (for the maximum flue gas flow rate) for the new FGD system. EPRI recommends exit velocities (based on liner material) for brick between 45 and 55 feet per

second to avoid liquid discharge from the chimney. Liquid reaching ground levels can have corrosive effects on items, such as roofing, siding, and automobile finishes.

Use of the existing stacks with the FGD systems would result in stack rain-out. Progress Energy has decided to install a new stack with two liners (one per unit) with an interior diameter of 30'-6". The exit velocity will be approximately 50 feet per second. The reason for the new stack is to avoid stack rain-out.

2.3.7 CBOTM Process

The installation of combustion modifications and SCR systems to reduce NO_X emissions from Crystal River Units 4 and 5 has the potential to adversely impact Progress Energy's beneficial reuse of its fly ash. The planned NO_X control systems for Units 4 and 5 will increase the ammonia concentrations to levels that could make the fly ash unusable as a partial replacement for Portland cement. Currently, more than 90 percent of all fly ash generated at the facility is re-used.

CBOTM technology, as described further below, will produce low-carbon, low-ammonia fly ash material suitable for commercial use as a partial replacement for Portland cement. Progress Energy plans to begin construction of the CBOTM project no later than June 2007 in order for the CBOTM to be operational prior to the first SCR going into operation by November 2008.

CBOTM technology will also recover a significant portion of the energy contained in the high-carbon fly ash for beneficial use at Crystal River. More specifically, the heat from the CBOTM system will replace steam currently being extracted from the Units 4 and 5 LP turbines to heat water in the condensate cycle. Although the CBOTM process will cause small collateral increases in PM, VOC and CO emissions, it is an important element of the significant emission reductions of the Crystal River environmental improvement project.

CBOTM technology is a proprietary, patented, environmentally beneficial technology whose primary function is the production of low-carbon, low-ammonia fly ash material suitable for commercial use as a partial replacement for Portland cement. Major components of the CBOTM process planned for the Crystal River facility include a feed fly ash silo, product fly ash storage dome, fluidized bed combustor (FBC), hot cyclones for fly ash recycle to the FBC, heat recovery heat exchanger, cold cyclone and fabric filter bag house for product fly ash recovery, and product fly ash truck loading. A

plan view showing the locations of the CBOTM process emission points is provided in Figure 2-1. A flow diagram of the CBOTM process proposed is provided in Figure 2-2. Fly ash will be conveyed pneumatically to the CBOTM feed fly ash silo. The CBOTM feed fly ash silo will vent through a bag house prior to discharging to the atmosphere (CBO-001).

The FBC exhaust stream will be routed through hot cyclones to capture fly ash entrained in the FBC exhaust stream. Fly ash captured by the hot cyclones is returned to the FBC. The hot cyclones' exhaust and FBC low carbon product ash streams are combined and sent to the gas/product cooler heat exchanger for heat recovery. Thermal energy recovered from the CBOTM process will be used to heat condensate from the Units 4 and 5 low-pressure feed water systems. The improvements in Units 4 and 5 heat rates due to the use of recovered energy from the CBOTM process will compensate in part, for the energy penalties associated with the operation of the low NO_X burners, FGD Systems, and SCR systems. The air pollution control equipment representing the majority of the parasitic load includes the wet FGD systems and the SCR systems, at approximately 22 MWs of additional required power per unit.

Following heat recovery, the cooled FBC combustion gases, containing entrained product fly ash, will be routed through a cold cyclone and fabric filter bag house for product fly ash separation. The exhaust from the fabric filter bag house (i.e., the CBOTM return) will be routed back to either Units 4 or 5, upstream of the SCR, FGD, ESP and alkali injection systems, and subsequently discharged to the atmosphere through the existing Units 4 or 5 stacks.

Product fly ash separated by the cold cyclone and fabric filter bag house will be sent to a surge bin. A portion of the cooled, low-carbon product will be recycled to the FBC for temperature control. The remaining product ash is then conveyed pneumatically to the product fly ash storage dome or directly to a truck loadout silo. The product fly ash storage dome will vent through a bag house prior to discharging to the atmosphere (CBO-002). The product fly ash storage dome will be used to provide flexibility in product fly ash marketing. Product fly ash will be conveyed to the truck loadout silo for subsequent transfer to trucks for shipment to offsite customers. The PM₁₀ emissions captured during the truck loading process will be routed to the truck loadout silo which will vent through a bag house prior to discharging to the atmosphere (CBO-003).

The product fly ash trucks will travel on paved roads within the Crystal River facility and then exit the plant for delivery to offsite customers. Fugitive particulate matter (PM/PM₁₀) emissions

associated with product fly ash truck traffic on the paved roads (CBO-004) will be controlled by periodic watering on an as-needed basis.

2.4 Proposed Source Emissions and Stack Parameters

Tables 2-2 and 2-3 provide a summary of emissions and stack characteristics for Units 4 and 5 in their current and proposed states, respectively. Table 2-4 provides a breakdown of emissions from the CBO and Table 2-5 summarizes emissions due to material handling operations associated with the Project. Table 2-6 presents a comparison of the existing site's baseline emissions to estimated emissions from the proposed project and summarizes the resulting net increase or decrease. The baseline emissions presented in Table 2-6 were derived from a five-year look back (2001 through 2005) at historical emissions, including a summary of the highest two-year average for each pollutant. Baseline data, based on past Annual Operating Reports (AORs) is presented in a series of tables in Appendix A (Tables A-1 through A-12) for each unit for each year. The two-year period from January 2003 through December 2004 was determined to represent the maximum production within the previous five-year period. Table 2-6, a comparison of the net increases to the PSD significant emission thresholds indicates that PSD review is required for emissions of CO, VOCs, H₂SO₄ and PM/PM₁₀.

Crystal River is classified as an existing major facility. A modification to an existing major facility that results in a significant net emissions increase equal to or exceeding the significant emissions rates (SER) listed in Section 62-212.400, Table 212.400-2, F.A.C., is classified as a major modification and will be subject to the PSD New Source Review (NSR) preconstruction permitting program for those pollutants that exceed the PSD SERs. The procedures for determining applicability of the PSD NSR permitting program to the Crystal River Units 4 and 5 control equipment installation project are specified in Rule 62-212.400(2), F.A.C. For each regulated pollutant, PSD is triggered as a result of a modification at an existing unit if the difference between the projected actual emissions and the baseline actual emissions equals or exceeds the significant emissions rate for that pollutant, as defined at Rule 62-210.200(243), F.A.C.

As described previously, the "Project" for PSD review purposes consists of the installation of SCR systems on Units 4 and 5 (the application submitted on April 25, 2006) and low NOx burners to reduce NO_X emissions. The installation of FGD systems on Units 4 and 5 is for SO₂ control. The installation of an SCR system can result in additional SO₃ emissions due to the catalytic effect on the

sulfur dioxide contained in the flue gas. If an FGD system is located downstream of the SCR, there is the possibility for increased formation of sulfuric acid mist (H₂SO₄ or SAM), which is a PSD-affected pollutant. Therefore, the addition of an alkali injection system for reducing SO₃ formation in the SCR catalyst and subsequent SAM formation in the FGD is also addressed in this application package. Finally, a CBO unit is proposed as part of the Project, to address the continued saleability of the fly ash after these additional controls are installed.

Projected actual emissions for the project, as shown in Table 2-6, will not exceed the PSD significant emission rates for SO₂ and NO_X. This is because the controls proposed for this Project will have the effect of maintaining these emissions either at or below the current emissions baseline. As a result of modeled air impacts, emissions of SO₂ will be held to the equivalent of 0.27 lb/MMBtu with the use of the FGD system. This is a significant reduction compared to the current baseline number. The SCRs, in addition to the low-NO_X burner installation, will allow Crystal River to substantially reduce NO_X emissions. Progress Energy is requesting a new NO_X limit for the emissions from Units 4 and 5 of 0.47 lb/MMBtu, on an annual average basis, monitored by the existing CEMs. A 0.47 limit will achieve compliance with the Acid Rain NO_x limit and voluntarily lowering this limit to 0.47 will readily demonstrate sufficient NO_X reductions to offset the slight increase in TPY from the CBO. H₂SO₄ will be minimized through the use of an alkali injection system, capable of as much as an 85 percent reduction. A net emissions increase for H₂SO₄ has been estimated due to increased SO₂ oxidation in the SCR catalyst and increased SO₃ formation from the design fuel. An emission rate of 0.012 lb/MMBtu is being proposed for H₂SO₄. In Table 2-6, a comparison of the net increases to the PSD significant emission thresholds indicates that PSD review is required for emissions of CO, VOCs, H₂SO₄ and PM/PM₁₀

2.5 Description of Emissions

2.5.1 CBOTM Emission Characteristics

Emissions associated with the CBOTM process include PM/PM₁₀ due to fly ash handling and storage and NO_X, CO, SO₂, PM/PM₁₀, and VOC due to combustion of high-carbon fly ash in the CBOTM FBC. Detailed emission rate calculations are provided in Table 2-4. Each of these CBOTM emission areas is discussed in the following sections.

The CBOTM material handling and storage activities will include four PM₁₀ emission points, including a (1) feed fly ash silo (Emission Point CBO-001), (2) product fly ash storage dome (Emission Point CBO-002), (3) product fly ash truck loading operation (Emission Point CBO-003), and (4) fugitive emissions associated with product fly ash truck traffic on paved roads (Emission Point CBO-004).

The feed fly ash silo, product fly ash storage dome, and product fly ash truck loadout silo will each be equipped with fabric filter bag houses designed to achieve an outlet PM₁₀ concentration of no more than 0.010 grains per dry standard cubic foot (gr/dscf). The truck loading operation will include a telescoping chute with local ventilation designed to capture the fugitive PM₁₀ emissions. The PM₁₀ emissions captured during the truck loading process will be routed to the truck loadout silo. Fugitive PM₁₀ emissions associated with product fly ash truck traffic on paved roads will be minor due to relatively short travel distances. Potential PM₁₀ emissions, based on the conservative premise of continuous operation, total 6.1 tons per year (tpy) for these CBOTM emission sources, including the CBOTM FBC, summarized below.

The CBOTM FBC combustion gases will contain combustion by-products including NO_X, CO, SO₂, PM₁₀, and VOCs and trace quantities of mercury. The CBOTM FBC will utilize good combustion practices to minimize emissions of CO and VOCs. NO_X emissions from the Crystal River CBOTM system will be reduced using the proposed SCR systems for Units 4 and 5. Extensive testing conducted by the CBOTM process vendor, Progress Materials, Inc. (PMI), has confirmed that essentially all of the mercury present in the feed fly ash to the CBOTM process should remain with the CBOTM product fly ash; therefore, mercury emissions are minimal (See Appendix A). Following product fly ash separation by the cold cyclone and fabric filter bag house, this exhaust stream will be routed back to Units 4 and 5, upstream of the SCR, FGD, ESP, and alkali injection systems, prior to discharging to the atmosphere through existing Units 4 and 5 stacks.

Fly ash from the feed silo will then be fed to the CBO's Fluidized Bed Combustor (FBC). The CBOTM technology does not require any auxiliary fuel to operate, with the limited exception of a minimal amount of start up fuel to initiate the combustion process. As with any fossil fuel combustion process, the FBC combustion gases will also contain combustion by-products including NO_X, carbon monoxide (CO), SO₂, particulate matter less than or equal to 10 micrometers (PM₁₀), and volatile organic compounds (VOCs). The CBOTM process includes a forced draft fan to provide fluidization and combustion air to the FBC. An induced draft fan maintains the FBC freeboard pressure slightly below atmospheric pressure.

2.5.2 Material Handling Emissions

PM emissions will also be generated by material handling operations that include fuel handling and storage, limestone handling and storage, and by-product handling and storage. The latter includes bottom and fly ash and FGD by-product. This application only addresses the incremental change in material handling operations as a result of the proposed Project. Table 2-5 presents a summary of emissions from material handling operations.

Fuel (coals and petroleum coke) will be transported to the Crystal River site by rail or barge, resulting in PM emissions. Figure 2-1 presents a layout of the fuel handling system and is one possible design. This arrangement may be altered during detailed design. However, the area for facilities and storage is not expected to increase. In addition, the facilities shown in the flow diagram envelope possible alternate designs so that emissions from dust collection systems, transfer points and other operations will be no greater than those identified in this section.

Limestone used in the wet FGD system will be transported to the site by truck and conveyor and transferred to a storage pile. About 30 days storage will be maintained for the operation of Units 4 and 5. The limestone will be reclaimed from the pile using a reclaim system and conveyed to day bins. Bulldozers and front-end loaders will be used for reclaim and storage pile maintenance.

A control efficiency for each source was based on EPA's fugitive dust background document (EPA, 1992), information about the source and historical fugitive emission factors.

For dust collection systems with fabric filters, an emission rate of 0.01 grain per standard cubic foot (g/scf) was assumed. This was the basis of the fugitive dust calculation. This is a typical guarantee for fabric filters. Annual and maximum daily emissions for these sources were based on their operation (i.e., loading rates and coal usage).

Appendix A (Tables A-13 trough A-27) presents detailed calculations on emissions from the material handling operations.

2.6 Site Layout, Structures, and Stack Sampling Facilities

A site layout of the proposed project is presented in Figure 2-1. The dimensions of the buildings and structures used to analyze the Good Engineering Practice stack height are presented in Section 6.0. Stack sampling facilities will be constructed and maintained in accordance with Rule 62-297.310(6) F.A.C.

2.7 Excess Emissions

The startup and shutdown of Units 4 and 5 will follow an established startup and shutdown procedure, to be submitted with the Title V application. This procedure will be incorporated into the Unit 4 and 5 operating procedures. Emissions during startup of the proposed unit will be minimized by the use of existing onsite steam and the use of 0.73-percent sulfur distillate oil igniters in the boiler to warm the boiler and steam turbine.

The use of No. 2 fuel, along with the operation of the ESP and wet FGD systems will minimize emissions of those pollutants associated with contaminants in the fuel (PM and SO₂). Because the ignitors and the boiler will be operating at low load conditions and the SCR will not be operating, excess emissions for combustion products, such as CO, VOC and NO_X, may occur. However, the potential emissions for these pollutants will not be greater than the mass emission values at full load. Mass emissions during startup will remain low due to the operation at low loads during the startup process.

3.0 AIR QUALITY REVIEW REQUIREMENTS AND APPLICABILITY

The following discussion pertains to the federal, state, and local air regulatory requirements and their applicability to the Project. These requirements must be satisfied before the proposed facility can begin construction and/or operation.

3.1 National, State, and Local AAQS

The federal Clean Air Act (CAA) requires that National Ambient Air Quality Standards (NAAQS) be set for "criteria" pollutants, defined as air contaminants that have been demonstrated to have the potential for widespread adverse impacts on human health. In response, EPA has identified six criteria pollutants and established corresponding NAAQS. These pollutants are SO₂, NO₂, PM₁₀, CO, ozone (O₃) and lead (Pb). In addition, the EPA promulgated a new NAAQS for particulate matter sized 2.5 microns and less (PM_{2.5}) on July 17, 1997. Compliance with the PM_{2.5} standard at the federal level is not yet required (the EPA policy is to use compliance with PM₁₀ as a surrogate). The NAAQS are designed to protect the public health and welfare with an adequate margin of safety. EPA has classified the area that the Crystal River plant is located as an attainment area for all of the criteria pollutants. The FDEP has also established Ambient Air Quality Standards for the criteria pollutants.

The existing applicable national and State of Florida AAQS (ambient air quality standards) are presented in Table 3-1. Primary national AAQS were promulgated to protect the public health with an adequate margin of safety, and secondary national AAQS were promulgated to protect the public welfare from any known or anticipated adverse effects associated with the presence of pollutants in the ambient air. Areas of the country in compliance with AAQS are designated as attainment areas. New sources to be located in or near these areas may be subject to more stringent air permitting requirements.

3.2 PSD Requirements

3.2.1 General Requirements

Under federal and Florida PSD review requirements, all major new or modified sources of air pollutants regulated under the Clean Air Act (CAA) must be reviewed, and a pre-construction permit

issued. As Florida's EPA approved State Implementation Plan (SIP) includes PSD regulations, the Florida Department of Environmental Protection (FDEP) has PSD approval authority.

A "major facility" is defined as any 1 of 28 named source categories that have the potential to emit 100 TPY or more or any other stationary facility that has the potential to emit 250 TPY or more of any pollutant regulated under CAA. "Potential to emit" means the capability, at maximum design capacity, to emit a pollutant after the application of control equipment.

EPA has promulgated regulations providing that certain increases above an air quality baseline concentration level of criteria pollutants such as SO₂, PM₁₀, and NO₂ would constitute significant deterioration of air quality. The EPA class designations and allowable PSD increments are presented in Table 3-1. Florida has adopted the EPA class designations and allowable PSD increments for SO₂, PM₁₀, and NO₂.

PSD review is used to determine whether significant air quality deterioration will result from the new or modified facility. Federal PSD requirements are contained in 40 CFR 51.166, *Prevention of Significant Deterioration of Air Quality*. The State of Florida's PSD regulations are found in Rule 62-212.400, F.A.C. Major new facilities are required to undergo the following analyses related to PSD for each pollutant emitted in significant amounts (see Table 3-2):

- 1. Control technology review,
- 2. Source impact analysis,
- 3. Air quality analysis (monitoring),
- 4. Source information, and
- 5. Additional impact analyses.

In addition to these analyses, a new facility also must be reviewed with respect to GEP (good engineering practice) stack height regulations. Discussions concerning each of these requirements are presented in the following sections.

3.2.2 <u>Control Technology Review</u>

Per the control technology review PSD requirements, all applicable federal and state emission-limiting standards must be met, and that the Best Achievable Control Technology (BACT) be applied

to control emissions from the source (Rule 62-212.400, F.A.C.). The BACT requirements are applicable to all regulated pollutants for which the increase in emissions from the facility or modification exceeds the significant emission rate (see Table 3-2).

BACT is defined in Rule 62-210.200(38), F.A.C., as:

- (a) An emission limitation, including a visible emissions standard, based on the maximum degree of reduction of each pollutant emitted which the Department, on a case by case basis, taking into account:
- 1. Energy, environmental and economic impacts, and other costs;
- 2. All scientific, engineering, and technical material and other information available to the Department; and
- 3. The emission limiting standards or BACT determinations of Florida and any other state;

determines is achievable through application of production processes and available methods, systems and techniques (including fuel cleaning or treatment or innovative fuel combustion techniques) for control of each such pollutant.

- (b) if the Department determines that technological or economic limitations on the application of measurement methodology to a particular part of an emissions unit or facility would make the imposition of an emission standard infeasible, a design, equipment, work practice, operational standard or combination thereof, set forth the emissions reduction achievable by implementation of such design, equipment, work practice or operation.
- (c) Each BACT determination shall include applicable test methods or shall provide for determining compliance with the standard(s) by means which achieve equivalent results.
- (d) In no event shall application of best available control technology result in emissions of any pollutant which would exceed the emissions allowed by any applicable standard under 40 CFR Parts 60, 61, and 63.

BACT requirements were promulgated within the framework of the PSD provisions in the 1977 amendments of the CAA [Public Law 95-95; Part C, Section 165(a)(4)]. The primary purpose of BACT is to optimize consumption of PSD air quality increments and thereby enlarge the potential for future economic growth without significantly degrading air quality (EPA, 1978; 1980). Guidelines for the evaluation of BACT can be found in *Guidelines for Determining Best Available Control*

Technology (BACT) (EPA, 1978) and in the PSD Workshop Manual (EPA, 1980). These guidelines were issued by EPA to provide a consistent approach to BACT and to ensure that the impacts of alternative emission control systems are measured by the same set of parameters. However, BACT in one area may not be identical to BACT in another area. According to EPA (1980), "BACT analyses for the same types of emissions unit and the same pollutants in different locations or situations may determine that different control strategies should be applied to the different sites, depending on site-specific factors. Therefore, BACT analyses must be conducted on a case-by-case basis."

The BACT requirements are intended to ensure that the control systems incorporated in the design of a proposed facility reflect the latest in control technologies used in a particular industry and take into consideration existing and future air quality in the vicinity of the proposed facility. BACT must, as a minimum, demonstrate compliance with new source performance standards (NSPS) for a source (if applicable). An evaluation of the air pollution control techniques and systems, including a cost-benefit analysis of alternative control technologies capable of achieving a higher degree of emission reduction than the proposed control technology, is required. The cost-benefit analysis requires the documentation of the materials, energy, and economic penalties associated with the proposed and alternative control systems, as well as the environmental benefits derived from these systems. A decision on BACT is to be based on sound judgment, balancing environmental benefits with energy, economic, and other impacts (EPA, 1978).

Historically, a "bottom-up" approach consistent with the BACT Guidelines and the PSD Workshop Manual was used. With this approach, an initial control level, which is usually NSPS, is evaluated against successively more stringent controls until a BACT level is selected. However, EPA developed a concern that the bottom-up approach was not providing the level of BACT decisions originally intended. As a result, in December 1987, the EPA Assistant Administrator for Air and Radiation mandated changes in the implementation of the PSD program, including the adoption of a new "top-down" approach to BACT decision making.

The top-down BACT approach essentially starts with the most stringent (or top) technology and emission limits that have been applied elsewhere to the same or a similar source category. The applicant must next provide a basis for rejecting this technology in favor of the next most stringent technology or propose using it. Rejection of control alternatives may be based on technical or economic infeasibility. Such decisions are made on the basis of physical differences (e.g., fuel type), locational differences (e.g., availability of water), or significant differences that may exist in the

environmental, economic, or energy impacts. The differences between the proposed facility and the facility, for which the control technique was applied previously, must be justified. EPA has issued a draft guidance document on the top-down approach entitled *Top-Down Best Available Control Technology Guidance Document* (EPA, 1990). FDEP utilizes the "top-down" BACT approach.

3.2.3 Source Impact Analysis

A source impact analysis must be performed for a proposed major source subject to PSD review for each pollutant for which emissions exceed the significant emission rate (Table 3-2). The PSD regulations specifically provide for the use of atmospheric dispersion models in performing impact analyses, estimating baseline and future air quality levels, and determining compliance with AAQS and allowable PSD increments. Designated EPA models normally must be used in performing the impact analysis. Specific applications for other than EPA-approved models require EPA's consultation and prior approval. Guidance for the use and application of dispersion models is presented in the EPA publication *Guideline on Air Quality Models (Revised, November 9th, 2005)*. The source impact analysis for criteria pollutants to address compliance with AAQS and PSD Class II increments may be limited to the new source if the impacts as a result of the new source are below significance impact levels, as presented in Table 3-1.

The EPA has proposed significant impact levels for Class I areas, as follows:

Pollutant	Averaging Time	Proposed EPA PSD Class I Significant Impact Levels (µg/m³)
SO ₂	3-hour	1
	24-hour	0.2
	Annual	0.1
PM_{10}	24-hour	0.3
	Annual	0.2
NO ₂	Annual	0.1

^a μ g/m³ = micrograms per cubic meter.

Although these levels have not been officially promulgated as part of the federal PSD regulations and may not be binding for states in performing PSD reviews, the levels serve as a guideline in assessing a source's impact in a Class I area. The EPA action to incorporate Class I significant impact levels in the PSD process is part of implementing NSR provisions of the 1990 CAA Amendments. Because the process of developing the regulations will be lengthy, EPA believes that the guidance concerning

the significant impact levels is appropriate to assist states in implementing the PSD permit process. The FDEP has accepted the use of these significant impact levels.

Various lengths of meteorological data records can be used for impact analysis. A five-year period can be used with corresponding evaluation of highest, second-highest short-term concentrations for comparison to AAQS or PSD increments. The term "highest, second-highest" (HSH) refers to the highest of the second-highest concentrations at all receptors (i.e., the highest concentration at each receptor is discarded). The second-highest concentration is significant because short-term AAQS specify that the standard should not be exceeded at any location more than once a year. If fewer than five years of meteorological data are used in the modeling analysis, the highest concentration at each receptor normally must be used for comparison to air quality standards.

The term "baseline concentration" refers to a concentration level corresponding to a specified baseline date and certain additional baseline sources. By definition, in the PSD regulations as amended August 7, 1980, baseline concentration means the ambient concentration level that existed in the baseline area at the time of the applicable baseline date. A baseline concentration is determined for each pollutant for which a baseline date is established and includes:

- 1. The actual emissions representative of facilities in existence on the applicable baseline date; and
- 2. The allowable emissions of major stationary facilities that commenced construction before January 6, 1975, for SO₂ and PM(TSP) concentrations or February 8, 1988, for NO₂ concentrations, but that were not in operation by the applicable baseline date.

The following emissions are not included in the baseline concentration and, therefore, will affect PSD increment consumption.

- 1. Actual emissions from any major stationary facility on which construction commenced after January 6, 1975, for SO₂ and PM(TSP) concentrations and after February 8, 1988, for NO₂ concentrations; and
- 2. Actual emission increases and decreases at any stationary facility occurring after the baseline date.

In reference to the baseline concentration, the term "baseline date" actually includes three different dates:

- 1. The major facility baseline date, which is January 6, 1975, in the cases of SO₂ and PM (TSP) and February 8, 1988, in the case of NO₂.
- 2. The minor facility baseline date, which is the earliest date after the trigger date on which a major stationary facility or major modification subject to PSD regulations submits a complete PSD application.
- 3. The trigger date, which is August 7, 1977, for SO₂ and PM (TSP) and February 8, 1988, for NO₂.

The minor source baseline date for SO_2 and PM (TSP) has been set as December 27, 1977, for the entire State of Florida [Rules 62-204.200(22); 62-204.360, F.A.C.]. The minor source baseline for NO_2 has been set as March 28, 1988 [Rule 62-204.200(22); 62-204.360, F.A.C.]. It should be noted that references to PM (TSP) are also applicable to PM_{10} .

3.2.4 Air Quality Monitoring Requirements

In accordance with requirements of 40 CFR 52.21(m) and Rule 62-212.400(7)(f), F.A.C., any application for a PSD permit must contain an analysis of continuous ambient air quality data in the area affected by the proposed major stationary facility. For a new major facility, the affected pollutants are those that the facility potentially would emit in significant amounts.

Ambient air monitoring for a period of up to one year generally is appropriate to satisfy the PSD monitoring requirements. Data for a minimum of four months are required. Existing data from the vicinity of the proposed source may be used, if it meets certain quality assurance requirements; otherwise, additional data may be needed. Guidance in designing a PSD monitoring network is provided in *Ambient Monitoring Guidelines for Prevention of Significant Deterioration* (EPA, 1987a).

The regulations include an exemption that excludes or limits the pollutants for which an air quality analysis must be conducted. This exemption states that a proposed major stationary facility is exempt from the monitoring requirements with respect to a particular pollutant, if the emissions of the pollutant from the facility would cause, in any area, air quality impacts less than the *de minimis* levels presented in Table 3-2 (Rule 62-212.400-3(e), F.A.C.). If a facility's predicted impacts are less than the *de minimis* levels, then preconstruction monitoring is not required.

3.2.5 Source Information/GEP Stack Height

Source information must be provided to adequately describe the proposed facility. The general information required for this facility is presented in Section 2.0.

The 1977 CAA Amendments require that the degree of emission limitation required for control of any pollutant cannot be affected by a stack height that exceeds GEP or any other dispersion technique. On July 8, 1985, EPA promulgated final stack height regulations (EPA, 1985a). Identical regulations have been adopted by FDEP (Rule 62-210.550, F.A.C.). GEP stack height is defined as the highest of:

- 1. 65 meters (m); or
- 2. A height established by applying the formula:

$$Hg = H + 1.5L$$

where:

Hg = GEP stack height,

H = Height of the structure or nearby structure, and

L = Lesser dimension (height or projected width) of nearby structure(s); or

3. A height demonstrated by a fluid model or field study.

"Nearby" is defined as a distance up to five times the lesser of the height or width dimensions of a structure or terrain feature, but not greater than 0.8 kilometer (km). Although GEP stack height regulations require that the stack height used in modeling for determining compliance with AAQS and PSD increments not exceed the GEP stack height, the actual stack height may be greater.

The stack height regulations also allow increased GEP stack height beyond that resulting from the above formula in cases where plume impaction occurs. Plume impaction is defined as concentrations measured or predicted to occur when the plume interacts with elevated terrain. Elevated terrain is defined as terrain that exceeds the height calculated by the GEP stack height formula.

3.2.6 Additional Impact Analysis

In addition to air quality impact analyses, PSD regulations require analyses of the impairment to visibility and the impacts on soils and vegetation that would occur as a result of the proposed source [Rule 62-212.400(8), F.A.C.]. Impacts as a result of general commercial, residential, industrial, and

other growth associated with the source also must be addressed. These analyses are required for each pollutant emitted in significant amounts (see Table 3-2).

3.2.7 Air Quality Related Values

An Air Quality Related Value (AQRV) analysis is required to assess the potential impact on AQRVs in PSD Class I areas. The Chassahowitzka Wilderness Area is the closest Class I area to the Crystal River site, and is located about 22 km to the south of the site. In addition, the St. Marks National Wilderness Area (NWA) is located about 175 km to the northwest of the plant site.

The U.S. Department of the Interior in 1978 administratively defined AQRVs to be:

All those values possessed by an area except those that are not affected by changes in air quality and include all those assets of an area whose vitality, significance, or integrity is dependent in some way upon the air environment. These values include visibility and those scenic, cultural, biological, and recreational resources of an area that are affected by air quality.

Important attributes of an area are those values or assets that make an area significant as a national monument, preserve, or primitive area. They are the assets that are to be preserved if the area is to achieve the purposes for which it was set aside (Federal Register, 1978).

The AQRVs include visibility, freshwater and coastal wetlands, dominant plant communities, unique and rare plant communities, soils and associated periphyton, and the wildlife dependent on these communities for habitat. Rare, endemic, threatened, and endangered species of the national park and bioindicators of air pollution (e.g., lichens) must also be evaluated.

3.3 Nonattainment Rules

FDEP has nonattainment provisions (Rule 62-212.500, F.A.C.) that apply to all major new facilities located in a nonattainment area. In addition, for major facilities that are located in an attainment or unclassifiable area, the nonattainment review procedures apply if the source or modification is located within the area of influence of a nonattainment area. The Crystal River facility is located in Citrus County, which is classified as an attainment area for all criteria pollutants. Therefore, nonattainment new source requirements are not applicable.

3.4 Emission Standards

3.4.1 New Source Performance Standards

The New Source Performance Standards (NSPS) are national emission standards, 40 CFR 60, that apply to specific categories of new sources. As stated in the 1977 Clean Air Act Amendments, these standards "shall reflect the degree of emission limitation and the percentage reduction achievable through application of the best technological system of continuous emission reduction the Administrator determines has been adequately demonstrated."

Crystal River Units 4 and 5 are affected facilities under NSPS Subpart D. The proposed upgrades to Units 4 and 5 do not constitute a modification or reconstruction under the NSPS rules, so applicability of NSPS emission standards to Units 4 and 5 is unchanged by the proposed project. Units 4 and 5, therefore, are not subject to the new mercury emission standard at 40 CFR 60.45Da or to the 0.15 lb/MMBtu NOx limit at 40 CFR 60.44Da(d)(2).

The CBOTM FBC is a steam generating unit and an affected facility under NSPS Subpart Dc. The emissions limits in Subpart Dc that apply to coal combustion do not apply to this system because the high-carbon fly ash does not meet the ASTM definition of "coal."

There are also applicable notification, reporting, and recordkeeping requirements in the general provisions of 40 CFR Subpart A. These are summarized below:

40 CFR 60.7 Notification and Record Keeping

- (a)(1) Notification of the date of construction 30 days after such date.
- (a)(3) Notification of actual date of initial start-up within 15 days after such date.
- (a)(5) Notification of date which demonstrates CEM not less than 30 days prior to date.

60.7 (b) Maintain records of all start-ups, shutdowns, and malfunctions.

- (c) Excess emissions reports semi-annually by the 30th day following six-month period (required even if no excess emissions occur).
- (d) Maintain file of all measurements for two years.

60.8 Performance Tests

- (a) must be performed within 60 days after achieving maximum production rate but no later than 180 days after initial start-up.
- (d) Notification of Performance tests at least 30 days prior to them occurring.

3.4.2 Florida Rules

Florida has adopted the NSPS by reference in Rule 62-204.800(8), F.A.C. Therefore, the facility is required to meet the same emissions, performance testing, monitoring, reporting, and record keeping as those described in Section 3.4.1. FDEP has authority for implementing NSPS requirements.

3.4.3 Florida Air Permitting Requirements

The FDEP regulations require any new source to obtain an air permit prior to construction. Major new sources must meet the appropriate requirements as discussed previously. Required permits and approvals for air pollution sources include PSD, NSPS, National Emission Standards for Hazardous Air Pollutants (NESHAP), Permit to Construct, and Permit to Operate. The requirements for construction permits and approvals are contained in Rules 62-4.030, 62-4.050, 62-4.210, 62-210.300(1), and 62-212.400, F.A.C. Specific emission standards are set forth in Chapter 62-296, F.A.C.

3.4.4 Local Air Regulations

Citrus County does not have a local air compliance authority. There are currently no local air quality regulations more stringent than those at the state level.

3.5 Source Applicability

3.5.1 Area Classification

The Project is located in Citrus County, which has been designated by EPA and FDEP as an attainment area (includes unclassifiable) for all criteria pollutants. Citrus County and surrounding counties are designated as PSD Class II areas for SO₂, PM(TSP), and NO₂. The Chassahowitzka National Wilderness Area (NWA) is the closest Class I area to the Crystal River site, and is located about 22 km to the south of the site. In addition, the St. Marks NWA is located about 175 km to the northwest of the plant site.

3.5.2 PSD Review

3.5.2.1 Pollutant Applicability

Crystal River is classified as an existing major facility. A modification to an existing major facility that results in a significant net emissions increase equal to or exceeding the significant emissions rates (SER) listed in Section 62-212.400, Table 212.400-2, F.A.C., is classified as a major modification and will be subject to the PSD New Source Review (NSR) preconstruction permitting program for those pollutants that exceed the PSD SERs. EPA has approved Florida's State Implementation Plan (SIP), which contains PSD regulations; therefore, PSD approval authority has been granted to the FDEP.

The procedures for determining applicability of the PSD NSR permitting program to the Crystal River Units 4 and 5 control equipment installation project are specified in Rule 62-212.400(2), F.A.C. For each regulated pollutant, PSD is triggered as a result of a modification at an existing unit if the difference between the projected actual emissions and the baseline actual emissions equals or exceeds the significant emissions rate for that pollutant, as defined at Rule 62-210.200(243), F.A.C.

As described previously, the "Project" for PSD review purposes consists of the installation of SCR systems on Units 4 and 5 (the application submitted on April 25, 2006) and low NOx burners to reduce NO_X emissions. The installation of FGD systems on Units 4 and 5 is for SO₂ control. The installation of an SCR system can result in additional SO₃ emissions due to the catalytic effect on the sulfur dioxide contained in the flue gas. Since the FGD system is located downstream of the SCR, there is the possibility for increased formation of sulfuric acid mist (H₂SO₄ or SAM), which is a PSD-affected pollutant. Therefore, the addition of an alkali injection system for reducing SO₃ formation resulting combustion and the SCR catalyst and subsequent SAM formation in the FGD is also addressed in this application package. Finally, the installation of a CBOTM unit is planned to address the fly ash carbon and ammonia content that is an ash marketability issue.

Projected actual emissions for the project, as shown in Table 2-6, will not exceed the PSD significant emission rates for SO₂ and NO_X. Therefore, PSD review is not applicable for these pollutants.

The proposed condition offered for consideration related to these pollutants is:

The applicant shall maintain monthly and submit to the Department on an annual basis for a period of ten years from the date the project is completed, information demonstrating in

accordance with Rule 62-212.300(1)(e)(1), F.A.C. that the modification did not result in significant emissions increases of NO_X, SO₂, and VOCs., as defined in Rule 62-210.200(234). The emissions computation and reporting shall be based on the requirements of Rule 62-210.370 F.A.C. The basis for evaluating an emission increase is on a tons-per-calendar-year basis.

The recent Department rulemaking with respect to new source review (NSR) reform provides for consideration of startup and shutdown emissions, as well as fugitive emissions, in NSR applicability determinations (FDEP Rule 210.200(34)(a)(1), Definitions). Progress Energy does not anticipate that the Units 4 and 5 emissions magnitude during startup and shutdown operations, or the number of startups and shutdowns, post-change will be any different than current operations. An established startup and shutdown procedure is followed by plant personnel. This procedure will continue to guide the post-change operations.

As shown in Table 2-6, potential net emissions increase from the Project will trigger PSD review for CO, VOCs, PM/PM₁₀ and H₂SO₄. Impacts of a pollutant predicted to be above the significant impact level requires a modeling analysis incorporating the impacts from other sources. (Note: EPA no longer requires PSD review for HAPs).

3.5.2.2 Emission Standards

Crystal River Units 4 and 5 are affected facilities under NSPS Subpart D. The proposed upgrades to Units 4 and 5 do not constitute a modification or reconstruction under the NSPS rules, so applicability of NSPS emission standards to Units 4 and 5 is unchanged by the proposed project. Units 4 and 5, therefore, are not subject to the new mercury emission standard at 40 CFR 60.45Da or to the 0.15 lb/MMBtu NOx limit at 40 CFR 60.44Da(d)(2).

The CBOTM FBC is a steam generating unit and an affected facility under NSPS Subpart Dc. The emissions limits in Subpart Dc that apply to coal combustion do not apply to this system because the high-carbon fly ash does not meet the ASTM definition of "coal."

3.5.2.3 Ambient Monitoring

Based on the potential emissions increase from the Project (see Table 2-6), pre-construction ambient monitoring analyses are required for CO, and PM₁₀. If the ambient impacts of these pollutants are less than the applicable *de minimis* monitoring concentration (100 TPY in the case of VOC), then an exemption from the pre-construction ambient monitoring requirement is available per Rule 62-

212.400(3)(e), F.A.C. As shown in Table 6-11, the Project's impacts due to stack emissions are predicted to be below the applicable *de minimis* monitoring concentration levels for all pollutants. However, for PM_{10} , the Project's impacts due to stack emissions and material handling operations, including truck traffic, are presumed to exceed the *de minimis* monitoring concentration level. Therefore, pre-construction monitoring data are required to be submitted for PM_{10} .

It should be noted that, although PSD review is triggered for H_2SO_4 , ambient monitoring is not required since there is no *de minimis* monitoring concentration level established for this pollutant.

3.5.2.4 GEP Stack Height Impact Analysis

The GEP stack height regulations allow any stack to be at least 65 meters or 213 ft high. The calculated GEP stack height is 690 ft high. The stacks for the Project will be 550 ft, and, therefore, do not exceed the GEP stack height. However, as discussed in Section 6.0, Air Quality Modeling Approach, since the stack height is less than GEP, building downwash effects are considered in the modeling analysis.

3.5.3 Other Clean Air Act Requirements

The 1990 Clean Air Act Amendments established the Acid Rain Program to reduce the release of acidic deposition precursors, SO₂ and NO_X. EPA's final regulations were promulgated on January 11, 1993, and included permit provisions (40 CFR Part 72), allowance system (Part 73), continuous emission monitoring (Part 75), NO_X provisions (Part 76), excess emission procedures (Part 77), and appeal procedures (Part 78).

The Acid Rain Program applies to all existing and new utility units except those serving a generator less than 25 MW, existing simple cycle CTs, and certain non-utility facilities; units which fall under the program are referred to as "affected units." The Acid Rain Program regulations will continue to be applicable to the Project.

In addition, on May 12, 2005, EPA promulgated a rule to reduce emissions of SO₂ and NO_X from electric generating units located in 29 eastern states, including Florida. This rule was codified as a revision to Subpart G of 40 CFR Part 51. The stated objective of the Clean Air Interstate Rule (CAIR) is to assist eastern states in achieving attainment with the new, more stringent PM_{2.5} and the 8-hour ozone National Ambient Air Quality Standards (NAAQS) by reducing precursor emissions in

upwind areas. Progress Energy is proposing this Project, in part, to allow it to reduce NO_X and SO₂ emissions such that it will not have to buy allowances. Specific compliance of the Crystal River site with Florida's CAIR implementing regulations will be addressed following their finalization, in a separate subsequent application package as required by rules that the Department is planning to promulgate in 2006.

In addition to CAIR, EPA also promulgated a rule to limit mercury emissions from all new and existing coal-fired utility boilers on May 18, 2005. This rule was codified as a revision to Subpart B of 40 CFR Part 60. This Clean Air Mercury Rule (CAMR) will set an initial nation-wide cap on mercury emissions from coal-fired boilers of 38 TPY beginning in 2010, with an additional decrease to 15 TPY by 2018. Progress Energy is proposing to install the SCRs and FGDs, in part, to achieve the co-benefit of reducing mercury emissions to levels that will allow it to not have to buy allowances. Compliance of the Crystal River site with the CAMR rule will be addressed in a separate subsequent application package as required by rules that the Department is planning to promulgate in 2006.

4.0 CONTROL TECHNOLOGY REVIEW

4.1 Applicability

Per the PSD regulations, the Project is required to undergo a control technology review for CO, VOCs, PM/PM₁₀ and H₂SO₄ (see Section 3.0). This section presents the applicable NSPS and the proposed BACT for this project. The approach to the BACT analysis is based on the regulatory definitions of BACT, as well as consideration of EPA's current policy guidelines requiring a "top-down" approach. A BACT determination requires an analysis of the economic, environmental, and energy impacts of the proposed and alternative control technologies. The analysis must, by definition, be specific to the Project (i.e., case-by-case).

4.2 New Source Performance Standards

Crystal River Units 4 and 5 are affected facilities under NSPS Subpart D. The proposed upgrades to Units 4 and 5 do not constitute a modification or reconstruction under the NSPS rules, so applicability of NSPS emission standards to Units 4 and 5 is unchanged by the proposed project. Units 4 and 5, therefore, are not subject to the new mercury emission standard at 40 CFR 60.45Da, the 0.03 lb/MMBtu PM limit at 40 CFR 60.42a, or to the 0.15 lb/MMBtu NOx limit at 40 CFR 60.44Da(d)(2). There are no applicable NSPS standards for CO, VOC or H₂SO₄ emissions, which are pollutants addressed by the BACT analyses below.

The CBO™ FBC is a steam generating unit and an affected facility under NSPS Subpart Dc. The emissions limits in Subpart Dc that apply to coal combustion do not apply to this system because the high-carbon fly ash does not meet the ASTM definition of "coal."

4.3 Best Available Control Technology (BACT)

4.3.1 Carbon Monoxide and Volatile Organic Compounds

4.3.1.1 Carbon Monoxide

There are no applicable NSPS for the control of carbon monoxide (CO) from utility boilers. CO emissions result from incomplete combustion of the fuel. CO emissions are controlled by boiler

design features and combustion air feed rates. The boiler will be designed and operated for high-combustion efficiency, which will inherently minimize the production of CO.

Theoretically, CO emissions can be reduced by passing the flue gas over an oxidation catalyst at a suitable temperature (900 to 1,000°F). In practice, this technology has several unknowns and disadvantages, including the following:

- 1. No utility pulverized coal-fired boilers are operating with catalytic CO control systems and it would be difficult to locate an oxidation catalyst in the proper temperature zone in a boiler.
- 2. Catalyst converts up to 70 percent of SO₂ to SO₃.
- 3. There is a lack of experience with large-scale operation of this technology using particulate-laden gases from coal-fired boilers. Catalysts can be easily eroded and fouled by silica and trace metals in the flue gas.
- 4. The temperature profile of the flue gas does not match the temperature requirements of typical catalysts.
- 5. Use of an undemonstrated catalyst technology would reduce the availability and reliability of the plant (e.g., catalyst plugging).
- 6. The high costs to install and operate the system (additional pressure drop, catalyst replacement and disposal, etc.) are without corresponding demonstrated needs or benefits. Design and operation of the boiler to efficiently combust the fuel will minimize CO emissions. The additional costs to further lower emissions are not justified.

CO emission limits established *for new units* as BACT over the last several years range from 0.1 to 0.2 lb/MMBtu, with a median average of 0.15 lb/MMBtu. Combustion control is the primary method used to control CO emissions.

4.3.1.2 Volatile Organic Compounds

Similar to CO, there are no applicable NSPS for VOC emission (hydrocarbons) from utility boilers. VOC emissions result from incomplete combustion of the fuel. This incomplete combustion can result from poor air/fuel mixing or insufficient oxygen for combustion. Such emissions are reduced by modifying design features of the boiler and control of the combustion air feed rates. Design of a boiler and combustion air system to efficiently burn the coal represents the control technology with the greatest degree of emissions reduction.

BACT emission limits established *for new units* over the last several years range from 0.0024 to 0.01, with a median average of about 0.0036 lb/MMBtu. The predominant control method is combustion control.

4.3.1.3 Proposed BACT and Rationale

Good combustion practices are the only technically feasible method of controlling CO and VOC emissions from Units 4 and 5. The use of good combustion controls has been identified as BACT for CO control for every major coal-fired boiler identified in the U.S. EPA's RACT/BACT/LAER clearinghouse database. This control technology is technically feasible, and is identified as BACT for these PC boilers. Therefore, design of a boiler and combustion air system to efficiently burn the coal represents BACT for control of CO and VOC emissions. There are no other control devices demonstrated that are available or feasible for the Project. The CO and VOC emission rates for the Units 4 and 5 boilers of 0.2 lb/MMBtu and 0.004 lb/MMBtu, respectively, are within the range of emission rates recently established as BACT for new units. As these are existing units, the emission levels proposed meet the intent of the case-by-case BACT provisions.

Because of lower furnace temperatures at low loads, low boiler loads can result in elevated CO and VOC emissions in terms of pounds per million Btu of heat input. However, the overall mass emission rate is relatively constant over the entire boiler operating range from initial ignition at startup to full load. Therefore, the allowable emission limit representing BACT should reflect the constant mass output equal to a full load emission rate of 7,200 MMBtu/hr per unit.

Therefore, Progress Energy proposes the following emission limits as BACT:

- CO and VOC emissions shall be controlled using good combustion practices.
- CO emissions shall be limited to the higher of 0.2 pounds per million Btu of heat input or 1,440 pounds per hour, based on a three-hour test average, whichever is greater.
- VOC emissions shall be limited to the higher of 0.004 pounds per million Btu of heat input or 28.8 pounds per hour, based on a three-hour test average, whichever is greater.

The limitation is stated in terms of the higher of pounds per million Btu or pounds per hour to address low boiler load operations.

4.3.2 Sulfuric Acid Mist (SAM)

4.3.2.1 Technology Description

The formation of SAM is a result of gaseous SO₃ formed in the combustion process and SO₃ formed by oxidation in the SCR catalyst. SO₃ readily reacts with moisture in the flue gas to convert to sulfuric acid (H₂SO₄). As the flue gas temperature drops, the sulfuric acid vapor converts to liquid and becomes extremely corrosive and can cause damage to equipment. Numerous studies have been conducted examining the relationship between the SO₃ concentration and the sulfuric acid dew point, and a range of temperatures has been established for the dew point of sulfuric acid versus SO₃ concentration levels. At a 90-ppmv SO₃ concentration, the sulfuric acid dew point temperature range is between 295 and 340°F. At a much lower SO₃ concentration of 6 ppmv, the estimated dew point range drops to between 260 and 280°F.

SAM contributes to PM₁₀ and the visible "blue" plumes in the atmosphere from facilities with FGD systems. When exiting the boiler, SO₃ is difficult to control in standard ESP designs. Some control is obtained in wet FGD systems, but the majority of the SO₃ goes uncontrolled and is condensed into SAM aerosol. These aerosols have a particle size within the wavelength of light and are usually exhibited as a blue haze in plumes. Levels of 10 ppm or less are recommended to reduce the "blue" plume phenomenon.

The formation of SO₃ in the combustion process is highly dependent on the boiler operation (e.g., excess O₂) and fuel sulfur content. The installation of SCR contributes towards the formation of SO₃ from SO₂, by increasing the oxidation of SO₂ to SO₃. Typical oxidation rates are 0.25 percent per catalyst layer. For two catalyst layers, an oxidation rate of 0.5 percent would occur.

Abatement technologies for SAM can be classified as sorbent injection techniques in the furnace, sorbent injection upstream of a particulate control device, but downstream of the SCR system, and add-on pollution control equipment such as a wet ESP.

4.3.2.2 Boiler Injection Technologies

Boiler injection technologies involve the injection of sorbents within the boiler that react with SO₃ and are subsequently collected in the particulate control device. These technologies include:

magnesium hydroxide [Mg(OH)₂] slurry injection, dolomitic lime [Ca(OH)₂ * Mg(OH)₂] injection, limestone injection in the boiler (LIMB), and OmniClearTM injection.

Slurry Mg(OH)₂ is a reactive alkali compound that can be used to mitigate SO₃ emissions. The overall chemical reaction can be summarized as follows:

$$Mg(OH)_2 + SO_3 \rightarrow MgSO_4 + H_2O$$

Dolomite (CaCO₃ * MgCO₃) is a limestone mineral, an alkaline compound, that can react with and remove SO₃ from the flue gas. The overall chemical reactions can be summarized as:

$$CaCO_3 + SO_3 + H_2O \rightarrow CaSO_4 + H_2O + CO_2$$

$$MgCO_3 + SO_3 + H_2O \rightarrow MgSO_4 + H_2O + CO_2$$

Limestone is an alkaline compound that can react with and remove SO₃ from the flue gas. The overall chemical reaction can be summarized as:

$$CaCO_3 + SO_3 + H_2O \rightarrow CaSO_4 + H_2O + CO_2$$

OmniClearTM products include mixtures of calcium and magnesium compounds, custom blended for particular applications. The OmniClearTM blend for furnace injection in a given application is designed to maximize SO₃ removal efficiency, while minimizing increased particulate loading and removal issues. The overall chemical reactions are similar to:

$$CaCO_3 + SO_3 + H_2O \rightarrow CaSO_4 + H_2O + CO_2$$

$$MgCO_3 + SO_3 + H_2O \rightarrow MgSO_4 + H_2O + CO_2$$

An injection system utilizing pumps is used to inject the sorbent into the furnace where they react with SO₃. Slurry MgCO₃ and dolomite injection technology will potentially remove up to 90 percent of the combustion generated SO₃. Limestone and OmniClearTM injection have lower efficiencies. While these technologies will remove SO₃ from the combustion process, they will not significantly

reduce the SO₃ downstream of the SCR system. Therefore, these technologies are not considered technically feasible as BACT.

4.3.2.3 Post-combustion Injection Technologies

The post-combustion injection SAM-control technologies involve injection of reactants downstream of the SCR and air heater and upstream of a PM control device for removal of SO₃. The injection technologies include sodium bicarbonate (NaHCO₃) injection, calcium hydroxide – hydrated lime [Ca(OH)₂] injection, Trona injection, dry magnesium oxide (MgO) injection, sodium bisulfite (NaHSO₃ or SBS) injection, calcium carbonate (CaCO₃) injection, micronized limestone injection, and ammonia (NH₃) injection.

Dry sodium bicarbonate is an alkaline compound that can react with and remove SO₃ from the flue gas. Sodium bicarbonate is injected as a dry fine powder and forms a water-soluble particulate. The overall chemical reaction can be summarized as:

$$NaHCO_3 + SO_3 \rightarrow Na2SO_4 + NaHSO_4 + H_2O + CO_2$$

Hydrated lime or calcium hydroxide is a reactive alkaline compound that can be used to mitigate SO₃ emissions. This sorbent is injected as a dry powder with SO removal in the gas stream and the particulate control device. This technology is similar to that used in spray-dryer absorber systems, when combined with an ESP or fabric filter for SO₂ and SO₃ control using low-sulfur coals. The overall chemical reaction with the SO₃ can be summarized as:

$$Ca(OH)_2 + SO_3 \rightarrow CaSO_4 + H_2O$$

Trona, or hydrated sodium bicarbonate carbonate, is a reactive alkaline compound that can be used to mitigate SO₃ emissions. The overall chemical reaction involving SO₃ can be summarized as:

$$aNaHCO_3 Na2CO_3 \cdot 2H_2O + bSO_3 \rightarrow cNaHSO_4 + dNa2SO_4 + eCO_2 + fH_2O$$

Mg(OH)₃ is a very reactive alkaline compound that can be used to mitigate SO₃ emissions. The overall chemical reaction can be summarized as:

$$MgO_3 + SO_3 \rightarrow MgSO_4$$

NaHSO₃ can react with SO₃ in the flue gas to form sodium sulfate and sodium bisulfate. The overall chemical reaction is:

$$2NaHSO_3 + SO_3 \rightarrow Na2SO_4 + 2SO_2 + H_2O$$

Since commercially available NaHSO₃ has up to 10 percent by weight of sodium sulfite, the following side reaction occurs:

Na2 SO₃ + SO₂ + H₂O
$$\rightarrow$$
 2NaHSO₃

The NaHSO₃ generated by the side reaction can react and remove SO₃ in the flue gas. Alternately, it can react directly with SO₃ and remove it as sodium sulfate:

$$Na2SO_3 + SO_3 + O_2 \rightarrow Na2SO_4$$

Micronized dry limestone is an alkaline compound that can provide a large amount of surface area to allow deposition (condensation and adsorption) and removal of the SO₃ on the small limestone particles (large surface area). The adsorption removal mechanism (adsorption of SO₃ on the micronized limestone particles) for SO₃ follows the overall chemical reaction:

$$CaCO_3 + SO_3 + H_2O \rightarrow CaSO_4 + H_2O + CO_2$$

NH₃ injected in the flue gas reacts with SO₃ to form ammonium sulfate and ammonium bisulfate salts. The overall reaction is:

$$NH_3 + H2SO_4 \rightarrow (NH_4)_2SO_4$$

$$2NH_3 + H2SO_4 \rightarrow (NH_4)HSO_4$$

NaHCO₃, NaHSO₃, and magnesium hydroxide have high reactivities with SO₃ and are predicted to achieve 80- to 90-percent removal of SO₃. NaHSO₃ technology is commercially available, and has been installed in over a dozen units for SO₃ control. An advantage of NaHSO₃ injection is that a reaction with SO₂ does not occur, as with other alkaline sorbents (e.g., calcium- or magnesium-based compounds). Ca(OH)₂ and limestone are not as reactive with SO₃ and would have removal

efficiencies of less than 80 percent. Ammonia injection can from ammonium bisulfate or ammonium sulfate depending upon the molar ratio for injection. Ammonia sulfate is desired since it is a solid particle. Ammonia injection has shown removal efficiencies of 90 percent prior to particulate control devices.

Sorbent injection prior to an ESP is considered a commercially available and demonstrated technology for the Project. This technology would also have benefits for downstream components, by reducing potential corrosion in the ductwork, ESP, and FGD System inlet due to the formation of SAM. Sorbent injection has been the technology of choice for projects involving the addition of SCR and FGD systems to existing units.

The FGD will reduce the SAM emitted. As the SO₃ enters the absorber, some of the SO₃ converts to SAM due to the lowering of the temperature and the moisture in the gases, and reacts with the limestone slurry in the FGD absorber. The actual removal efficiencies vary, but are generally in the range of 20 to 40 percent. Since the FGD system is a passive control system for SAM, vendors are reluctant to guarantee SAM-removal efficiencies. For this Project, the FGD removal is based on an efficiency of 30 percent.

4.3.2.4 Add-on Controls

The recognized add-on control after the FGD System for SAM control is wet-ESPs ("WESPs"). WESPs are similar to dry ESPs, except that they are suited for acid mists. They are operated at temperatures less than 190°F. Instead of rapping mechanisms, WESPs typically use water to wash particles from the collectors. The water wash can be either intermittent or continuous. Unlike dry ESPs, resistivity of the particle is not a major factor in performance, since the gas stream has high humidity that reduces the resistivity of most particles. Due to this effect, WESPs can collect smaller particles than dry ESPs, since resistivity is lowered for all particle sizes and there is less re-entrainment. WESPs are available technology, and can provide emission reduction for SAM, but at great cost.

4.3.2.5 Basis of BACT Analysis

The available and demonstrated pollution control technologies applicable to the Project are sorbent injection after or before the air heater, with collection of the particulate in the ESPs and the addition of WESPs after the FGD absorbers. For the purpose of the BACT analysis, the use of ammonia

injection technology is being assumed. This technology is commercially available and has been demonstrated.

Because sorbent injection and WESPs are applied in different portions of the exhaust gas train, a method is needed to determine the emission levels that can be achieved as BACT with these technologies, as well as determining the cost effectiveness. To predict the amount of SAM generated in each portion of the unit, from the combustion process to the FGD exhaust, a method currently used by Progress Energy for estimating SAM emissions for the TRI reporting, was used. This method, based on test data from a variety of coal-fired units, was developed by the Southern Company, and is widely accepted within the industry and industry organizations. Table 4-1 presents the calculations of SAM emissions at various points in the exhaust gas stream from the combustion in the boiler to the stack exhaust. The basis of the calculations is the design coal. All the calculations are accounted for as SAM, even though the actual parameter may be SO₃.

The SAM formed (actually SO₃, but accounted for in the calculations as SAM) in the combustion process is 1.1 percent of the total sulfur as SO₂, based on the factors established in the Southern Company method. The SCR oxidation of SO₂ is based on 0.5 percent to account for two catalyst layers. The air heater will remove some SAM. The factor used was based on the Southern Company method for high-sulfur coals and shown in Table 4-1. This factor accounts for a 15-percent reduction in SAM emissions. The removal of SAM using ammonia injection followed by the ESP was based on 85 percent efficiency (a factor of 0.2 in Table 4-1). Higher removal efficiencies are possible with new and clean systems. A control efficiency of 85 percent was selected to account for equipment degradation (e.g., nozzle plugging) during normal operation. The SAM control efficiency for the FGD system was estimated to be 30 percent (or 0.7 factor), which represents a reduction that could possibly be guaranteed by an equipment vendor. Hypothetically, the WESP could be added downstream of the FGD system. The evaluation of WESP technology was based on a 90 percent reduction of SAM emissions.

The economic, environmental and energy impact analyses required under the requirements for a BACT evaluation are presented in the following subsections for the ammonia injection technology and WESP.

4.3.3 Impact Analysis

4.3.3.1 Economic Impact Analysis

The total estimated capital, annualized and incremental costs of NaHSO₃ injection are summarized in Table B-2 for Units 4 and 5, based on budgetary cost estimates. Capital cost is about \$1.7 million, with an annualized cost of about \$1.6 million. The cost effectiveness of the SAM emission reduction is \$252 per ton.

The total estimated capital, annualized and incremental costs of WESP are summarized in Table B-3 for Units 4 and 5, based on budgetary cost estimates. Capital cost is estimated to be about \$80 million, with an annualized cost of about \$18.5 million. The cost effectiveness of the SAM emission reduction is \$5,289 per ton of SAM removed; the incremental cost effectiveness over ammonia injection is about \$50,200 per ton of SAM removed.

4.3.3.2 Environmental Impact Analysis

The ammonia injection technology will reduce SAM emissions by over 6,000 TPY, while providing downstream protection to equipment (ducts, ESPs, and FGD absorbers). The amount of energy required is minimal, thereby minimizing secondary air emissions from lost efficiency. Some additional fugitive particulate emissions would result due to material handling if urea is used to generate ammonia, but would be minimal with the use of control equipment (bin vent filters on reagent silos).

The addition of WESP will further reduce SAM emissions by about 370 TPY over ammonia injection. Other collateral benefits would be minor, since PM₁₀, PM_{2.5}, Hg, and other HAPS would be removed by the ESPs and FGD Systems. The wet FGD Systems are very effective in removing oxidized Hg. A WESP would not provide any significant further removal of elemental Hg.

The electrical energy required to run the WESP and the pressure drop from the WESP will reduce the power that would otherwise be available from the unit by approximately 0.952 MW. The resultant loss of electrical energy will reduce the amount available for distribution. This electrical energy would have to be generated by other units creating additional emissions. The additional emissions due to the lost generation would be about 30 TPY. The lost energy, which could otherwise be used in the electric system, would have to be replaced by other units. The 30 TPY additional emissions are

for all pollutants based on natural fired generation. The WESP may require additional water use of up to about 1,000 gpm.

4.3.3.3 Energy Impact Analysis

The ammonia injection energy requirements are a result of injecting the reagent into the ductwork using numerous lances. Since the lances are relatively small when placed in the ductwork, there is very little pressure loss. The energy use is estimated to be 4,975 MWh per year for ammonia injection. This is about 0.04 percent of the gross generation. The total energy requirements of ammonia injection are equivalent to the electric needs of about 414 residential customers using 1,000 kilowatt-hours (kWh) per month.

In contrast to ammonia injection, there are significant energy penalties with the WESP, since the output is reduced due to the pressure drop and there are considerable energy requirements to operate the system. The energy required to operate the WESP equipment would be about 16,700 MWh per year per unit, while the energy required to overcome the pressure drop requires 10,200 MWh. Taken together, the total energy requirement is about 26,900 MWh. This is about 0.25 percent of the gross generation. The total energy requirements of the WESP per year could supply the electrical needs of about 2,240 residential customers using 1,000 kWh per month.

4.3.3.4 Proposed BACT and Rationale

The proposed technology for reducing SAM emissions is ammonia injection. This technology can achieve the maximum amount of emission reduction, is cost effective, and has been demonstrated and accepted for FGD retrofit conversions. The cost effectiveness of ammonia injection is less than \$300 per ton of SAM removed. WESP technology, while technically feasible and demonstrated for new units, has not been applied to projects involving retrofits of FGD systems on existing units. The incremental cost effectiveness of WESP, over that of ammonia injection, is over \$50,000 per ton of SAM removed. This is also based on maximum SO₃ generation (i.e., 3 percent sulfur coal) and assuming 100% capacity factor. Under other sulfur coal conditions and lower capacity factors, the cost effectiveness factor will be significantly higher. There are also no substantial collateral environmental benefits for the WESP. While the WESP could remove about 370 TPY more SAM than ammonia injection, the installation of the FGD is estimated to remove over 30,000 TPY of sulfur oxides. Moreover, the ESP upgrades followed by wet FGD will effectively remove PM₁₀. The WESP will not remove additional Hg since the combined air pollution control train consisting of the

SCR, ESP, and FGD System will be sufficiently effective for the removal of Hg. Together, these controls would remove particulate Hg (ESP) and oxidized Hg (primarily due to the co-benefits of the SCR and new FGD System). The WESP would not remove elemental Hg, which would be the primary emission remaining. In addition, the energy requirements for a WESP are significant. About 26,900 MWh per year would be required to operate a WESP, which would otherwise be available to serve approximately 2,240 residential customers. Based on the economic, environmental, and energy impacts, the addition of WESPs for further control of SAM is unreasonable as BACT for the Project. A maximum SAM emission rate of 0.012 lb/MMBtu is proposed as BACT using sorbent injection (ammonia or equivalent).

Progress Energy requests that, once construction is completed, an initial compliance test be conducted, using either EPA Reference Method 8 or 8A.

4.3.4 PM/PM₁₀ BACT Analysis

Combustion of coal in a pulverized coal-fired boiler creates ash, which is the non-combustible portion of the fuel. The ash is solid and therefore is classified as PM. A portion of this PM, approximately 20 percent, falls to the bottom of the boiler as bottom ash and is removed by the bottom ash system. The majority of the PM, approximately 80 percent, is fly ash and is entrained by the flue gases leaving the boiler. The majority of this fly ash is then collected by the flue gas PM removal system.

ESPs and fabric filters are the most effective PM-control devices being successfully applied to coal-fired power plants. PM removal efficiencies of these devices can be greater than 99.8 percent. Both devices are also highly effective in controlling PM_{10} emissions. Other technologies, such as mechanical collectors and wet scrubbers, have not demonstrated equivalent levels of control.

4.3.5 ESPs

In an ESP, a high-voltage electric field is produced to impart an electric charge to the solid particles in the flue gas stream. The pulsating direct current voltage in the range of 20,000 to 100,000 volts is used to ionize the gas stream, known as corona. The ions produced using a negative corona, are attracted to the particles while traveling in the ionized gas stream. These particles are then removed from the gas stream by migrating toward the collecting electrode. Rapping mechanisms, that are operated intermittently, dislodge the collected particles, which subsequently fall into a hopper. ESP

performance is highly dependent on the electrical characteristics or resistivity of the particle or aerosol to be collected.

ESP performance is dependent on a number of factors, which influence the resistivity of the particle. These factors include the particle composition, flue gas characteristics, particle size distribution, and particle loading. These parameters can vary during normal operation and can influence ESP performance when gas streams come directly from the boiler.

4.3.5.1 Fabric Filters

In a fabric filter, PM is removed from the flue gas as it passes through a fabric filter media such as woven cloths or felts; hence the term "fabric filter." The filters are normally arranged as a number of cylinders or tubes (commonly referred to a "bags") through which the flue gas is directed. The filters are contained in a housing which has gas inlets and outlets. The flue gas enters the cylindrical filter from the bottom and flows upward, from either the inside of the cylinder to the outside or the opposite depending upon the design. Particulate collection occurs through several mechanisms, including gravitational settling, direct impaction, inertial impaction, diffusion, and electrostatic attraction. When the pressure drop reaches a predefined level, a section of the filters is taken offline for cleaning. Various methods are used to clean the bags in the fabric filter. The three general types of cleaning are shaker cleaning, pulse-jet cleaning, and reverse-air cleaning. All three types of cleaning methods ensures the fabric filter achieves the same low emission rates.

4.3.5.2 Proposed BACT and Rationale

A BACT determination was addressed for this project due to an anticipated increase in PM/PM10 emissions that exceeds the threshold for PSD and BACT applicability. However, the increase in PM/PM10 emissions is not directly attributed to the boilers themselves. Rather, the primary increase in PM/PM10 emissions associated with this project is due to the emissions attributed to material handling operations (i.e., limestone, gypsum and fly ash). The emission estimates and controls proposed for those operations are consistent with BACT and best management practices for similar projects.

Regarding Units 4 and 5, the ESP control systems are currently achieving high-efficiency operation (i.e., 99 percent+). As described earlier, ESP upgrades are planned that are expected to increase the control efficiency to greater than 99.9 percent. Progress Energy has not presented a cost-

effectiveness comparison of ESPs and fabric filters in this analysis, as controls are currently in service that will achieve greater than 99.9 percent control, when upgrades are complete. Fabric filters will achieve control efficiencies no greater than 99.9. percent and would represent significant additional cost.

Progress Energy proposes a BACT emission limit for the ESP control systems equivalent to the recently promulgated NSPS, Subpart Da for electric utility steam generating units. Crystal River Units 4 and 5 are currently affected facilities under NSPS Subpart D. The proposed upgrades to Units 4 and 5 do not constitute a modification or reconstruction under the NSPS rules, so applicability of NSPS emission standards to Units 4 and 5 is unchanged by the proposed project. However, as the BACT floor is represented by the applicable NSPS standard, the 0.03 lb/MMBtu PM limit at 40 CFR 60.42a (the recently promulgated NSPS, Subpart Da), is proposed as BACT. Progress Energy proposes to demonstrate compliance annually with an EPA Reference Method test.

5.0 AMBIENT MONITORING ANALYSIS

The PSD rules require that an air quality analysis be conducted for each criteria and non-criteria pollutant subject to regulation under the Act before a major stationary source is constructed. Criteria pollutants are those pollutants for which AAQS have been established. Non-criteria pollutants are those pollutants that may be regulated by emission standards, for which AAQS have not been established. This analysis may be performed by the use of modeling and/or by monitoring the air quality. In addition, if EPA has not established an acceptable ambient monitoring method for the pollutant, monitoring is not required.

Based on the potential emissions from the Project (see Table 2-6), pre-construction ambient monitoring analyses for CO and PM₁₀ are required as part of the application. Ambient monitoring data are not required to be submitted as part of the application if it can be demonstrated that the proposed project's maximum air quality impacts will not exceed the PSD *de minimis* concentration levels and, for O₃ (based on VOC emissions), VOC emissions of 100 TPY.

As shown in Section 6.9, the Project's maximum impacts are predicted to be below the PSD de minimis CO concentration levels but are presumed to be above the PSD de minimis PM_{10} concentration levels when PM_{10} impacts from stack emissions and from material handling operations are modeled. As a result, pre-construction ambient monitoring data for PM_{10} are provided as part of the application.

For O₃, EPA has established a PSD *de minimis* monitoring level for a project based on an increase in VOC emissions of 100 TPY or more, which would require a pre-construction ambient monitoring analysis. The Project's VOC emissions increase is estimated to be less than 100 TPY (i.e., 89.2 TPY), however, pre-construction ambient monitoring data for O₃ (based on VOC emissions) is provided as part of the application.

Monitoring data for SO₂ and NO₂ concentrations are also presented to estimate background concentrations from non-modeled sources. Although these pollutants did not trigger PSD review, modeling was performed to demonstrate that the Project's impacts, together with other sources, comply with ambient standards. These background concentrations are added to the modeled impacts from the Crystal River Plant and other background sources to estimate total air quality from all sources.

5.1 PM₁₀ Ambient Monitoring Analysis

Ambient PM₁₀ monitoring data from existing monitoring stations operated by FDEP are included in this application to satisfy the preconstruction monitoring requirements for PM₁₀ (see Table 5-1). Citrus County and adjacent counties are classified as attainment or maintenance areas for PM₁₀. The nearest monitor to the plant site that measures PM₁₀ concentrations is located in Tarpon Springs in Pinellas County, approximately 90 km to the south of the plant.

From 2003 through 2005, the second-highest 24-hour and highest annual average PM_{10} concentrations measured at the Tarpon Springs monitor were 26 and 16.7 ug/m³, respectively. These maximum concentrations are less than the respective 24-hour and annual average PM_{10} AAQS of 150 and 50 ug/m³.

These PM_{10} monitoring data are proposed as part of this construction permit application to satisfy the preconstruction monitoring requirement for the project. In addition, these maximum concentrations were used to represent the non-modeled background concentration to assess total air quality impacts.

5.2 O₃ Ambient Monitoring Analysis

Ambient O₃ monitoring data from existing monitoring stations operated by FDEP are included in this application (see Table 5-2). As discussed earlier, ambient monitoring data for O₃ are not required, but are included as part of the application. Citrus County and adjacent counties are classified as attainment or maintenance areas for O₃. The nearest monitors to the plant site that measure O₃ concentrations are located in Pinellas and Marion Counties. The monitoring site in Pinellas County is located in Tarpon Springs, approximately 90 km to the south of the plant, while the two monitoring sites in Marion County are located in Ocala, approximately 60 km to the east of the plant.

Since O₃ is a regional pollutant, O₃ monitoring data collected in Pinellas and Marion Counties are considered to be representative of O₃ concentrations for the region and are used to satisfy this requirement. These stations are operated by the FDEP and measure concentrations according to EPA procedures.

From 2003 through 2005, the second-highest 1-hour average O₃ concentration measured from these monitoring sites was 0.094 parts per million (ppm). This maximum concentration is less than the

existing one-hour average O₃ AAQS of 0.12 ppm. In addition, the three-year average of the fourth highest eight-hour average O₃ concentrations was 0.074 ppm, and is below the revised 8-hour average O₃ AAQS of 0.08 ppm. These O₃ monitoring data are proposed as part of this construction permit application to satisfy the preconstruction monitoring requirement for the project.

Until recently, the courts had stayed these standards but they will now be implemented by the states in the next several years. FDEP has not yet adopted the revised standards.

5.3 SO₂ and NO₂ Background Analysis

The nearest monitors to the plant site that measure SO₂ and NO₂ concentrations are located in Pinellas County (see Tables 5-3 and 5-4). Two SO₂ monitors are located in Tarpon Springs, approximately 90 km to the south of the plant, and one NO₂ monitor is located in St. Petersburg, approximately 120 km to the south of the plant.

From 2003 through 2005, the second-highest three-hour, 24-hour, and highest annual average SO₂ concentrations measured at the Tarpon Springs monitors were 144, 34 and 5.5 ug/m³, respectively. These maximum concentrations are less than the respective three-hour, 24-hour, and annual average SO₂ AAQS of 1,300; 260; and 60 ug/m³.

From 2003 through 2005, the highest annual average NO_2 concentrations measured at the St. Petersburg monitor was 11.2 ug/m^3 . This annual average concentration is less than the annual average NO_2 AAQS of 100 ug/m^3 .

These maximum SO₂ and NO₂ concentrations were used to represent the non-modeled background concentration to assess total air quality impacts.

6.0 AIR QUALITY IMPACT ANALYSIS

6.1 Significant Impact Analysis Approach

6.1.1 Site Vicinity

The general modeling approach for this Project followed EPA and FDEP modeling guidelines for determining compliance with AAQS and PSD increments. For all criteria pollutants that will be emitted in excess of the PSD significant emission rate due to a proposed project, a significant impact analysis is performed to determine whether the emission and/or stack configuration changes due to the Project alone will result in predicted impacts that are in excess of the EPA significant impact levels at any location beyond the plant's restricted boundaries.

If the Project-only impacts are above the significant impact levels in the vicinity of the facility, then two additional and more detailed air modeling analyses are required. The first analysis demonstrates compliance with federal and Florida AAQS, and the second analysis demonstrates compliance with allowable PSD Class II increments.

6.1.2 PSD Class I Areas

Generally, if a major new facility is located within 200 km of a PSD Class I area, then a significant impact analysis is also performed to evaluate the impact due to the Project alone at the PSD Class I area. The maximum predicted impacts are compared to EPA's proposed significant impact levels for PSD Class I areas. These recommended levels have never been promulgated as rules but are the currently accepted criteria to determine whether a proposed Project will incur a significant impact on a PSD Class I area.

If the Project-only impacts at the PSD Class I area are above the proposed EPA PSD Class I significant impact levels, then an analysis is performed to demonstrate compliance with allowable PSD Class I impacts at the PSD Class I area.

The nearest PSD Class I areas are the Chassahowitzka National Wilderness Area (NWA), located approximately 22 km south of the plant and the St. Marks NWA, located about 175 km to the northwest. As indicated, these PSD Class I areas are within 200 km of the Crystal River Plant Site.

Air impact modeling analyses were performed for these PSD Class I areas. Air impacts were not predicted at other PSD Class I areas since they are located more than 200 km from the Crystal River Plant Site.

In addition, the Project's maximum concentrations are evaluated at the PSD Class I area for pollutants whose emissions are greater than the PSD significant emission rate, to address potential impacts on AQRV. Because the Project's net SO₂ and NO_X emissions increase did not exceed the PSD significant emission rates, regional haze degradation and acid deposition estimates for sulfur and nitrogen compounds were not required.

6.2 Pre-construction Monitoring Analysis Approach

The modeling approach followed EPA and FDEP modeling guidelines for evaluating the Project's impacts relative to the *de minimis* monitoring levels to determine the need to submit ambient monitoring data prior to construction. Current FDEP policies stipulate that the predicted highest annual average and highest short-term concentrations are to be compared to the applicable *de minimis* monitoring levels.

6.3 Air Modeling Analysis Approach

6.3.1 General Procedures

As stated in the previous sections, air modeling analyses are required to determine if the Project's impacts are predicted to be greater than the significant impact levels and *de minimis* monitoring levels for each pollutant that is emitted above the significant emission rate. These analyses consider the Project's impacts alone. Air quality impacts are predicted using five years of meteorological data and selecting the highest predicted ground-level concentrations for comparison to the significant impact levels and *de minimis* monitoring levels.

To predict the maximum annual and short-term concentrations for the Project, the modeling approach was divided into screening and refined phases. Concentrations are predicted for the screening phase using a coarse receptor grid and a 5-year meteorological data record. If the highest concentration is predicted at a receptor that lies in an area where the receptor spacing is more than 100 m, then a refined analysis is performed in that area using a receptor grid of greater resolution. Modeling

refinements are performed using a receptor spacing of 100 m with a receptor grid centered on the screening receptor at which the maximum concentration was predicted. The air dispersion model is then executed with the refined grid for the entire year of meteorology during which the screening concentration occurred.

If the Project's impacts are greater than the significant impact levels, the air modeling analyses must consider other nearby sources and background concentrations to predict a total concentration for comparison to AAQS.

Generally, when using 5 years of meteorological data for the analysis, the highest annual and the highest, second-highest (HSH) short-term (i.e., 24 hours or less) concentrations are compared to the applicable AAQS and allowable PSD increments. The HSH concentration is calculated each year for a receptor field by:

- 1. Eliminating the highest concentration predicted at each receptor;
- 2. Identifying the second-highest concentration at each receptor; and
- 3. Selecting the highest concentration among these second-highest concentrations.

- Z

The HSH approach is consistent with AAQS and allowable PSD increments, which permit a short-term average concentration to be exceeded once per year at each receptor.

It should be noted that for determining compliance with the 24-hour AAQS for PM₁₀, the highest of the sixth-highest concentration predicted in five years (i.e., H6H), instead of the HSH concentration predicted for each year, is used to compare to the applicable 24-hour AAQS.

The AAQS analysis is a cumulative source analysis that evaluates whether the concentrations from all sources will comply with the AAQS. These concentrations include the modeled impacts from sources at the Project Site and from other nearby facility sources added to a background concentration. The background concentration accounts for sources not included in the modeling analysis.

The PSD Class II analysis is a cumulative source analysis that evaluates whether the concentrations for increment-affecting sources will comply with the allowable PSD Class II increments. These

concentrations include the modeled impacts from PSD increment-affecting sources at the Project Site, plus nearby PSD increment-affecting sources at other facilities.

Because the Project's impacts were predicted to be below the PSD significant impact levels for CO, cumulative source modeling analyses were not required addressing compliance with the AAQS. However, because the Project's PM₁₀ impacts due to stack emissions, material handling operations, and fugitive PM emissions sources, were above the PSD significant impact levels for PM₁₀, cumulative source modeling analyses to address compliance with the AAQS and PSD Class II increments were performed. In addition, although SO₂ and NO_x emissions from the Project did not trigger PSD review, cumulative source modeling was performed to ensure that the proposed stack design for Units 4 and 5 would comply with AAQS and allowable PSD increments.

6.3.2 PSD Class I Analysis

For each pollutant for which a significant impact is predicted at the PSD Class I area, a PSD Class I analysis is required. The PSD Class I analysis is a cumulative source analysis that evaluates whether the concentrations for increment-affecting sources located within 200 km of the PSD Class I area will comply with the allowable PSD Class I increments. These concentrations include the impacts from PSD increment-affecting sources at the Project Site, plus the impacts from PSD increment-affecting sources at other facilities.

For the Chassahowitzka NWA, the Project's impacts were predicted to be above the PSD Class I significant impact levels for PM₁₀ using the CALPUFF model. As a result, cumulative source modeling analyses to address compliance with the PSD Class I increments were required. In addition, although SO₂ and NO_x emissions from the Project did not trigger PSD review, the Project's impacts were estimated at the Chassahowitzka PSD Class I area. Since the project's impacts were predicted to be above the PSD Class I significant impact levels, cumulative source modeling analyses were performed to address compliance with the PSD Class I increments for SO₂ and NO₂.

For the St. Marks NWA, the Project's impacts were predicted to be below the PSD Class I significant impact levels for PM_{10} . As a result, cumulative source modeling analyses to address compliance with the PSD Class I increments were not required. In addition, similar to the analyses for the Chassahowitzka PSD Class I area, although SO_2 and NO_X emissions from the Project did not trigger

PSD review, the Project's impacts were estimated at the PSD Class I area and were also predicted to be below the PSD Class I significant impact levels.

6.4 Model Selection

The selection of an air quality model to predict air quality impacts for the proposed projects was based on the ability of the model to simulate impacts in areas surrounding the projects as well as at the PSD Class I areas. Two air quality dispersion models were selected and used in these analyses to address air quality impacts for these projects. These models were:

- The American Meteorological Society and EPA Regulatory Model (AERMOD) dispersion model, and
- The California Puff model (CALPUFF).

The AERMOD dispersion model (Version 04300) is available on the EPA's Internet web site, Support Center for Regulatory Air Models (SCRAM), within the Technology Transfer Network (TTN). A listing of AERMOD model features is presented in Table 6-1.

On November 9, 2005, the EPA implemented AERMOD into its Guideline of Air Quality Models (Appendix W to 40 CFR Part 51) as the recommended model for regulatory modeling applications. The FDEP is allowing the use of AERMOD for air permitting projects as a replacement for the Industrial Source Complex Short-Term Model (ISCST3), which will no longer be in effect as of December 2006.

The EPA and FDEP recommend that the AERMOD model be used to predict pollutant concentrations at receptors located within 50 km from a source. The AERMOD model calculates hourly concentrations based on hourly meteorological data. The AERMOD model is applicable for most applications since it is recognized as containing the latest scientific algorithms for simulating plume behavior in all types of terrain. For evaluating plume behavior within the building wake of structures, the AERMOD model incorporates the Plume Rise Model Enhancement (PRIME) downwash algorithm developed by the Electric Power Research Institute (EPRI). AERMOD can predict pollutant concentrations for averaging times of annual and 24, 8, 3, and 1 hour.

The AERMOD model was used to predict the maximum pollutant concentrations due to the Crystal River Plant Project in nearby areas surrounding the plant. The AERMOD model was also used to predict the maximum pollutant concentrations due to the Project's emissions together with appropriate background sources. The predicted concentrations were then compared to the applicable AAQS and PSD Class II increments.

It should be noted that the Crystal River Plant is located within 50 km of the Chassahowitzka PSD Class I area. As a result, pollutant concentrations for the project were predicted at the area using AERMOD. However, for cumulative source modeling, in which the majority of background sources are located more than 50 km from the Class I area, the CALPUFF model was used as discussed in the following section.

For this analysis, the EPA regulatory default options were used to predict all maximum impacts.

These options include:

- Final plume rise at all receptor locations,
- Stack-tip downwash,
- Buoyancy-induced dispersion,
- Default wind speed profile coefficients,
- Default vertical potential temperature gradients, and
- Calm wind processing.

At distances beyond 50 km from a source, the CALPUFF model, Version 5.711a (EPA, 2004), is recommended for use by the EPA and the Federal Land Manager (FLM). The CALPUFF model is a long-range transport model applicable for estimating the air quality impacts in areas that are more than 50 km from a source. The CALPUFF model is maintained by the EPA on the SCRAM internet website. A listing of CALPUFF model features is presented in Table 6-2.

The methods and assumptions used in the CALPUFF model are based on the latest recommendations for modeling analysis as presented in the following reports:

- The Interagency Workgroup on Air Quality Models (IWAQM), Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998); and
- The Federal Land Manager's Air Quality Relative Values Workgroup (FLAG) Phase I Report (December, 2000).

In addition, updates to the modeling methods and assumptions were followed based on discussion with the FLM.

It should be noted that the CALPUFF model was used to predict impacts at both PSD Class I areas even though the Chassahowitzka NWA is about 22 km from the Crystal River Plant site. As discussed previously, this model was used, instead of AERMOD, since cumulative source impact modeling was performed to assess PSD Class I increment consumption and included background sources. Since the majority of these background sources were located more than 50 km from the Class I area, it is appropriate to assess PSD Class I increment with the CALPUFF model.

6.5 Meteorological Data

Meteorological data used in the AERMOD model to determine air quality impacts consisted of a concurrent 5-year period of hourly surface weather observations and twice-daily upper air soundings from the National Weather Service (NWS) offices located at the Tampa International Airport and in Ruskin, respectively. Concentrations were predicted using five years of hourly meteorological data from 2001 through 2005. The NWS office at Tampa is located approximately 110 km (66 miles) south of the site. The FDEP consider this station to have surface meteorological data representative of the project site.

The data for these stations were processed into a format that can be input to the AERMOD model using the meteorological preprocessor program AERMET. The data were processed using the Lakes Environmental graphical interface using the latest version of AERMET (04300). The hourly surface data were obtained from the Solar and Meteorological Observation Network (SAMSON) CD. Upper air sounding data were obtained in the required NCDC TD-6201 format from the Lakes website (www.webmet.com).

A unique feature of AERMOD is its incorporation of land use parameters for the processing of boundary layer parameters used for the dispersion. Based on the most recent regulatory guidance, the land use parameters should be representative of the data measurement site (i.e., NWS at Tampa). Land use data, representing the average surface roughness, albedo, and Bowen ratio that exist within a 3-km radius of the NWS station at Tampa were extracted from 1-degree land use files from the U.S. Geographical Survey (USGS) using the AERSURFACE program. AERSURFACE currently extracts land use data in 12 wind direction sectors covering 360 degrees. The land use values for each wind direction sector were input into Stage 3 of the AERMET preprocessor program to create the surface and profile meteorological files that AERMOD requires.

For CALPUFF, the air modeling analysis was conducted using the latest meteorological and geophysical databases which have been developed for use with the most recent versions of CALPUFF. These datasets were prepared by the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) for the purpose of conducting visibility impairment analyses under the Best Available Retrofit Technology (BART) Rule. A discussion of these databases can be found in Section 4.0 of the document entitled, *Protocol for the Application of the CALPUFF Model for Analyses of BART* (revised March 9, 2006).

For the proposed project, the VISTAS Florida CALMET domain with 4-km spacing (VISTA refined Domain 2) will be used. The data cover the period from 2001 to 2003. Golder obtained these datasets from the FDEP. The FDEP and FLM have recommended their use for PSD projects.

6.6 Emission Inventory

6.6.1 Significant Impact Analysis for Applicable PSD Pollutants

A summary of the criteria pollutant emission rates, physical stack, and stack operating parameters for the Project that were used in the air modeling analysis are presented in Section 2 and in more detail in Appendix A. In an effort to obtain the maximum air quality impacts for a range of possible operating conditions, the air modeling was initially performed for the proposed stack for Units 4 and 5 considered operating loads at 100 percent (i.e., at a heat input of 7,200 MMBtu/hr per unit), 75 percent, and 50 percent. Subsequent modeling was performed with Units 4 and 5 operating at 100 percent load since this operating load generally produced the overall highest impacts. The Project impacts were based on the difference between the proposed configuration for the new stack for Units 4 and 5 and current operations (modeled as negative emissions).

For CO, the project's impacts were predicted to be less than the PSD Class II significant impact levels. Therefore, additional modeling was not required for CO.

For PM_{10} , it was presumed that the project's PM_{10} impacts, including impacts from the Unit 4 and 5's stack emissions, material handling operations, and fugitive PM_{10} emission sources, would be greater than the PSD Class II significant impact levels. Therefore, additional modeling was performed for PM_{10} . The PM_{10} significant impact distance was predicted to extend to 10 km from the facility.

6.6.2 Modeling Analysis for Project's Non-PSD Pollutants

Although SO₂ and NO₂ did not trigger PSD review, modeling was performed for these pollutants to demonstrate that the Project's impacts, together with other sources, comply with ambient standards. For these pollutants, impacts were predicted at distances that extended to 10 km from the facility to be consistent with the modeling area for PM₁₀ impact analyses.

6.6.3 AAQS And PSD Class II Analyses

The maximum pollutant impacts for the proposed Project are predicted to be less than the significant impact levels for CO, but above the significant impact levels for PM₁₀. As a result, a cumulative source analysis is not required to demonstrate compliance with the CO AAQS. However, cumulative source impact analyses are required to demonstrate compliance with the 24-hour and annual average PM₁₀ AAQS and PSD Class II increments. In addition, cumulative source modeling analyses for SO₂ and NO₂ were performed to address compliance with the AAQS and PSD Class II increments, even though SO₂ and NO₃ emissions from the Project did not trigger PSD review.

Air quality concentrations were predicted within the area of significant impact for individual pollutants due to the project. A significant impact area (SIA) and the radius of the SIA were determined for each pollutant and averaging time combination for which the Project's impact is predicted to be significant. The radius of impact is used as the basis for determining inventory of background sources to be included in the air impact analyses.

The Project's SIA for PM₁₀ concentrations are predicted to extend out to 10 km from the Project Site. Since PSD review was not triggered for either SO₂ or NO₂, the SIA for each pollutant was not determined. However, the modeling area for both pollutants was extended out to 10 km for consistency with the PM₁₀ modeling.

To address PM₁₀ impacts from the Project, the PM₁₀ sources were modeled explicitly using the maximum PM₁₀ emission rates. These sources included Units 4 and 5; change in emissions from the coal yard operations; the proposed FGD material handling system; the CBO unit material handling system; and truck traffic. In addition, other PM₁₀ emission sources at the site were also modeled, including the cooling towers, flyash and bottom ash handling systems. It should be noted that the cooling towers for Units 4 and 5 were modeled separately due to the large diameter for each tower. With the stack-tip downwash option, the modeled impacts were predicted to be anomalously high since the plume height for each tower is reduced by the stack diameter. As a result, the stack-tip downwash option was not used to address impacts for these cooling towers. The maximum 24-hour and annual average PM₁₀ impacts for these towers were predicted to be low (0.1 ug/m³ or less). Detailed descriptions of these sources are presented in Appendix A.

Facilities located within the SIA for PM₁₀ were modeled explicitly (considered to be the modeling area). Facilities within the SIA plus 50 km were considered to be in the screening area. All facilities in the screening area were evaluated using the *North Carolina Screening Technique*. Based on this technique, facilities whose annual emissions (i.e., TPY) are less than the threshold quantity, Q, are eliminated from the modeling analysis. Q is equal to 20 x (D-SIA), where D is the distance in km from the facility to the Project Site. In addition, sources with annual emissions greater than 500 TPY and located beyond the screening area but within 100 km of the site were also modeled.

A similar approach was used to model SO₂ and NO₂ sources. However, since the SIA was not determined for either pollutant, it was assumed that 10 km was the equivalent to the SIA for these pollutants.

Listings of background PM, SO₂, and NO₂ sources that were used in the AAQS and PSD Class II analyses and their locations relative to the Crystal River site are provided in Tables 6-3 to 6-5. Data for background sources were obtained from FDEP and were supplemented with current and historical information available within Golder. It should be noted that more sources were potentially included in the analyses by estimating Q based on subtracting a value of 15 km from D (if 10 km were used, the value of Q would be higher yielding a higher emission threshold to exclude sources from modeling).

Detailed background source data that were used for the AAQS and PSD Class II increment analyses are presented in Appendix D.

6.6.4 PSD Class I Analysis

For the Chassahowitzka NWA, cumulative source modeling analyses for PM₁₀ were required to address compliance with the PSD Class I increments since the Project's impacts were predicted using the CALPUFF model to be above the PSD Class I significant impact levels for PM₁₀. In addition, for SO₂ and NO_x, although there will not be an increase in SO₂ and NO_x emissions due to the Project, cumulative source modeling analyses were performed to address compliance with the PSD Class I increments.

Listings of background PM₁₀, SO₂ and NO_X sources that were used in the PSD Class I analyses and their locations relative to the PSD Class I areas are provided in Tables 6-6 to 6-8. PSD sources located within 200 km of the Class I areas were included in the PSD Class I modeling analysis. Detailed background source data that were used for the PSD Class I analyses are presented in Appendix D.

For the St. Marks NWA, the Project's impacts were predicted to be below the PSD Class I significant impact levels for PM₁₀, SO₂, and NO₂, except for the three-hour average SO₂ impacts. As discussed in Section 6.9, since the current Units 4 and 5 configuration produces higher three-hour average SO₂ impacts than those for the proposed configuration and the distance from the Crystal River Plant and the St. Marks NWA is 175 km, no additional modeling was performed at the PSD Class I area of the St. Marks NWA.

As a result, cumulative source modeling analyses to address compliance with the PSD Class I increments at the St. Marks NWA were not performed.

6.7 Building Downwash Effects

All significant building structures in the Project area were identified by the site plot plan. The building structures were processed in the EPA Building Profile Input Program [(BPIP), Version 95086] to determine direction-specific building heights and widths for each 10-degree azimuth direction for each source that was included in the modeling analysis. A listing of dimensions for each structure is presented in Table 6-9. See Appendix D for plots of these building structures.

Based on this evaluation, the GEP stack height for the proposed stack for Units 4 and 5 was determined to be 690 ft. Since the proposed stack for Units 4 and 5 is 550 ft, building downwash effects for that emission unit were included in the air modeling analyses. For other emission units with stack releases, building downwash effects were included.

6.8 Receptor Locations

6.8.1 Site Vicinity

To determine the maximum impact for all pollutants and averaging times in the vicinity of the Project, concentrations were predicted at receptors located in detailed Cartesian receptor grids centered on the Crystal River plant site, and extended out to 10 km from the proposed stack for Units 4 and 5.

Along the plant boundary, a Cartesian receptor grid was used to predict concentrations for the Project at 527 receptors spaced at 50-m intervals.

In addition, a general Cartesian grid was used to predict concentrations beyond the plant property out to 10 km. Receptors were located at the following intervals and distances from the origin:

- Every 100 m from the plant property to 2,000 m;
- Every 250 m from 2,250 to 3,500 m;
- Every 500 m from 4,000 to 5,000 m; and
- Every 1,000 m from 6,000 to 10,000 m.

More than 2,500 receptors were used in the analysis to determine the maximum impacts for the Project.

6.8.2 Class I Area

For determining the Project's impacts at the PSD Class I areas, pollutant concentrations were predicted in an array of 214 discrete receptors located at the PSD Class I areas of the Chassahowitzka NWA and St. Marks NWA. These receptors were provided by the National Park Service (NPS).

6.9 Model Results

6.9.1 PSD Class II Significant Impact Analysis

The maximum pollutant concentrations predicted for the Project are given in Tables 6-10 and 6-11. The maximum PM₁₀, CO, SO₂, and NO₂ concentrations predicted for Units 4 and 5 with the proposed stack configuration and operating for three loads are presented in Table 6-10. The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for the Project, with the current Units 4 and 5 stack configuration (emissions modeled as negative) are presented in Table 6-11.

Summaries of the maximum PM₁₀ and CO concentrations predicted for Units 4 and 5 and the Project for comparison to the PSD Class II significant impact levels are presented in both tables. Although SO₂ and NO₂did not trigger PSD review, the maximum concentrations predicted for these pollutants were also compared to the PSD Class II significant impact levels.

Based on these modeling results in Table 6-10, the maximum CO concentrations due to Units 4 and 5 are predicted to be less than the PSD significant impact levels while the maximum PM₁₀, SO₂, and NO₂ concentrations are predicted to be greater than the PSD significant impact levels.

From Table 6-11, although the maximum PM₁₀ concentrations are predicted to be less than the PSD Class II significant impact levels, the project's impacts, including impacts from the Unit 4 and 5's stack emissions, material handling operations, and fugitive PM emission sources, were presumed to be greater than the PSD Class II significant impact levels.

The maximum 3-hour and 24-hour average SO₂, concentrations for the Project are also predicted to be greater than the PSD significant impact levels. Although the NO₂ impacts for the project were predicted to be less than the significant impact levels, additional modeling was performed.

As a result, the Project's CO impacts are predicted to comply with the AAQS while additional modeling was performed to assess the Project's compliance with PM₁₀, SO₂, and NO₂ AAQS and PSD Class II increments.

6.9.2 PSD Class I Significant Impact Analysis

The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for Units 4 and 5 alone and for the Project at the PSD Class I areas of the Chassahowitzka NWA using AERMOD are given in Tables 6-12 and 6-13.

The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for Units 4 and 5 with the proposed stack configuration and operating for three loads are presented in Table 6-12. The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for the Project, with the current Units 4 and 5 stack configuration (emissions modeled as negative), are presented in Table 6-13. Summaries of the pollutant concentrations predicted for Units 4 and 5 and the Project for comparison to the PSD Class I significant impact levels are presented in both tables.

Based on these modeling results in Table 6-12, the maximum PM₁₀ concentrations for Units 4 and 5 are predicted to be greater than the PSD significant impact levels. Similar to the AAQS and PSD Class II increment consumption analyses, the maximum SO₂ and NO₂ concentrations are also compared to the PSD significant impact levels even though PSD review was not triggered for those pollutants. As shown in Table 6-12, maximum SO₂ and NO₂ concentrations for Units 4 and 5 are predicted to be greater than the PSD significant impact levels.

From Table 6-13, the maximum PM₁₀, SO₂, and NO₂ concentrations for the Project are predicted to be less than the PSD significant impact levels. Although the results using AERMOD showed that the project's impacts are less than the significant impact levels, additional modeling was performed with the CALPUFF model.

The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for Units 4 and 5 alone and for the Project at the PSD Class I areas of the Chassahowitzka NWA and St. Marks NWA using CALPUFF are given in Tables 6-14 and 6-15. The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for Units 4 and 5 with the proposed stack configuration and 100 percent load are presented in Table 6-14. The maximum PM₁₀, SO₂, and NO₂ concentrations predicted for the Project, with the current Units 4 and 5 stack configuration (emissions modeled as negative), are presented in Table 6-15.

Summaries of the pollutant concentrations predicted for Units 4 and 5 and the Project for comparison to the PSD Class I significant impact levels are presented in both tables.

Based on these modeling results in Table 6-14, the maximum 24-hour average PM₁₀; 3-hour, 24-hour, and annual average SO₂; and annual average NO₂ concentrations for Units 4 and 5 are predicted to be greater than the PSD significant impact levels at the Chassahowitzka NWA. The maximum 24-hour average PM₁₀, and 3-hour and 24-hour average SO₂ concentrations are predicted to be greater than significant impact levels at the St. Marks NWA. At the Chassahowitzka NWA, the maximum impacts for Units 4 and 5 are actually predicted to be higher with CALPUFF than with AERMOD.

From Table 6-15, the maximum PM₁₀, SO₂, and NO₂ concentrations for the Project are also predicted to be greater than the PSD significant impact levels at the Chassahowitzka NWA, except for the annual average PM₁₀ and SO₂ concentrations. For the St. Marks NWA, maximum PM₁₀, SO₂, and NO₂ concentrations for the Project are predicted to be less than the PSD significant impact levels, except for the three-hour average SO₂ concentrations. However, as shown in Table 6-16, the maximum three-hour average SO₂ concentrations due to the current Units 4 and 5 configuration produces higher impacts than those for the proposed configuration. Given that the distance from the Crystal River Plant and the St. Marks NWA is 175 km, no additional modeling is proposed to demonstrate compliance with the PSD Class I increments at the St. Marks NWA.

As a result, additional modeling at the Chassahowitzka NWA with background sources is needed to assess the Project's compliance with the annual and 24-hour average PM₁₀; 3-hour and 24-hour average SO₂; and annual average NO₂ PSD Class I increments. This includes assessing the impacts of Units 4 and 5 with the CALPUFF model.

6.9.3 Cumulative AAQS Analysis

A summary of the results of the cumulative source modeling for demonstrating compliance with the PM₁₀, SO₂, and NO₂ AAQS (i.e., impacts due to sources at the Crystal River Plant modeled with background sources added to non-modeled background concentrations) are presented in Table 6-17.

As shown in Table 6-17, the maximum 24-hour and annual average PM_{10} concentrations due to the Project and other AAQS sources are predicted to be below the 24-hour and annual AAQS of 150 and $50 \mu g/m^3$, respectively.

The maximum 3-hour, 24-hour, and annual average SO_2 concentrations due to the Project and other AAQS sources are predicted to be below the 3-hour, 24-hour, and annual AAQS of 1,300; 260; and $60 \mu g/m^3$, respectively.

The maximum annual average NO₂ concentrations due to the Project and other AAQS sources are predicted to be below the annual AAQS of 100 μg/m³.

6.9.4 Cumulative PSD Class II Increment Analysis

A summary of the results of the cumulative source modeling for demonstrating compliance with the PM₁₀, SO₂, and NO₂ PSD Class II increments (i.e., impacts due to PSD increment-affecting sources) are presented in Table 6-18.

As shown in Table 6-18, the maximum 24-hour and annual average PM_{10} concentrations due to the Project and other PSD sources are predicted to be below the allowable 24-hour and annual PSD Class II increments of 30 and 17 $\mu g/m^3$, respectively.

The maximum three-hour, 24-hour, and annual average SO₂ concentrations due to the Project and other PSD sources are predicted to be below the allowable three-hour, 24-hour, and annual PSD Class II increments of 512, 91, and 20 µg/m³, respectively.

The maximum annual average NO_2 concentrations due to the Project and other PSD sources are predicted to be below the allowable PSD Class II increment of 25 μ g/m³.

6.9.5 <u>Cumulative PSD Class I Increment Analysis</u>

A summary of the results of the cumulative source modeling for demonstrating compliance with the PM₁₀, SO₂, and NO₂ PSD Class I increments at the Chassahowitzka NWA (i.e., impacts due to PSD increment-affecting sources) are presented in Table 6-19.

As shown in Table 6-19, the maximum 24-hour and annual average PM_{10} concentrations due to the Project and other PSD sources are predicted to be below the allowable 24-hour and annual PSD Class I increments of 8 and 4 μ g/m³, respectively.

The maximum three-hour, 24-hour, and annual average SO_2 concentrations due to the Project and other PSD sources are predicted to be below the allowable three-hour, 24-hour, and annual PSD Class I increments of 25, 5, and 2 μ g/m³, respectively, except for the 24-hour averaging period for 2002 and 2003.

The maximum 24-hour average SO₂ impacts that were predicted to exceed the PSD Class I increment is presented in Table 6-20, along with the contribution from the Crystal River Plant, including the proposed SO₂ emission rates for Units 4 and 5 and baseline emission reductions from Units 1 and 2 (modeled as negative emissions). The Crystal River Plant's contribution is predicted to be less than the PSD Class I significant impact levels. Therefore, the potential Units 4 and 5 emissions are not predicted to significantly impact any predicted exceedances at the Chassahowitzka NWA.

The maximum annual average NO₂ concentrations due to the Project and other PSD sources are predicted to be below the allowable PSD Class I increment of 2.5 μ g/m³.

6.10 Conclusions

Based on these air quality modeling analyses, the maximum pollutant concentrations due to the Crystal River Plant Project, together with background sources, are predicted to comply with AAQS and allowable PSD Class II increments. In addition, the maximum pollutant concentrations due to the Crystal River Plant Project, together with PSD sources, are predicted to comply with allowable PSD Class I increments at the Chassahowitzka NWA and St. Marks NWA. The results of the modeling analysis demonstrate the Project will comply with all applicable AAQS and PSD increments.

7.0 ADDITIONAL IMPACT ANALYSIS

This section presents the impacts the Project will have on vegetation, soils, visibility, and direct growth resulting from the Project, both in the vicinity of the Crystal River plant site and at the PSD Class I areas under consideration.

7.1 Impacts Due to Associated Direct Growth

7.1.1 Introduction

Rule 62-212.400(3)(h)(5), F.A.C., states that an application must include information relating to the air quality impacts of, and the nature and extent of all general, residential, commercial, industrial, and other growth that has occurred since August 7, 1977, in the area the facility or modification would affect. This growth analysis considers air quality impacts due to emissions resulting from the industrial, commercial, and residential growth associated with the construction and operation of the Project. This information is consistent with the EPA Guidance related to this requirement in the *Draft New Source Review Workshop Manual* (EPA, 1990).

The project is being constructed to meet current and projected electric demands. Progress Energy has an obligation to meet this increase in electric demand. Additional growth as a direct result of the additional electric power provided by the Crystal River Plant is not expected.

Construction of the project will occur over a five-year period requiring an average of approximately 350 workers during that time. It is anticipated that many of these construction personnel will commute to the Site.

The project will employ a total of about 30 additional operations employees at build-out. The operational workforce will also include annual contracted maintenance workers to be hired for periodic routine services. The workforce needed to operate the plant represents a small fraction of the population already present in the immediate area. Therefore, while there would be a small increase in vehicular traffic in the area, the effect on air quality levels would be minimal.

There are also expected to be no air quality impacts due to associated commercial and industrial growth given the location of the plant site. The existing commercial and industrial infrastructure

should be adequate to provide any support services that might be required and would not increase with the operation of the modified units. The modification of the existing units will have little effect on the increase or growth in the area.

The following discussion presents general trends in residential, commercial, industrial, and other growth that has occurred since August 7, 1977, in Citrus County. As such, the information presented is available from a variety of sources (i.e., Florida Statistical Abstract, FDEP, etc.) that characterize Citrus County as a whole.

7.1.2 Residential Growth

7.1.2.1 Population and Household Trends

As an indicator of residential growth, the trend in the population and number of household units in Citrus County since 1977 are shown in Figure 7-1. The county experienced a 206-percent increase in population for the years 1977 through 2005. During this period, there was an increase in population of about 90,500. Similarly, the number of households in the county increased by about 39,600, or 142 percent, since 1977.

7.1.2.2 Growth Associated with the Operation of the Project

Because there will be about 30 additional operations employees needed to operate the Crystal River Plant, residential growth due to the plant will be minimal.

7.1.3 Commercial Growth

7.1.3.1 Retail Trade and Wholesale Trade

As an indicator of commercial growth in Citrus County, the trends in the number of commercial facilities and employees involved in retail and wholesale trade are presented in Figure 7-2. The retail trade sector comprises establishments engaged in retailing merchandise. The retailing process is the final step in the distribution of merchandise. Retailers are, therefore, organized to sell merchandise in small quantities to the general public. The wholesale trade sector comprises establishments engaged in wholesaling merchandise. This sector includes merchant wholesalers who buy and own the goods they sell; manufacturers' sales branches and offices that sell products manufactured domestically by

their own company; and agents and brokers who collect a commission or fee for arranging the sale of merchandise owned by others.

Since 1977, retail trade has increased by about 590 establishments and 7,300 employees or 150 and 320 percent, respectively. For the same period, wholesale trade has increased by 119 establishments and 643 employees, or 530 and 750 percent, respectively.

7.1.3.2 Labor Force

The trend in the labor force in Citrus County since 1977 is shown in Figure 7-3. The greatest number of persons employed in Citrus County has been in the manufacturing, government, and retail trade sectors. Between 1977 and 2004, approximately 17,000 persons were added to the available work force, for an increase of 133 percent.

7.1.3.3 Tourism

Another indicator of commercial growth in Citrus County is the tourism industry. As an indicator of tourism growth in the county, the trend in the number of hotels and motels and the number of units at the hotels and motels are presented in Figure 7-4.

This industry comprises establishments primarily engaged in marketing and promoting communities and facilities to businesses and leisure travelers through a range of activities, such as assisting organizations in locating meeting and convention sites; providing travel information on area attractions, lodging accommodations, restaurants; providing maps; and organizing group tours of local historical, recreational, and cultural attractions.

Between 1978 and 2001, there was an increase of 100 percent in the number of hotels and motels, and an increase of 86 percent in the number of units at those establishments in the county.

7.1.3.4 Transportation

As an indicator of transportation growth, the trend in the number of vehicle miles traveled (VMT) by motor vehicles on major roadways in Citrus County is presented in Figure 7-5. The county's main roadways are U.S. Highways 19 and 98.

Between 1977 and 2003, there was an increase of about 2,370,000 VMT, or 132 percent, on major roadways in the county.

7.1.3.5 Growth Associated with the Operation of the Project

The existing commercial and transportation infrastructure should be adequate to provide any support services that might be required during construction and operation of the modified units. The workforce needed to operate the modified units represents a small fraction of the labor force present in the immediate and surrounding areas.

7.1.4 Industrial Growth

7.1.4.1 Manufacturing and Agricultural Industries

As an indicator of industrial growth, the trend in the number of employees in the manufacturing industry in Citrus County since 1977 is shown in Figure 7-6. As shown, the manufacturing industry experienced an increase in employees of about 1,700 or 620 percent from 1977 through 2004.

As another indicator of industrial growth, the trend in the number of employees reported in the agricultural industry in Citrus County since 1977 is also shown in Figure 7-6. As shown, the agricultural industry experienced a decrease from 1977 through 2004.

7.1.4.2 Utilities

The only power plant in Citrus County is Progress Energy's Crystal River Plant. This power plant has an electrical nameplate generating capacity of over 3,140 megawatts (MW).

As an indicator of electrical utility growth, the electrical nameplate generating capacity in Citrus County since 1977 is shown in Figure 7-7. As shown, the electrical nameplate generating capacity has increased by 2,100 MW, or 133 percent since 1977.

7.1.4.3 Growth Associated with the Operation of the Project

Since the PSD baseline date of August 7, 1977, there has been only one major source built within a 35 km radius of the Crystal River Site. This was Progress Energy's Units 4 and 5. There are a limited number of facilities located throughout the 35 km radius area surrounding the Site. Based on the

locations of nearby air emission sources, there has not been a concentration of industrial and commercial growth in the vicinity of the Crystal River Plant Site.

7.1.5 Air Quality Discussion

7.1.5.1 Air Emissions and Spatial Distribution of Major Facilities

Besides the Progress Energy's plant, there are no other major air pollutant facilities in Citrus County. Based on actual emissions reported for 1999 (latest year of available data) by EPA on its AIRdata website, total emissions from stationary sources in the county are as follows:

 SO_2 : 101,842 TPY PM_{10} : 5,709 TPY NO_x : 38,833 TPY CO: 1,374 TPY VOC: 321 TPY

7.1.5.2 Air Emissions from Mobile Sources

The trends in the air emissions of CO, VOC, and NO_X from mobile sources in Citrus County are presented in Figure 7-8. Between 1977 and 2003, there were significant decreases in CO and VOC emissions, and there was only a slight decrease in NO_X emissions during that same time period. The decrease in CO and VOC emissions were about 1.12 and 61 tons per day, respectively, which represent decreases from 1977 emissions of 57 and 70 percent, respectively. The decrease in NO_X emissions was less than 1 ton per day, which represents a decrease of less than 1 percent since 1977.

7.1.5.3 Air Monitoring Data

Since 1977, Citrus County has been classified as attainment for all criteria pollutants. Air quality monitoring data have not been collected in Citrus County. For this evaluation, the air quality monitoring data collected at the monitoring stations nearest to the Crystal River Plant site were used to assess air quality trends since 1977. Air quality monitoring data were based on the following monitoring stations:

- PM₁₀ concentrations Pinellas County, and
- O₃ concentrations Pinellas and Marion Counties

Data collected from these stations are considered to be generally representative of air quality in Citrus County. Because the monitoring stations in Pinellas County are located in more urbanized areas than the Crystal River Plant site, the reported concentrations for those stations are likely to be higher than that experienced at the site.

The air monitoring data indicate that the maximum air quality concentrations currently measured in the region comply with and are well below the applicable AAQS. These monitoring stations are located in areas where the highest concentrations of a measured pollutant are expected due to the combined effect of emissions from stationary and mobile sources, as well as the effects of meteorology. Therefore, the ambient concentrations in areas not monitored should have pollutant concentrations less than the monitored concentrations from these sites.

In addition, since 1988, PM in the form of PM_{10} has been collected at the air monitoring stations due to the promulgation of the PM_{10} AAQS. Prior to 1989, the AAQS for PM was in the form of total suspended particulates (TSP) concentrations, and this form was measured at the stations.

7.1.5.4 PM₁₀/TSP Concentrations

The trends in the 24-hour and annual average PM_{10} and TSP concentrations since 1977 are presented in Figures 7-9 and 7-10, respectively. TSP concentrations are presented through 1988 since the AAQS was based on TSP concentrations through that year. In 1988, the TSP AAQS was revoked and the PM standard was revised to PM_{10} .

As shown in these figures, measured TSP concentrations were generally below the TSP AAQS. Since 1988 when PM₁₀ concentrations have been measured, the PM₁₀ concentrations have been and continue to be below the AAQS.

7.1.5.5 CO Concentrations

The trends in the 1-hour and 8-hour average CO concentrations measured since 1977 in Jacksonville are presented in Figures 7-11 and 7-12, respectively. As shown in these figures, measured CO concentrations have been well below the AAQS for the past several years.

7.1.5.6 O₃ Concentrations

The trends in the 1-hour average O₃ concentrations since 1977 are presented in Figure 7-13. The trends in the 8-hour average O₃ concentrations since 1995 are presented in Figure 7-14. As shown in these figures, even in the more urbanized areas of Pinellas County, the measured O₃ concentrations have primarily been below the one hour average AAOS and the new 8-hour average AAOS.

7.1.5.7 Air Quality Associated with the Operation of the Project

The air quality data measured in the region of the Crystal River Plant site indicate that the maximum air quality concentrations are well below and comply with the AAQS. Also, based on the trends of these maximum concentrations, the air quality has generally improved in the region since the baseline date of August 7, 1977. Because the maximum concentrations for the plant site are predicted to be low and, for certain pollutants, below the significant impact levels, the air quality concentrations in the region are expected to remain below and comply with the AAQS when the modified Units 4 and 5 becomes operational.

7.2 Impacts on Soils, Vegetation, Wildlife, and Visibility in the Project Vicinity

7.2.1 Impacts on Vegetation and Soils

The uses adjacent to the Site are primarily agricultural, associated with citrus production and cattle ranching. Cypress swamp, freshwater marsh, and mixed hardwood forest exist to the north of the Site. To the east' of the Site is a mixture of upland (pasture, scrub, scrubby flatwoods, mesic flatwoods, prairie hammock) and wetland (wet flatwoods, depressional marsh, wet prairie, baygall) habitats in marginal to good condition. Native soils in the area are primarily spodosols, which generally have low buffering capacities.

Air emissions resulting from the construction and operation of the plant site will not result in impacts to any vegetative communities or wildlife habitat within the area. Wildlife habitat has been preserved and is actively utilized by wildlife adjacent to power generation facilities throughout the state of Florida.

The Project's impacts on the local air quality, together with background sources, are predicted to be well below the AAQS. In addition, the Project's VOC emissions represent an insignificant increase

in regional VOC emissions. Since the AAQS are also designed to protect the public welfare, including effects on soils and vegetation, no detrimental effects on soils or vegetation should occur in this area due to the Project's operation.

7.2.2 Impacts on Wildlife

Although air pollution impacts to wildlife have been reported in the literature, many of the incidents involved acute exposures to pollutants, usually caused by unusual or highly concentrated releases or unique weather conditions. Generally, there are three ways pollutants may affect wildlife: through inhalation, through exposure with skin, and through ingestion (Newman, 1980). Ingestion is the most common means and can occur through eating or drinking of high concentrations of pollutants. Bioaccumulation is the process of animals collecting and accumulating pollutant levels in their bodies over time. Other animals that prey on these animals would then be ingesting concentrated pollutants levels.

It is unlikely that the Project's emissions will cause injury or death to wildlife based on a review of the available literature on air pollutant effects on wildlife. The Project's impacts are predicted to be very low and dispersed over a large area. Coupled with the mobility of wildlife, the potential for exposure of wildlife to the Project's impacts under weather conditions that lead to high concentrations is extremely unlikely.

7.2.3 <u>Impacts on Visibility</u>

In addition, no visibility impairment in the plant's vicinity is expected due to the types and quantities of emissions proposed for the Project. The opacity of the boiler's emissions will be 10 percent or less under normal operation.

7.3 Impacts to PSD Class I Areas

7.3.1 <u>Identification of AQRVs and Methodology</u>

An AQRV analysis was conducted to assess the potential risk to AQRVs at the Class I areas due to the emissions from the Crystal River Plant.

The U.S. Department of the Interior in 1978 administratively defined AQRVs to be:

All those values possessed by an area except those that are not affected by changes in air quality and include all those assets of an area whose vitality, significance, or integrity is dependent in some way upon the air environment. These values include visibility and those scenic, cultural, biological, and recreational resources of an area that are affected by air quality.

Important attributes of an area are those values or assets that make an area significant as a national monument, preserve, or primitive area. They are the assets that are to be preserved if the area is to achieve the purposes for which it was set aside (Federal Register 1978).

The AQRVs include visibility freshwater and coastal wetlands, dominant plant communities, unique and rare plant communities, soils and associated periphyton, and the wildlife dependent on these communities for habitat. Rare, endemic, threatened, and endangered species of the Class I areas and bioindicators of air pollution (e.g., lichens) are also evaluated.

The maximum predicted atmospheric concentrations due to the increase in emissions resulting from the Project are presented in Table 6-13. As shown, the predicted increase in impacts is very low for all pollutants considered.

7.3.2 Impacts to Soils

For soils, the potential and hypothesized effects of atmospheric deposition include:

- Increased soil acidification,
- Alteration in cation exchange,
- Loss of base cations, and
- Mobilization of trace metals.

The potential sensitivity of specific soils to atmospheric inputs is related to two factors. First, the physical ability of a soil to conduct water vertically through the soil profile is important in influencing the interaction with deposition. Second, the ability of the soil to resist chemical changes, as measured in terms of pH and soil cation exchange capacity (CEC), is important in determining how a soil responds to atmospheric inputs.

The soils of the Class I areas are generally classified as histosols or entisols. Histosols (peat soils) are organic and have extremely high buffering capacities based on their CEC, base saturation, and bulk

density. Therefore, they would be relatively insensitive to atmospheric inputs. The entisols are shallow sandy soils overlying limestone, such as the soils found in the pinelands. The direct connection of these soils with subsurface limestone tends to neutralize any acidic inputs. Moreover, the groundwater table is highly buffered due to the interaction with subsurface limestone formations, which results in high alkalinity (as CaCO₃).

The relatively low sensitivity of the soils to acid inputs coupled with the extremely low ground-level concentrations of contaminants projected for the Class I areas from the Crystal River Plant emissions precludes any significant impact on soils.

7.3.3 <u>Impacts to Vegetation</u>

In general, the effects of air pollutants on vegetation occur primarily from SO₂, NO₂, O₃, and PM. Effects from minor air contaminants, such as fluoride, chlorine, hydrogen chloride, ethylene, ammonia, hydrogen sulfide, CO, and pesticides, have also been reported in the literature. The effects of air pollutants are dependent both on the concentration of the contaminant and the duration of the exposure. The term "injury," as opposed to damage, is commonly used to describe all plant responses to air contaminants and will be used in the context of this analysis. Air contaminants are thought to interact primarily with plant foliage, which is considered to be the major pathway of exposure. For purposes of this analysis, it was assumed that 100 percent of each air contaminant of concern is accessible to the plants.

Injury to vegetation from exposure to various levels or air contaminants can be termed acute, physiological, or chronic. Acute injury occurs as a result of a short-term exposure to a high contaminant concentration and is typically manifested by visible injury symptoms ranging from chlorosis (discoloration) to necrosis (dead areas). Physiological or latent injury occurs as the result of a long-term exposure to contaminant concentrations below that which results in acute injury symptoms. Chronic injury results from repeated exposure to low concentrations over extended periods of time, often without any visible symptoms, but with some effect on the overall growth and productivity of the plant. In this assessment, 100 percent of the particular air pollutant in the ambient air was assumed to interact with the vegetation, which is a very conservative approach.

The concentrations of the pollutants, duration of exposure and frequency of exposures influence the response of vegetation to atmospheric pollutants. The pattern of pollutant exposure expected from the

facility is that of a few episodes of relatively high ground-level concentration, which occur during certain meteorological conditions interspersed with long periods of extremely low ground-level concentrations. If there are any effects of stack emissions on plants, they will be from the short-term, higher doses. A dose is the product of the concentration of the pollutant and duration of the exposure.

7.3.4 Particulate Matter

Although information pertaining to the effects of PM on plants is scarce, baseline concentrations are available (Mandoli and Dubey, 1988). Ten species of native Indian plants were exposed to levels of PM that ranged from 210 to $366 \,\mu\text{g/m}^3$ for an eight-hour averaging period. Damage in the form of a higher leaf area/dry weight ratio was observed at varying degrees for most plants tested. Concentrations of PM lower than $163 \,\mu\text{g/m}^3$ did not appear to be injurious to the tested plants.

The maximum eight-hour PM concentration due to the Project at any of the Class I areas is predicted to be $0.24 \, \mu g/m^3$. This concentration is about 0.1 percent of the values that affected plant foliage (i.e., $210 \, \mu g/m^3$). As a result, no significant effects to vegetative AQRVs are expected from the Project's emissions.

7.3.5 Carbon Monoxide

As with PM, information pertaining to the effects of CO on plants is scarce. The main effect of high concentrations of CO is the inhibition of cytochrome c oxidase, the terminal oxidase in the mitochondrial electron transfer chain. Inhibition of cytochrome c oxidase depletes the supply of ATP, the principal donor of free energy required for cell functions. However, this inhibition only occurs at extremely high concentrations of CO. Pollok et al. (1989) reported that exposure to CO:O₂ ratio of 25 (equivalent to an ambient CO concentration of 6.85 x $10^6 \,\mu\text{g/m}^3$) resulted in stomatal closure in the leaves of the sunflower (*Helianthus annuus*). Naik et al. (1992) reported cytochrome c oxidase inhibition in corn, sorghum, millet, and Guinea grass at CO:O₂ ratios of 2.5 (equivalent to an ambient CO concentration of 6.85 x $10^5 \,\mu\text{g/m}^3$). These plants were considered the species most sensitive to CO-induced inhibition of cytochrome c oxidase.

The maximum 1-hour average concentration due to the Project at any of the Class I areas is $3.0 \,\mu\text{g/m}^3$ in the Class I area, which is about 1×10^6 times lower than the minimum value that caused inhibition in laboratory studies (i.e., $6.85 \times 10^6 \,\mu\text{g/m}^3$). The amount of damage sustained at this level, if any, for

1 hour would have negligible effects over an entire growing season. The maximum annual concentration predicted at any of the Class I areas is $0.037 \,\mu\text{g/m}^3$ and reflects a more realistic, yet conservative, CO level for the Class I areas. This maximum concentration is predicted to be about 1 x 10^7 times lower than the value that caused cytochrome c oxidase inhibition (6.85 x $10^5 \,\mu\text{g/m}^3$).

7.3.6 VOC Emissions and Impacts to Ozone

It is difficult to predict what effect the proposed increase in emissions of VOC from the Crystal River Plant will have on ambient O_3 concentrations on a regional scale. VOC and NO_X emissions are precursors to the formation of O_3 . O_3 is not directly emitted from fuel combustion, but is formed down-wind from emission sources when VOC and NO_X emissions react in the presence of sunlight. Natural (i.e., without man-made sources) ambient concentrations of O_3 are normally in the range of 20 to 39 μ g/m³ (0.01 to 0.02 ppm) (Heath, 1975).

The nearest monitor to the Project that measures O₃ concentrations is located in Alachua County (Table 5-1). This station measures concentrations according to EPA procedures. Based on the O₃ monitoring concentrations measured over the last several years, the region is in attainment of the existing 1-hour O₃ AAQS as well as the new eight-hour O₃ AAQS.

O₃ can cause various damage to broad-leaved plants including: tissue collapse, interveinal necrosis and markings on the upper surface leaves know as stippling (pigmented yellow, light tan, red brown, dark brown, red, or purple), flecking (silver or bleached straw white), mottling, chlorosis or bronzing, and bleaching. O₃ can also stunt plant growth and bud formation. On certain plants such as citrus, grape, and tobacco, it is common for leaves to wither and drop early.

Total regional VOC and NOX emissions, precursors to O₃ formation (i.e., Citrus County) are more than 28,000 TPY for stationary and mobile sources. The maximum VOC emissions increase due to the Project is 17.5 TPY, with no net increase in NOX emissions. The VOC emission represents less than a one percent increase in regional VOC and NOX emissions. Therefore, the effects of O₃, as a result of VOC emissions from the Project, are expected to be insignificant.

7.3.7 Summary

In summary, the phytotoxic effects on the Class I areas from the Project's emissions are expected to be minimal. It is important to note that the substances were evaluated with the assumption that 100 percent was available for plant uptake. This is rarely the case, if ever, in a natural ecosystem.

7.3.8 Impacts to Wildlife

A wide range of physiological and ecological effects to fauna has been reported for gaseous and particulate pollutants (Newman, 1981; Newman and Schreiber, 1988). The most severe of these effects have been observed at concentrations above the secondary AAQS. Physiological and behavioral effects have been observed in experimental animals at or below these standards. No observable effects to fauna are expected at concentrations below the values reported in Table 7-1.

The major air quality risk to wildlife in the United States is from continuous exposure to pollutants above the National AAQS. This occurs in non-attainment areas, e.g., Los Angeles Basin. Risks to wildlife also may occur for wildlife living in the vicinity of an emission source that experiences frequent upsets or episodic conditions resulting from malfunctioning equipment, unique meteorological conditions, or startup operations (Newman and Schreiber, 1988). Under these conditions, chronic effects (e.g., particulate contamination) and acute effects (e.g., injury to health) have been observed (Newman, 1981).

For impacts on wildlife, the lowest threshold values of SO₂, NO_X, and particulates that are reported to cause physiological changes are shown in Table 7-2. These values are up to orders of magnitude larger than maximum predicted concentrations for the Class I areas.

No significant effects on wildlife AQRVs from SO₂, NO_X, and particulates are expected. These results are considered indications of the risk of other air pollutant emissions predicted from the Crystal River Plant, which is also considered to be negligible.

8.0 REFERENCES

- Ashenden, T.W. and I.A.D. Williams. 1980. Growth Reductions on *Lolium multiflorum* Lam. and *Phleum pratense* L. as a Result of SO₂ and NO₂ pollution. Environ. Pollut. Ser. A. 21:131-139.
- Auer, A.H., 1978. Correlation of Land Use and Cover with Meteorological Anomalies. J. Applied Meteorology, Vol. 17.
- Carlson, R.W. 1979. Reduction in the Photosynthetic Rate of *Acer quercus* and *Fraxinus* Species Caused by Sulphur Dioxide and Ozone. Environ. Pollut. 18:159-170.
- Florida Department of Environmental Protection. 1995. Florida Air Toxics Working List (Version 4.0).
- Hart, R., P.G. Webb, R.H. Biggs, and K.M. Portier. 1988. The Use of Lichen Fumigation Studies to Evaluate the Effects of New Emission Sources on Class I Areas. J. Air Poll. Cont. Assoc. 38:144-147.
- Heck, W.W. and D.T. Tingey. 1979. Nitrogen Dioxide: Time-Concentration Model to Predict Acute Foliar Injury. EPA-600/3-79-057, U.S. Environmental Protection Agency, Corvallis, OR.
- Holzworth, G.C., 1972. Mixing Heights, Wind Speeds and Potential for Urban Air Pollution Throughout the Contiguous United States. Pub. No. AP-101. U.S. Environmental Protection Agency.
- Huber, A.H. and W.H. Snyder, 1976. Building Wake Effects on Short Stack Effluents. Preprint Volume for the Third Symposium on Atmospheric Diffusion and Air Quality, American Meteorological Society, Boston, Massachusetts.
- Malhotra, S.S. and A.A. Kahn. 1978. Effect of Sulfur Dioxide Fumigation on Lipid Biosynthesis in Pine Needles. Phytochemistry 17:241-244.
- Mandoli, B.L. and P.S. Dubey. 1988. The Industrial Emission and Plant Response at Pithampur (M.P.). Int. J. Ecol. Environ. Sci. 14:75-79.
- Matsumaru, T., T. Yoneyama, T. Totsuka, and K. Shiratori. 1979. Absorption of Atmospheric NO₂ by Plants and Soils. Soil Sci. Plant Nutr. 25:255-265.
- McLaughlin, S.B. and N.T. Lee. 1974. Botanical Studies in the Vicinity of the Widows Creek Steam Plant. Review of Air Pollution Effects Studies, 1952-1972, and Results of 1973 Surveys. Internal Report I-EB-74-1, TVA.
- Naik, R.M., A.R. Dhage, S.V. Munjal, P. Singh, B.B. Desai, S.L. Mehta, and M.S. Naik. 1992. Differential Carbon Monoxide Sensitivity of Cytochrome c Oxidase in the Leaves of C3 and C4 Plants. Plant Physiology 98:984-987.

- Newman, J.R. 1981. Effects of Air Pollution on Animals at Concentrations at or Below Ambient Air Standards. Performed for Denver Air Quality Office, National Park Service, U.S. Department of the Interior. Denver, Colorado.
- Newman, J.R. and R.K. Schreiber. 1988. Air Pollution and Wildlife Toxicology. Environmental Toxicology and Chemistry. 7:381-390.
- Pollok, M., U. Hever, and M.S. Naik. 1989. Inhibition of stomatal opening in sunflower leaves by carbon monoxide and reversal of inhibition by light. Planta 178:223-230.
- U.S. Environmental Protection Agency. 1978. Guidelines for Determining Best Available Control Technology (BACT). Office of Air Quality Planning and Standards.
- U.S. Environmental Protection Agency. 1980. Prevention of Significant Deterioration Workshop Manual.
- U.S. Environmental Protection Agency (EPA). 1982. Air Quality Criteria for Particulate Matter and Sulfur Oxides. Vol. 3.
- U.S. Environmental Protection Agency. 1987. Ambient Monitoring Guidelines for Prevention of Significant Deterioration. EPA Report No. EPA 450/4-87-007.
- U.S. Environmental Protection Agency. 1990. "Top-Down" Best Available Control Technology Guidance Document (Draft). Research Triangle Park, North Carolina.
- U.S. Environmental Protection Agency. 1995. 1995 Guideline on Air Quality Models. Revised. Research Triangle Park, North Carolina.
- U.S. Environmental Protection Agency. 1997. User's Guide for the Industrial Source Complex (ISC3) Dispersion Models. Through Addendum A. EPA-454/4-92-008. September.
- U.S. Environmental Protection Agency. 1999. Industrial Source Complex (ISC3) Dispersion Model (Version 00101). Updated from Technical Transfer Network.
- Woltz, S.S. and T.K. Howe. 1981. Effects of Coal Burning Emissions on Florida Agriculture. <u>In:</u> The Impact of Increased Coal Use in Florida. Interdisciplinary Center for Aeronomy and (other) Atmospheric Sciences. University of Florida, Gainesville, Florida.
- Zahn, R. 1975. Gassing Experiments with NO₂ in Small Greenhouses. Staub Reinhalt. Luft 35:194-196.

TABLE 2-1

AVERAGE ULTIMATE AND PROXIMATE ANALYSIS OF REPRESENTATIVE FUELS AND DESIGN FUEL BLEND FOR CRYSTAL RIVER ENERGY COMPLEX UNITS 4 AND 5

	Units	HIGHLAND NO. 9	SUB-BITUMINOUS	PET COKE	SUB-BIT BLEND ^a	PET COKE BLEND
Ultimate Analysis						ı
Carbon	%	63.20	49.97	80.00	56.585	68.24
Sulfur*	%	3.13	0.24	6.06	1.685	3.13
Oxygen	%	6.82	12.83	0.80	9.825	5.01
Hydrogen	%	4.40	3.67	2.80	4.035	3.92
Nitrogen	%	1.30	0.69	1.30	0.995	1.30
Ash	%	8.20	6.12	0.33	7.16	5.84
Moisture	%	12.70	26.47	6.40	19.585	10.81
Proximate Analysis						
Moisture	%	12.70	26.47	6.40	19.585	10.81
Volatile matter	%	36.50	39.47	9.41	37.985	28.37
Fixed Carbon	%	42.60	27.94	83.86	35.27	54.98
Ash	%	8.20	6.12	0.33	7.16	5.84
Gross (Higher) Heating Value	Btu/lb	11,375	8,692	14,127	10,034	12,201

^a Sub-Bituminous Blend is 50% Sub-Bituminous and 50% Highland No. 9

Note: Data for the the Ultimate and Proximate Analysis is based on the average of each fuel. These data do not total 100%, since they represent a statistic of the fuel data. Individual shipments of coal can exceed 3.13% and pet coke is limited to 6%.

b Petroleum Coke will be co-fired with coal at a maximum amount of 30 percent on a weight basis. Sulfur content of petcoke blend will be limited to 3.13%.

Blends of coals shown are approximately based on equal weight.

August 2006 053-9555

TABLE 2-2 AIR POLLUTANT EMISSIONS FOR CRITERIA POLLUTANTS FROM CRYSTAL RIVER UNITS 4 & 5 EXISTING STACKS

		r	Data for Each Unit	2
Parameter	Units	100% Load	75% Load	50% Load
Performance				
Gross Power Output	MW	760		
Net Heat Rate	Btu/kWhr	8,770		
Heat Input (HHV)	MMBtu/hr	6,665	4,999	3,333
Capacity Factor		100%	75%	50%
Stack Data				
Height	feet	600	600	600
Diameter	feet	25.5	25.5	25.5
Temperature	°F	253	253	253
Velocity	ft/sec	68.9	51.7	34.5
Flow	acfm	2,111,300	1,583,475	1,055,650
Emissions				
SO ₂	lb/MMBtu	1.2	1.2	1.2
	lb/hr	8,006	6,005	4,003
PM/PM _{io}	lb/MMBtu	0.1	0.1	0.1
	lb/hr	667	500	333
NO _x	lb/MMBtu	0.5	0.5	0.5
*	lb/hr	3,333	2,499	1,666
co	lb/MMBtu	0.02	0.02	0.02
	lb/hr	133	100	67
VOC	lb/MMBtu	0.002	0.002	0.002
	lb/hr	13.3	10.0	6.7
Sulfuric Acid Mist	lb/MMBtu	0.003	0.003	0.003
	lb/hr	18.7	14.0	9.3

Sources: Progress Energy, 2006

TABLE 2-3 AIR POLLUTANT EMISSIONS FOR CRITERIA POLLUTANTS FROM CRYSTAL RIVER UNITS 4 & 5 NEW STACK (TWO FLUES)

		Data	for Each Nomin	nal 760 MW net U	Init
Parameter	Units	100% Max Load	Base Load *	75% Load	50% Load
Performance					
Gross Power Output	kW		760		
Net Heat Rate	Btu/kWhr		8,947		
Heat Input (HHV)	MMBtu/hr	7,200	6,800	5,100	3,400
Capacity Factor		100%	100%	75%	50%
Stack Data					
Height	feet	550	550	550	550
Diameter	feet	30.5	30.5	30.5	30.5
Temperature	°F	130	129	129	129
Velocity	ft/sec	50.3	49.1	36.8	24.5
Flow	acfm	2,205,195	2,150,991	1,613,244	1,075,496
Emissions					
SO ₂	lb/MMBtu	0.27	0.27	0.27	0.27
-	lb/hr	1,944	1,836	1,377	918
PM/PM ₁₀	lb/MMBtu	0.03	0.03	0.03	0.03
	lb/hr	216	204	153	102
NO,	lb/MMBtu	0,47	0.47	0.47	0.47
	lb/hr	3,384	3,196	2,397	1,598
со	lb/MMBtu	0.2	0.2	0.2	0.2
	lb/hr	1,440	1,360	1,020	680
voc	lb/MMBtu	0.004	0.004	0.004	0.004
	lb/hr	28.8	27.2	20.4	13.6
Sulfuric Acid Mist	lb/MMBtu	0.012	0.012	0.012	0.012
	lb/hr	86.4	81.6	61.2	40.8

^{* 6,800} MMBtu/hr represents the base load capability on an annual average basis.

Source: Progress Energy, 2006

Fluidized Bed Emission Estimates

Pollutant	Emission Rate (lb/MMBtu)	CBO Emission Rate (lb/hr)	CBO Emission Rate (TPY) to Units 4 and 5	Material Handling Emissions (TPY)	Total CBO Uncontrolled Emissions (TPY) a
SO ₂	5.200	494.0	2,163.7		2,163.7
NO _x	0.782	74.3	325.4		325.4
CO	0.244	23.2	101.5		101.5
VOCs	0.018	1.8	7.8		7.8
PM b	0.028	2.8	12.1	5.8	17.9
PM ₁₀ b	0.028	2.8	12.1	5.8	17.9

^a See Table 2-6. Projected actual emissions for the CBO will be based on Units 4 & 5 control efficiencies

CBO Material Handling Emissions

Emission Source	Control Device	Exhaust Flow Rate (dscfm)	PM/PM10 Emission Rate (gr/dscf)	PM/PM10 Emission Rate (lb/hr)	PM/PM10 Emission Rate (TPY)
Feed Fly Ash Silo	Baghouse	3,000	0.01	0.3	1.1
Product Fly Ash Storage Dome	Baghouse	6,000	0.01	0.5	2.3
Product Fly Ash Loadout Silo & Truck Loading	Baghouse	6,000	0.01	0.5	2.3
Fly Ash Fugitives (Truck Traffic)	Paved Roads; Watering	NA		0.1	0.2
Totals				1.4	5.8

b CBO emissions before Units 4 & 5 ESP. Based on 98% removal, PM/PM10 emissions will be 0.24 TPY (Total = 5.8 + 0.24 = 6.04 TPY)

August 2006 053-9555

TABLE 2-5
SUMMARY OF PM EMISSION CHANGES FOR MATERIAL HANDLING OPERATIONS AND TRUCK TRAFFIC DUE TO THE PROPOSED PROJECT

	Current Emiss	ions (TPY)	Future Emissi	ons (TPY)	Change in Emis	sions (TP)
PM Emission Source	PM	PM ₁₀	PM	PM ₁₀	PM	PM ₁₀
Coal Yard						
Barge to Units 1 & 2	0.06	0.03	0.01	0.00		
Barge to ground to Units 1& 2	1.96	0.94	0.35	0.17		
Barge to Units 4 & 5	1.57	0.76	3.16	1.52		
Sarge to ground to Units 4 & 5	1.37	0.66	3.73	1.78		
Rail to Units 1 & 2	0.09	0.04	0.20	0.10		
tail to ground to Units 1& 2	3.00	1.43	6.82	3.26		
tail to Units 4 & 5	2.29	1.11	1.19	0.58		
Rail to ground to Units 4 & 5	2.03	0.97	1.43	0.68		
yrites	0.00	0.00	0.00	0.00		
COAL YARD	12.37	5.94	16.90	8.10		
ILE TRAFFIC	9.33	2.17	17.84	4.42		
OTAL	21.70	8.11	34.74	12.52	13.04	4
Truck Traffic						
Bottom Ash from Units & 2	0.58	0.11	0.58	0.11		
ly Ash from Units 1 & 2	10.34	2.01	10.34	2.01		
Sottom Ash from Units 4 & 5	0.29	0.06	0.29	0.06		
ly Ash from Units 4 & 5	26.62	5.19	26.62	5.19		
andfill Ash Mining	8.87	1.73	8.87	1.73		
imestone from Units 4 & 5	NA	NA	17.75	3.46		
TOTAL	46.71	9.10	64.46	12.56	17.75	3
GD Limestone Material Handling						
Truck Unloading	NA	NA	2.67	2.67		
Day Silos	NA	NA	0.25	0.25		
OTAL	0.00	0.00	2.92	2.92	2.92	2
TOTAL ALL SOURCES	68.41	17.21	102.12	28.01	33.71	10

Pollutant	Units 4 and 5 Baseline Actual Emissions ^a (TPY)	Emissions Increase due to Material Handling (TPY)	Uncontrolled Emissions Increase from CBO (TPY)	Emissions Increase/ Decrease with Control Equipment (TPY)	Net Emissions Increase (TPY)	Projected Actual Emissions with Project (TPY)	Net Emissions Increase with Project (TPY)	Significant Emission Rates (TPY)	PSD Review Required?
SO ₂ b	51,031		2,164	216	216	13,671	(37,360)	40	No
NOx c	24,069		325	33	32.5	23,797	(272)	40	No
PM	1,442	33.7	17.9	6.0	38.8	1,558	116.5	25	Yes
PM_{10}	966	10.8	17.9	6.0	16.4	1,034	68.3	15	Yes
$H_2SO_4^{d}$	159			449	449	608	449	7	Yes
VOC	121		7.8	81.5	89.3	210	89.3	40	Yes
CO ^e	1,011		102	9,116	9,813	10,228	9,217	100	Yes

^a Units 4 and 5 baseline actual emissions are based on Tables A-1 through A-12. The 2003-2004 period was used for all pollutants.

^b SO2 projected emissions based on 0.27 lb/MMBtu per unit; 85% CF.

^c NOx projected emissions based on 0.47-lb/MMBtu per unit; 85% CF

^d H₂SO₄ baseline = test results at 18.7 lb/hr and avg 8,503 hr/yr per unit; projected emissions based on 0.12 lb/MMBtu per unit; 85% CF.

^e CO projected emissions based on 0.20 lb/MMBtu per unit; 85% CF.

TABLE 3-1

National and State AAQS, Allowable PSD Increments, and Significant Impact Levels

		F	AAQS (μg/m³)ª			crements g/m ³) ^a	PSD Class II
Pollutant	Averaging Time	Primary Standard	Secondary Standard	Florida	Class I	Class II	Significant Impact Levels (µg/m³) b
Particulate Matter ^c	Annual Arithmetic Mean	50	50	50	4	17	1
(PM_{10})	24-Hour Maximum	150	150	150	8	30	5
Sulfur Dioxide	Annual Arithmetic Mean	80	NA	60	2	20	1
	24-Hour Maximum	365	NA	260	5	91	5
	3-Hour Maximum	NA	1,300	1,300	25	512	25
Carbon Monoxide	8-Hour Maximum	10,000	10,000	10,000	NA	NA	500
	1-Hour Maximum	40,000	40,000	40,000	NA	NA	2,000
Nitrogen Dioxide	Annual Arithmetic Mean	100	100	100	. 2.5	25	1
Ozone ^c	1-Hour Maximum	235	235	235	NA	NA	NA
Lead	Calendar Quarter Arithmetic Mean	1.5	1.5	1.5	NA	NA	NA

Note: Particulate matter (PM₁₀) = particulate matter with aerodynamic diameter less than or equal to 10 micrometers. NA = Not applicable, i.e., no standard exists.

b Maximum concentrations are not to be exceeded.

Sources: <u>Federal Register</u>, Vol. 43, No. 118, June 19, 1978. 40 CFR 50; 40 CFR 52.21.

Chapter 62-204, F.A.C.

Short-term maximum concentrations are not to be exceeded more than once per year except for the PM₁₀ and ozone AAQS. The 24-hour PM₁₀ AAQS is attained when the expected number of days per year with a 24-hour concentration above 150 μ/m³ is equal to or less than 1. For modeling purposes, compliance is based on the sixth highest 24-hour concentration over a 5-year period. For ozone, the daily maximum 1-hour concentration cannot be exceeded an average of more than one per year.

^c On July 18, 1997, EPA promulgated revised AAQS for particulate matter and ozone. For particulate matter, PM_{2.5} standards were introduced with a 24-hour standard of 65 g/m³ (3-year average of 98th percentile) and an annual standard of 15 g/m³ (3-year average at community monitors).

The ozone standard was modified to be 0.08 ppm; achieved when 3-year average of 99th percentile is 0.08 ppm 157 μ/m³ or less. FDEP has not yet adopted these standards.

August 2006 053-9555

TABLE 3-2
PSD Significant Emission Rates and *De Minimis* Monitoring Concentrations

Pollutant	Regulated Under	Significant Emission Rate (TPY)	De Minimis Monitoring Concentration ^a (μg/m ³)
Sulfur Dioxide	NAAQS, NSPS	40	13, 24-hour
Particulate Matter [PM(TSP)]	NSPS	25	10, 24-hour
Particulate Matter (PM ₁₀)	NAAQS	15	10, 24-hour
Nitrogen Dioxide	NAAQS, NSPS	40	14, annual
Carbon Monoxide	NAAQS, NSPS	100	575, 8-hour
Volatile Organic			
Compounds (Ozone)	NAAQS, NSPS	40	100 TPY ^b
Lead	NAAQS	0.6	0.1, 3-month
Sulfuric Acid Mist	NSPS	7	NM
Total Fluorides	NSPS	3	0.25, 24-hour
Total Reduced Sulfur	NSPS	10	10, 1-hour
Reduced Sulfur Compounds	NSPS	10	10, 1-hour
Hydrogen Sulfide	NSPS	10	0.2, 1-hour
Mercury	NESHAP	0.1	0.25, 24-hour

Note: Ambient monitoring requirements for any pollutant may be exempted if the impact of the increase in emissions is below *de minimis* monitoring concentrations.

NAAQS =	National Ambient Air Quality Standards.
NIM -	No ambient measurement method establis

NM = No ambient measurement method established; therefore, no *de minimis* concentration has been established.

Sources: 40 CFR 52.21; Rule 62-212.400.

NSPS = New Source Performance Standards.

NESHAP = National Emission Standards for Hazardous Air Pollutants.

g/m³ = micrograms per cubic meter.

^a Short-term concentrations are not to be exceeded.

b No *de minimis* concentration; an increase in VOC emissions of 100 TPY or more will require monitoring analysis for ozone.

TABLE 5-1 SUMMARY OF MAXIMUM PM_{10} CONCENTRATIONS MEASURED NEAR THE PGN CRYSTAL RIVER PLANT

						ration		
						24-I	Hour	Annual
County	AIRS No.	Location	Year	Number of Observations	Units	Highest	2nd Highest	Average
Florida AAQ	s				ug/m³	NA	150	50
Pinellas	12-103-5002	Tarpon Springs, Brooker Creek Park	2005	60	ug/m³	30	25	15.5
		County Road 77	2004	60	ug/m³	31	25	16.3
	•		2003	. 59	ug/m³	34	26	16.7

Note:

NA = not applicable.

AAQS = ambient air quality standard.

					Measured Concentration			
					1-Hour		8-Hour	
County	AIRS No.	Location	Year	Number of Observations	Highest	2nd Highest	3-year Average 4th Highest	
Florida AAQS "	-				NA	0.12	0.08	
Pinellas	12-103-5002	Tarpon Springs, Brooker Creek Park	2005	· 243	0.090	0.090	0.074	
		County Road 77	2004	243	0.081	0.072	0.071	
			2003	243	0.079	0.078	0.074	
Marion	12-083-0003	Ocala, SE 17th Street	2005	223	0.092	0.092	0.072	
			2004	220	0.094	0.086	0.073	
			2003	243	0.096	0.093	0.074	
Marion	12-083-0004	Ocala, 692 NW 30th Avenue	2005	236	0.095	0.094	0.073	
			2004	194	0.099	0.088	0.074	
			2003	245	0.099	0.092	0.073	

Note:

NA = not applicable.

AAQS = ambient air quality standard.

^a On July 18, 1997, EPA promulgated revised AAQS for ozone. The O₃ standard was modified to be 0.08 ppm for the 8-hour average; achieved when the 3-year average of 99th percentile values is 0.08 ppm or less. Florida DEP has not yet adopted the revised standards.

 ${\bf TABLE~5-3}\\ {\bf SUMMARY~OF~MAXIMUM~SO_2CONCENTRATIONS~MEASURED~NEAR~THE~PGN~CRYSTAL~RIVER~PLANT}\\$

								ed Concentration	on (μg/m³)	
						3-H	lour	24-1	Hour	Annual
County	AIRS No.	Location	Year	Number of Observations	Units	Highest	2nd Highest	Highest	2nd Highest	Average
			1001							
Florida AAQS	s				ppm	NA	0.5	NA	0.1	0.02
Pinellas	12-103-5002	Tarpon Springs, Brooker Creek Park	2005	8666	ppm	0.059	0.048	0.015	0.009	0.0018
		County Road 77	2004	8692	ppm	0.057	0.043	0.013	0.012	0.0020
			2003	8636	ppm	0.076	0.042	0.012	0.012	0.0021
Pinellas	12-103-5003	Tarpon Springs, 40671 US 19 North	2005	8683	ppm	0.058	0.054	0.013	0.011	0.0019
			2004	8605	ppm	0.055	0.051	0.017	0.013	0.0020
	•		2003	8545	. ppm	0.055	0.055	0.012	0.010	0.0019
Florida AAQ	s				ug/m³	NA	1,300	NA	260	60
Pinellas	12-103-5002	Tarpon Springs, Brooker Creek Park	2005	8666	ug/m³	154	126	39	24	4.7
		County Road 77	2004	8692	ug/m³	149	112	34	31	5.2
			2003	8636	ug/m³	199	110	31	31	5.5
Pinellas	12-103-5003	Tarpon Springs, 40671 US 19 North	2005	8683	ug/m³	152	141	34	29	5.0
			2004	8605	ug/m³	144	133	44	34	5.2
			2003	8545	ug/m³	144	144	31	26	5.0

Note: NA = not applicable.

AAQS = ambient air quality standard.

 $\label{eq:table 5-4} \text{SUMMARY OF MAXIMUM NO$_2$ CONCENTRATIONS MEASURED NEAR THE PGN CRYSTAL RIVER PLANT}$

						Measured Concentration (μg/m³) Annual
				Number of		
County	AIRS No.	Location	Year	Observations	Units	Average
Florida AAQS					ppm	0.053
Pinellas	12-103-0023	St. Petersburg, 10100 San Martin	2005	8560	ppm	0.0082
		7200 22nd Avenue North	2004	8555	ppm	0.0090
			2003	8318	ppm	0.0098
Florida AAQS					ug/m³	100
Pinellas	12-103-0023	St. Petersburg, 10100 San Martin	2005	8560	ug/m³	9.4
		7200 22nd Avenue North	2004	8555	ug/m³	10.3
			2003	8318	ug/m ³	11.2

Note:

NA = not applicable.

AAQS = ambient air quality standard.

August 2006 053-9555

TABLE 6-1

MAJOR FEATURES OF THE AERMOD MODEL, VERSION 04300

AFRMOD Model Features

• Plume dispersion/growth rates are determined by the profile of vertical and horizontal turbulence, vary with height, and use a continuous growth function.

- In a convective atmosphere, uses three separate algorithms to describe plume behavior as it comes in contact with the mixed layer lid; in a stable atmosphere uses a mechanically mixed layer near the surface.
- Polar or Cartesian coordinate systems for receptor locations can be included directly or by an external file reference.
- Urban model dispersion is input as a function of city size and population density; sources can also be modeled individually as urban sources.
- Stable plume rise: uses Briggs equations with winds and temperature gradients at stack top up to half-way up to plume rise. Convective plume rise: plume superimposed on random convective velocities.
- Procedures suggested by Briggs (1974) for evaluating stack-tip downwash.
- Has capability of simulating point, volume, area, and multi-sized area sources.
- Accounts for the effects of vertical variations in wind and turbulence (Brower et al., 1998).
- Uses measured and computed boundary layer parameters and similarity relationships to develop vertical profiles of wind, temperature, and turbulence (Brower *et al.*, 1998).
- Concentration estimates for 1-hour to annual average times.
- Creates vertical profiles of wind, temperature, and turbulence using all available measurement levels.
- Terrain features are depicted by use of a controlling hill elevation and a receptor point elevation.
- Modeling domain surface characteristics are determined by selected direction and month/season values of surface roughness length, Albedo, and Bowen ratio.
- Contains both a mechanical and convective mixed layer height, the latter based on the hourly accumulation of sensible heat flux.
- The method of Pasquill (1976) to account for buoyancy-induced dispersion.
- A default regulatory option to set various model options and parameters to EPA-recommended values.
- Contains procedures for calm-wind and missing data for the processing of short term averages.

Note: AERMOD = The American Meteorological Society and Environmental Protection Agency

Regulatory Model.

Source: Paine et al., 2004.

August 2006 053-9555

TABLE 6-2

MAJOR FEATURES OF THE CALPUFF MODEL, VERSION 5.711A

CALPUFF Model Features

• Source types: Point, line (including buoyancy effects), volume, area (buoyant, non-buoyant)

- Non-steady-state emissions and meteorological conditions (time-dependent source and emission data; gridded 3-dimensional wind and temperature fields; spatially-variable fields of mixing heights, friction velocity, precipitation, Monin-Obukhov length; vertically and horizontally-varying turbulence and dispersion rates; time-dependent source and emission data for point, area, and volume sources; temporal or winddependent scaling factors for emission rates)
- Efficient sampling function (integrated puff formulation; elongated puff (slug) formation)
- Dispersion coefficient options (Pasquill-Gifford (PG) values for rural areas; McElroy-Pooler values (MP) for urban areas; CTDM values for neutral/stable; direct measurements or estimated values)
- Vertical wind shear (puff splitting; differential advection and dispersion)
- Plume rise (buoyant and momentum rise; stack-tip effects; building downwash effects; partial plume penetration above mixing layer)
- Building downwash effects (Huber-Snyder method; Schulman-Scire method)
- Complex terrain effects (steering effects in CALMET wind field; puff height adjustments using ISC model method or plume path coefficient; enhanced vertical dispersion used in CTDMPLUS)
- Subgrid scale complex terrain (CTSG option) (CTDM flow module; dividing streamline as in CTDMPLUS)
- Dry deposition (gases and particles; options for diurnal cycle per pollutant, space and time variations with a resistance model, or none)
- Overwater and coastal interaction effects (overwater boundary layer parameters; abrupt change in meteorological conditions, plume dispersion at coastal boundary; fumigation; option to use Thermal Internal Boundary Layers (TIBL) into coastal grid cells)
- Chemical transformation options (Pseudo-first-order chemical mechanisms for SO₂, SO₄, HNO₃, and NO₃; Pseudo-first-order chemical mechanisms for SO₂, SO₄, NO, NO₂, HNO₃, and NO₃ (RIVAD/ARM3 method); user-specified diurnal cycles of transformation rates; no chemical conversions)
- Wet removal (scavenging coefficient approach; removal rate as a function of precipitation intensity and type)
- Graphical user interface
- Interface utilities (scan ISC-PRIME and AUSPLUME meteorological data files for problems; translate ISC-PRIME and AUSPLUME input files to CALPUFF input files)

Note: CALPUFF = California Puff Model

Source: EPA, 2004.

 $TABLE\ 6-3$ SUMMARY OF PM $_{10}$ EMITTING FACILITIES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE ANALYSES

			UTM Coo	rdinates		Relative to	Crystal River		Maximum PM	Q, (TPY) Emission	Include in
Plant	Facility	County	East	North	x	Y	Direction	Distance	Emissions	Threshold be	Modeling Analysis
ID	Name	Cy	(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(Dist - SID) x 20	Anatysis
Modeling Are										****	
0170004	Crystal River Power Plant	Citrus	2242	222.5							
0170004	Progress Materials, Inc.	Citrus	334.3 334.1	3204.5 3204.5	0.0	0.0		0.0	13068.3	SIA	Yes
0170022	riogiess Materials, tile.	Citrus	334.1	3204.3	-0.2	0.0	278	0.2	41.8	SIA	Yes
Screening Are	ea ^d									•	
0170364	Barrow Pit- Homosassa Trail Site	Citrus	351.5	3189.3	17.2	-15.2	131	22.9	30.0	159	No
7775298	Gulf Hammock Asphalt Facility		334.9	3233.5	0.6	29.0	1	29.0	39.4	280	No
	Imc - Agrico Co. (Pierce)		404.1	3,079.0	-16.7	-24.3	214	29.5	-311.4	290	Yes
0830011	Acticarb Tailored Products, Llc	Marion	360.2	3230.0	25.9	25.5	45	36.3	102.2	427	No
0830023	Central Florida Aggregate, Inc.	Marion	375.0	3214.1	40.7	9.6	77	41.8	12.9	536	No
0530010	Cemex	Hemando	357.5	3169.2	23.2	-35.3	147	42.2	879.8	545	Yes
0530050	Brooksville Grinding Plant	Hemando	361.4	3169.5	27.1	-35.0	142	44.3	60.9	585	No
0530044	Gregg Mine	Hernando	359.8	3163.4	25.5	-41.1	148	48.4	92.2	667	No
0530021	Brooksville Cement And Power Plants	Hernando	361.3	3162.4	27.0	-42.1	147	50.1	711.3	701	Yes
0530004	Citrus Service, Inc.	Hernando	364.2	3158.3	29.9	-46.2	147	55.0	29.1	801	No
0530043	Spring Hill Wwtp	Hernando	340.6	3148.6	6.3	-55.9	174	56.3	14.9	825	No
0830043	Golden Flake Snack Foods	Marion	385.9	3228.9	51.6	24.4	65	57.1	25.7	842	No
0830052	Closetmaid	Marion	386.2	3228.9	51.9	24.4	65	57.3	23.6	847	No
0830102	Skyline/Cameron Homes # 538	Marion	387.0	3229.0	52.7	24.5	65	58.1	13.6	863	No
0530357	Plant 2 (Spring Hill)	Hemando	358.5	3151.3	24.2	-53.2	155	58.4	24.0	869	No
0830100	Skyline/Oak Springs # 531	Marion	388.9	3227.4	54.6	22.9	67	59.2	18.9	884	No
0830010	Royal Oak Enterprises	Marion	387.5	3231.1	53.2	26.6	63	59.5	79.4	890	No
7770088	Clifton Mine		386.8	3233.9	52:5	29.4	61	60.2	17.6	903	No
0750085	Watson Construction Borrow Pit		349.0	3264.6	14.7	60.1	14	61.9	32.4	937	No
1010327	Coastal Landfill Disposal, Inc.	Pasco .	342.3	3142.9	8.0	-61.6	173	62.1	49.0	942	No
0830091	Cummer Limestone Mine	Marion	386.7	3238.0	52.4	33.5	57	62.2	10.5	944	No
0830039	The Brewer Company	Marion	390.8	3230.8	56.5	26.3	65	62.3	38.2	946	No
0830007	Mark Iv Dayco	Marion	393.3	3226.2	59.0	21.7	70	62.9	107.9	957	No
1010344	J.E. Ausley Construction Inc	Pasco	357.7	3145.4	23.4	-59.1	158	63.6	24.8	972	No
0830016	Franklin Industrial/Lowell	Marion	384.7	3244.2	50.4	39.7	52	64.2	210.9	983	No
0830017	Lowell Processing Plant	Marion	384.5	3245.3	50.2	40.8	51	64.7	87.6	994	No
1010028	Overstreet Paving Co	Pasco	357.4	3143.7	23.1	-60.8	159	65.0	20.0	1001	No
Beyond Screen	ning Area out to 100 km d										
1190030	Charlotte Pipe & Foundry/Plastic Div	Sumter	399.0	3197.0	64.7	-7.5	97	65.1	79.8	1003	No
0010007	Maddox Foundry & Machine Works, Inc.	Alachua	352.4	3267.3	18.1	62.8	16	65.4	11.8	1007	No
1190009	Progress Rail Services Corporation	Sumter	399.4	3195.5	65.1	-9.0	98	65.7	57.1	1014	No
1010038	B.E.TEr Mix, Inc.	Pasco	334.2	3138.5	-0.1	-66.0	180	66.0	13.0	1020	No
1010056	Pasco County Resource Recovery Facility	Pasco	348.6	3139.0	14.3	-65.5	168	67.0	73.2	1041	No
7774814	Dixie Lime And Stone Mine #2823		397.5	3181.2	63.2	-23.3	110	67.4	17.5	1047	No
1010373	Shady Hills Generating Station	Pasco	348.7	3138.4	14.4	-66.1	168	67.7	61.5	1054	No
0750028	Plant #38		314.7	3272.3	-19.6	67.8	344	70.6	23.7	1112	No

 $TABLE\ 6-3$ SUMMARY OF PM $_{10}$ EMITTING FACILITIES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE ANALYSES

			UTM Coo	dinates		Relative to (Crystal River*		Maximum PM	Q, (TPY) Emission	Include in Modeling
Plant	Facility	County	East	North	x	Y	Direction	Distance	Emissions	Threshold be	Analysis
ID	Name	•	(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(Dist - SID) x 20	
0530017	E.R. Jahna Industries, Inc Mills Mine	Hemando	386.7	3155.8	52.4	-48.7	133	71.5	72.6	1131	No
1190036	C.R.466-A C&D Landfill Facility	Sumter	407.9	3192.7	73.6	-11.8	99	74.6	15.0	1191	No
1190018	Center Hill Mine	Sumter	401.5	3169.5	67.2	-35.0	118	75.8	55.8	1215	No
1190011	Robbins Manufacturing Co.	Sumter	396.7	3158.9	62.4	-45.6	126	77.3	57.7	1246	No
0690032	Asphalt Production/Okahumpka		408.t	3180.8	73.8	-23.7	108	77.5	55.5	1251	No
0010002	Fred Bear Archery Equipment	Alachua	365.7	3276.5	31.4	72.0	24	78.6	29.9	1271	No
7770259	Dab Constructors, Leesburg Plant		412.3	3189.1	78.0	-15.4	101	79.5	25.0	1290	No
0690003	Cemex/Leesburg Fka Southdown		412.5	3185.7	78.2	-18.8	104	80.4	28.0	1309	No
0290003	Georgia-Pacific Corp. Chip/Saw		300.3	3278.8	-34.0	74.3	335	81.7	113.0	1334	No
1010002	Vitality Foodservice Dade City Coffee Pl	Pasco	383.5	3139.2	49.2	-65.3	143	81.8	55.5	1335	No
1010071	Pasco Cogen Limited	Pasco	384.7	3139.1	50.4	-65.4	142	82.6	27.0	1352	No
0010001	U Of FI Cogen	Alachua	369.4	3279.3	35.1	74.8	25	82.6	13.1	1352	No
0010041	Gainesville	Alachua	369.8	3279.1	35.5	74.6	25	82.6	12.7	1352	No
0690046	Covanta Lake Inc		413.1	3179.3	78.8	-25.2	108	82.7	75.4	1355	No
0830045	Standard Sand & Silica Co	Marion	412.7	3231.3	78.4	26.8	71	82.9	47.7	1357	No
0690002	Cutrale Citrus Juices Usa - Leesburg		415.5	3187.3	81.2	-17.2	102	83.0	185.2	1360	No
0010087	Thompson S. Baker Cement Plant	Alachua	348.4	3287.0	14.1	82.5	10	83.7	1105.6	1375	Yes
1010017	Anclote Power Plant	Pasco	327.4	3120.7	-6.9	-83.8	185	84.1	5490.0	1382	Yes
0010005	John R Kelly Power Plant	Alachua	372.1	3280.1	37.8	75.6	27	84.5	158.2	1390	No
0290008	Cross City Veneer Company, Inc.		295.2	3279.6	-39.1	75.1	332	84.7	24.3	1393	No
1010041	Tampa Branch - Plant 414	Pasco	340.7	3119.5	6.4	-85.0	176	85.2	15.3	1405	No
1010378	Sr 54 Odessa Yard	Pasco	346.6	3120.0	12.3	-84.5	172	85.4	40.8	1409	No
1010027	Ajax Paving Industries	Pasco	342.2	3119.2	7.9	-85.3	175	85.6	20.0	1413	No
0290004	Suwannee Lumber Company		292.4	3279.7	-41.9	75.2	331	86.1	26.0	1422	No
1030063	Florida Rock Industries, Inc.		326.1	3117.3	-8.2	-87.2	185	87.6	15.1	1452	No
030044	Tarpon Springs Facility		327.7	3116.7	-6.6	-87.8	184	88.1	13.3	1461	No
1010060	Helena Chemical Co./Dade City	Pasco	387.4	3133.6	53.1	-70.9	143	88.6	509.0	1472	No
0010037	V. E. Whitehurst & Sons, Inc.		368.7	3289.0	34.4	84.5	22	91.2	55.9	1525	No
7770001	Acci Plant No. 19		369.5	3288.7	35.2	84.2	23	91.3	37.2	1525	No
0690020	Dura-Stress		425.6	3194.1	91.3	-10.4	96	91.8	20.0	1537	No
7775240	Gainesville Asphalt Plant		380.5	3284.4	46.2	79.9	30	92.3	11.9	1547	No
0010006	Deerhaven Generating Station	Alachua	365.7	3292.6	31.4	88.1	20	93.5	1612.0	1571	Yes
0690014	Silver Springs Citrus Plant	,	424.4	3176.5	90.1	-28.0	107	94.4	97.9	1588	No
0010064	Southern Pre-Cast, Inc.	Alachua	359.0	3295.7	24.7	91.2	15	94.5	24.9	1590	No
7774808	Hipp Construction No. 2 Asphalt Plant	,	356.7	3296.5	22.4	92.0	14	94.7	12.1	1594	No
7775271	John C. Hipp Construction Equipment Co.	Alachua	356.7	3296.5	22.4	92.0	14	94.7	46.8	1594	No
1070015	Georgia-Pacific Corp. Plywood Plant		399.6	3273.8	65.3	69.3	43	95.2	232.5	1604	No
7770007	#9 Ashpalt Plant		400.3	3275.5	66.0	71.0	43	96.9	10.1	1639	No
0694801	Lake Cogen C/O Aquila		434.0	3198.8	99.7	-5.7	93	99.9	54.0	1697	No
7775202	The Lane Construction Corporation		393.8	3124.3	59.5	-80.2	143	99.9	50.0	1698	No

^{*} The Progress Energy Crystal River facility is located at UTM Coordinates:

East 334.3 km North 3204.5 km

15.0 km

^b The significant impact distance (SID) for the project is estimated to be

Based on the North Carolina Screening Threshold method, a background facility is included in the modeling analysis if the facility is beyond the modeling area and its emission rate is greater than the product of (Distance-SID) x 20.

d "Modeling Area" is the area in which the Project is predicted to have a significant impact EPA recommends that all sources within this area be modeled.

[&]quot;Screening Area" is the area that is 50 km beyond the modeling area. EPA recommends that sources be modeled that are expected to have a significant impact in the modeling area.

[&]quot;Beyond Screening Area out to 100 km" is the area beyond the screening area and out to 100 km in which only large sources are included in the modeling.

TABLE 6-4 SUMMARY OF SO, EMITTING FACILITIES INCLUDED IN THE AAQS AND PSD CLASS II INCREMENT COMPLIANCE ANALYSES

							1	Maximum	Q (TPY)		
Plant	Facility		UTM Coor	North	X Kelative	to Crystal F	Distance	SO2 Emissions	Emission Threshold	Include in Modeling	-
ID	Name	County	(km)	(km)	(km)	(km)	(km)	(TPY)	(Dist-SID) x 20	Analysis?	
	4										_
Modeling A 0170004	crea Crystal River Power Plant	Citrus	334.3	3204.5	0	0	0.0		SIA	SIA	
0170007	Crystal River Quarries	Citrus	340.6	3204.3	6.3	0.8	6.4	133.9	SIA	SIA	
0170007	Crystal River Quarties	Cittus	340.0	3203.3	0.5	0.0	0.4	155.5	SIA	SI. C	
Screening A	reas d										
0530010	Cemex	Hernando	357.5	3,169.2	23.2	-35.3	42.2	132.0	545	Yes	
	Asphalt Pavers 4	Hernando	361.4	3,168.4	27.1	-36.1	45.1	78.2	603	Yes	
	Oman Construction	Hernando	359.8	3,164.9	25.5	-39.6	47.1	72.7	642	Yes	
0530021	FL Crushed Stone Kiln 1	Hernando	360.0	3,162.5	25.7	-42	49.2	3,531.8	685	Yes	
	Asphalt Pavers 3	Hernando	359.9	3,162.4	25.6	-42.1	49.3	78.2	685	Yes	
0530004	Citrus Service, Inc.	Hernando	364.2	3158.3	29.9	-46.2	55.0	137.2	801	Yes	
	FDOC Boiler #3	Hernando	382.2	3,166.1	47.9	-38.4	61.4	103.9	928	Yes	
	Hospital Corp of America	Hernando	333.4	3,141.0	-0.9	-63.5	63.5	5.6	970	Yes	
1010028	Overstrect Paving	Hernando	355.9	3,143.7	21.6	-60.8	64.5	127.6	990	Yes	
Revord Scr	eening Area out to 100 km d										
1010056	Pasco Cty RRF	Pasco	348.6	3139.0	14.3	-65.48	67.0	490.1	1041	Yes	
1010373	IPS - Shady Hills	Pasco	348.6	3,138.4	14.3	-66.13	67.7	1,333.7	1053	Yes	
1190018	Consolidated Minerals	Pasco	401.5	3169.5	67.2	-35	75.8	98.3	1215	No	
	New Pt Richey Hospital	Pasco	331.2	3,124.5	-3.1	-80	80.1	3.1	1301	No	
1010071	Pasco Cogen	Pasco	385.6	3,139.0	51.3	-65.5	83.2	175.2	1364	No	
	Florida Rock Thompson S. Baker Cement Plant	Alachua	348.4	3,287.0	14.05	82.54	83.7	77.5	1375	No	
1010017	Progress Energy Florida, Inc Anclote Power Plant	Pasco	327.4	3120.7	-6.89	-83.82	84.1	120,811.0	1382	Yes	
1010041	Apac- Southeast, Inc. Central FL Div.	Pasco	340.7	3,119.5	6.4	-85	85.2	157.7	1405	No	

^{*} The Progress Energy Crystal River Power Plant is located at UTM Coordinates: East 334.3 km SO LOCATION North 3204.5 km

15.0 km

^b The modeling area for the project, based on an estimated significant impact distance (SiD), is

⁶ Based on the North Carolina Screening Threshold method, a background facility is included in the modeling analysis if the facility is within the modeling area and its emission rate is greater than the product of "Distance x 20".

d "Modeling Area" is the area in which the Project is estimated to have a significant impact.

[&]quot;Screening Area" is the area that is 50 km beyond the modeling area.

[&]quot;Beyond Screening Area out to 100 km" is the area beyond the screening area and out to 100 km in which only large sources are included in the modeling.

Although the facility's emissions were less than the emission threshold, facility was modeled since the facility was modeled in the PSD Class I increment consumption analysis.

TABLE 6-5
SUMMARY OF NOX EMITTING FACILITIES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE ANALYSES

			UTM Co	ordinates	1	Relative to (Crystal River		Maximum NOx	Q, (TPY) Emission	Include in Modeling
Plant	Facility	County	East	North	x	Y	Direction	Distance	Emissions	Threshold b,e	Analysis
ID	Name		(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(Dist - SID) x 20	
Modeling Area											
0170004	Progress Energy Florida-Crystal River Power Pla	int Citrus	334.3	3,204.5	0.0	0.0	-	0.0	63,326	SIA	Yes
Screening Are	a ^d										
0170035	Florida Gas Transmission Company	Citrus	353.2	3,194.0	18.9	-10.5	119.1	21.6	49	133	No
0170021	Central Materials Company, Inc.	Citrus	355.5	3,188.5	21.2	-16.0	127.0	26.6	17	231	No
0530010	Southdown, Inc. (Cemex)	Hernando	355.9	3,169.1	21.6	-35.4	148.6	41.5	2,335	529	Yes
530044	Florida Crushed Stone, Gregg Mine	Hernando	359.8	3,163.4	25.5	-41.1	148.2	48.4	24	667	No
530351	Grubbs Construction Company	Hernando	359.8	3,163.0	25.5	-41.5	148.4	48.7	20	674	No
530021	Florida Crushed Stone Co., Inc.	Hernando	360.0	3,162.5	25.7	-42.0	148.5	49.2	6,873	685	Yes
530020	Columbia Reg Medical Center Oak Hill	Hernando	352.6	3,157.3	18.3	-47.2	158.8	50.6	20	712	No
830066	Emergency One, Inc.	Marion	384.9	3,227.2	50.6	22.7	65.8	55.5	15	809	No
830052	Closetmaid FKA Clairson Intl	Marion	386.2	3,228.9	51.9	24.4	64.8	57.3	17	847	No
830010	Royal Oak Enterprises	Marion	387.5	3,231.1	53.2	26.6	63.4	59.5	90	890	No
770088	Steven Counts, Inc.		386.8	3,233.9	52.5	29.4	60.8	60.2	17	903	No
750085	Freebee Landholdings, LTD	Levy	349.0	3,264.6	14.7	60.1	13.7	61.9	44	937	No
830007	Dayco Products Inc	Marion	393.3	3,226.2	59.0	21.7	69.8	62.9	18	957	No
0830016	Franklin Industrial Minerals	Marion	384.7	3,244.2	50.4	39.7	51.8	64.2	110	983	No
0830017	MFM Industries Inc	Marion	384.5	3,245.3	50.2	40.8	50.9	64.7	36	994	No
010028	Overstreet Paving Co	Pasco	357.4	3,143.7	23.1	-60.8	159.2	65.0	38	1001	No
Beyond Screen	ning Area out to 100 km d										
0830124	Marion County Board of CO Commissioners	Marion	397.7	3,222.1	63.4	17.6	74.5	65.8	12	1015	No
7775176	C.W. Roberts Contracting, Inc.		400.3	3,197.3	66.0	-7.3	96.3	66.4	14	1028	No
1010373	Ips Avon Park Corp.	Paseo	347.0	3,139.0	12.7	-65.5	169.0	66.7	756	1034	Yes
1010056	Pasco County Resource Recovery	Pasco	348.8	3,138.8	14.5	-65.7	167.6	67.3	1,008	1046	Yes
1190018	Consolidated Minerals, Inc.		401.5	3,169.5	67.2	-35.0	117.5	75.8	35	1215	No
0830094	Bedrock Resources	Marion	393.5	3,252.0	59.2	47.5	51.2	75.9	23	1218	No
1100011	Robbins Manufacturing Co.		396.7	3,158.9	62.4	-45.6	126.2	77.3	25	1246	No
0410004	Florida Gas Transmission Company		321.3	3,282.8	-13.0	78.3	350.6	79.4	75	1287	No
7770259	DAB Constructors, Inc.		412.3	3,189.1	78.0	-15.4	101.2	79.5	25	1290	No
7770245	Limerock Industries, Inc.		348.9	3,284.4	14.6	79.9	10.4	81.2	36	1324	No
0290003	Georgia-Pacific Corp. Chip/Saw		300.3	3,278.8	-34.0	74.3	335.4	81.7	28	1334	No
1010002	Pasco Beverage Company	Pasco	383.5	3,139.2	49.2	-65.3	143.0	8.18	233	1335	No
0010001	Florida Power Corporation D/B/A Progress	Alachua	369.4	3,279.3	35.1	74.8	25.1	82.6	166	1352	No
0010041	N. Fla/South Ga Veterans Health System	Alachua	369.8	3,279.1	35.5	74.6	25.4	82.6	30	1352	No
0690046	Covanta Lake, Inc.	Lake	413.1	3,179.3	78.8	-25.2	107.7	82.7	476	1355	No
0830045	Standard Sand & Silica Co	Marion	412.7	3,231.3	78.4	26.8	71.1	82.9	87	1357	No
1010071	Pasco Cogen Limited	Pasco	385.1	3,139.0	50.8	-65.5	142.2	82.9	405	1357	No
0690002	Cutrale Citrus Juices USA Inc	Lake	415.5	3,187.3	81.2	-17.2	102.0	83.0	157	1360	No

TABLE 6-5
SUMMARY OF NOX EMITTING FACILITIES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE ANALYSES

			UTM Co	ordinates	1	Relative to (Crystal River		Maximum NOx	Q, (TPY) Emission	Include in Modeling
Plant	Facility	County	East	North	х	Y	Direction	Distance	Emissions	Threshold ^{b,e}	Analysis
ID	Name		(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(Dist - SID) x 20	
0010087	Florida Rock Industries, Inc.	Alachua	348.4	3,287.0	14.1	82.5	9.7	83.7	2,048	1375	Yes
1010017	Progress Energy-Anclote Power Plant	Pasco	327.4	3,120.7	-6.9	-83.8	184.7	84.1	13,292	1382	Yes
0010005	Gainesville Regional Utilities	Alachua	372.1	3,280.1	37.8	75.6	26.6	84.5	133	1390	No
1010378	Paw Materials, Inc.	Pasco	346.6	3,120.0	12.3	-84.5	171.7	85.4	45	1409	No
1030044	Suncoast Paving, Inc.	Pinellas	327.7	3,116.7	-6.6	-87.8	184.3	88.1	27	1461	No
0690008	Eagle-Picher Ind. (Wolverine Gasket Div.)	Lake	424.2	3,194.1	89.9	-10.4	96.6	90.5	19	1510	No
0010037	V. E. Whitehurst & Sons, Inc.	Alachua	368.7	3,289.0	34.4	84.5	22.2	91.2	18	1525	No
0830070	Florida Gas Transmission Company	Marion	418.8	3,240.9	84.5	36.4	66.7	92.0	900	1540	Yes
0690001	Florida Select Citrus, Inc.	Lake	416.2	3,159.6	81.9	-44.9	118.7	93.4	52	1568	No
0010006	City of Gainesville, GRU	Alachua	365.7	3,292.6	31.4	88.1	19.6	93.5	5,556	1571	Yes
0690014	Silver Springs Citrus Inc.	Lake	424.4	3,176.5	90.1	-28.0	107.2	94.4	64	1588	No
7775271	John C. Hipp Construction Equipment Co.		356.7	3,296.5	22.4	92.0	13.7	94.7	15	1594	No
108496	Lake Investment, L.P.	Lake	434.0	8.891,6	99.7	-5.7	93.3	99.9	809	1697	No
7775202	The Lane Construction Corporation		393.8	3,124.3	59.5	-80.2	143.4	99.9	50	1698	No

^{*} The Progress Energy Crystal River facility is located at UTM Coordinates:

East 334.3 km North 3204.5 km

^b The modeling area for the project, based on an estimated significant impact distance (SID), is

^{15.0} km

⁶ Based on the North Carolina Screening Threshold method, a background facility is included in the modeling analysis if the facility is within the modeling area and its emission rate is greater than the product of "Distance x 20".

^d "Modeling Area" is the area in which the Project is estimated to have a significant impact.

[&]quot;Screening Area" is the area that is 50 km beyond the modeling area.

[&]quot;Beyond Screening Area out to 100 km" is the area beyond the screening area and out to 100 km in which only large sources are included in the modeling.

TABLE 6-6 SUMMARY OF $\rm PM_{10}$ EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS AT THE CHASSAHOWITZKA NWA

	Facility	_	UTM Coor	rdinates		Relative to		Maximum PM	PSD Incremen Affecting	
Plant	Facility	County	East	North	X	Y	Direction	Distance	Emissions	Emissions
ID	Name		(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(CON/EXP)
odeling Area b										
0530010	Cernex	Hernando	357.5	3169.2	19.7	-6.0	107	20.6	879.8	CON
0530021	Brooksville Cement And Power Plants	Hernando	361.3	3162.4	23.5	-12.8	119	26.8	711.3	CON
	Imc - Agrico Co. (Pierce)		404.1	3079.0	-16.7	-24.3	214	29.5	-311.4	EXP
0170004	Crystal River Power Plant	Citrus	334.3	3204.5	-3.5	29.3	353	29.5	13,068.3	CON
1010056	Pasco County Resource Recovery Facility	Pasco	348.6	3139.0	10.8	-36.2	163	37.8	73.2	CON
1010373	Shady Hills Generating Station	Pasco	348.7	3138.4	10.9	-36.8	163	38.4	61.5	CON
	Stauffer Tarpon Springs	Pinellas	325.6	3116.7	-12.2	-58.5	192	59.8	-455.3	EXP
0570005	CF Industries-Plant City	Hillsborough	388.0	3116.0	50.2	-59.2	140	77.6	424.9	CON
									-109.2	EXP
0570127	Mckay Bay Refuse-To-Energy Facility	Hillsborough	360.2	3092.2	22.4	-83.0	165	86.0	172.2	CON
0570038	TECO, Hookers Point	Hillsborough	358.0	3091.0	20.2	-84.2	167	86.6	32.9	CON
									-1,536.4	EXP
0570261	Hillsborough Cty. RRF	Hillsborough	368.2	3092.7	30.4	-82.5	160	87.9	92.0	CON
0570040	TECO Bayside Power Station	Hillsborough	360.1	3087.5	22.3	-87.7	166	90.5	352.6	CON
									-6, <u>26</u> 7.5	EXP
1030117	Pinellas Co. Resource Recovery Facility	Pinellas	335.2	3084.1	-2.6	-91.1	182	91.1	657.0	CON
0570008	Mosaic Riverview Facility	Hillsborough	362.9	3082.5	25.1	-92.7	165	96.0	283.8	CON
									-1795.1	EXP
1050004	C.D. Mcintosh, Jr. Power Plant	Polk	409.0	3106.2	71.2	-69.0	134	99.1	2,883.7	CON
0570094	Mosaic - Big Bend Terminal	Hillsborough	361.0	3076.2	23.2	-99.0	167	101.7	10.0	CON
1050003	Lakeland Electric, Larsen Power Plant	Polk	408.9	3102.5	71.1	-72.7	136	101.7	487.6	
									-34.8	
0570039	TECO, Big Bend Station	Hillsborough	361.9	3075.0	24.1	-100.2	166	103.1	5,942.0	CON
1050047	Agrifos Mining, L.L.C Nichols	Polk	398.7	3085.3	60.9	-89.9	146	108.6	557.1	CON
1050057	Mosaic Phosphates (Nichols)	Polk	398.4	3084.2	60.6	-91.0	146	109.3	-488.0	
0010087	Thompson S. Baker Cement Plant	Alachua	348.4	3287.0	10.6	8.111	5	112.3	1,105.6 1,521.0	CON
1050059	Mosaic Phosphates (New Wales)	Polk	396.7	3079.4 3086.6	58.9	-95.8 -88.6	148	112.5	1,321.0 281.1	CON
1050046	Mosaic - Bartow Facility	Polk	409.8	3080.0	72.0	-88.6	141	114.2	281.1 -275.7	EXP
1050034	Mosaic Phosphates (CFMO)	D-II-	398.2	3075.7	60.4	-99.5	149	116.4	1,148.1	CON
1030034	Bartow Phosphate Cnt. (Imc Uranium Rec.)	Polk Polk	408.4	3073.7	70.6	-99.5 -93.0	149	116.4	-827.8	EXP
1050034	Mosaic Phosphates, Ft. Lonesome	Polk	389.5	3068.0	51.7	-93.0 -107.2	154	119.0	-443.3	EXP
1050053	Mosaic - Green Bay Facility	Polk	409.5	3080.1	71.7	-107.2	143	119.0	191.0	CON
1030033	Mosaic - Gleen Bay Facility	roik	407.3	3000.1	/1./	-7J.1	143	119.1	-709.7	EXP
0970014	Progress Energy- Intercession City Plant	Osceola	446.3	3126.0	108.5	-49.2	114	119.1	1,228.5	CON

TABLE 6-6 SUMMARY OF $\rm PM_{10}$ EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS AT THE CHASSAHOWITZKA NWA

	Facility		UTM Coordinates		Relative to CNWA ^a				Maximum PM	PSD Increment Affecting
Plant	Facility	County	East	North	X	Υ	Direction	Distance	Emissions	Emissions
, ID	Name		(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(CON/EXP)
· :							_			
0010006	Deerhaven Generating Station	Alachua	365.7	3292.6	27.9	117.4	13	120.7	1,612.0	
1050217	Polk Power Partners - Mulberry Cogen Facility	Polk	413.6	3080.6	75.8	-94.6	141	121.2	39.4	CON
0810010	FPL - Manatee Power Plant	Manatee	367.3	3054.2	29.5	-121.1	166	124.6	9,471.8	CON
1050233	TECO, Polk Power Station	Polk	402.5	3067.4	64.7	-107.9	149	125.7	92.5	CON
1050234	Progress Energy Florida - Hines	Polk	414.3	3073.9	76.5	-101.3	143	127.0	91.0	CON
1270028	FPC - Debary Facility	Volusia	467.5	3197.2	129.7	22.0	80	131.6	1,067.1	CON
1270020	FPC - Turner Plant	Volusia	473.4	3193.3	135.6	18.1	82	136.8	-636.9	EXP
1070005	Georgia-Pacific Corp. Pulp/Paper Mill	Putnam	434.0	3283.4	96.2	108.2	42	144.8	871.3	CON
	· · · · · · · · · · · · · · · · · · ·								-6,736.2	EXP
0950137	Stanton Energy Center	Orange	483.5	3150.6	145.7	-24.6	100	147.8	576.5	CON
1070025	SECI Seminole Generating Station	Putnam	438.9	3289.3	101.1	114.I	42	152.4	1884.0	CON

^a The approximate center of the Chassahowitzka NWA is located at UTM Coordinates

East 337.8 km North 3175.2 km

210.0 km

^b The modeling area for the project is estimated to be

TABLE 6-7
SUMMARY OF SO, EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS
AT THE CHASSAHOWITZKA NWA

			Maximum	PSD Increment
	UTM Coor		SO2	Affecting
Facility Name	East (km)	North (km)	Emissions * (TPY)	Emissions (CON/EXP) b
Florida Power & Light (FPL)- Putnam Plant	443.3	3277.6	4,053.2	CON
Florida Power & Light (FPL)- Palatka Plant	442.8	3277.6	-8,934.9	CON
Georgia Pacific, Palatka Mill b	433.9	3283.5	11,416.6 13,537.3	CON EXP
Gerdau Ameristeel	405.7	3350.0	141.1 49.6	CON EXP
JEA Brandy Branch	408.8	3354.5	429.8	CON
Gainesville Regional Utilities- Deerhaven	365.7	3292.6001	12,995.4	CON
CF Industries, Plant City	388.0	3,116.0	6,740.6	CON
			-6,265.0	EXP
Cargill Fertilizer, IncRiverview	362.9	3,082.5	6,552.8 -21,312.7	CON EXP
Natonal Gypsum - Apollo Beach	363.3	3,075.6	238.0	CON
Big Bend Transfer Co. L.L.C.	361.1	3,076.2	15.7	CON
TECO - Big Bend	361.9	3,075.0	15,662.9 -127,0 2 0.0	CON EXP
Tampa Bay Shipbuiding & Repair Co.	358.0	3,089.0	12.0	CON
McKay Bay Refuse-to-Energy Facility	360.2	3,092.2	716.0	CON
Hillsborough Cty. Resource Recovery Fac.	368.2	3,092.7	770.9	CON
Yuengling Brewing Co.	362.0	3,103.2	39.4	CON
Pinellas Co. Resource Recovery Facility	335.2	3,084.1	3,044.1	CON
IMC PhosphateS Company - New Wales	396.7	3,079.4	14,624.9	CON
		,,,,,,	-6,266.5	EXP
TECO - Polk Power Station	402.5	3,067.4	2,925.8	CON
Cargill Mulberry (Formerly Mulberry Phosphates, Inc.)	406.8	3,085.1	1,241.0	CON
			-8,954.5	EXP
CF Industries, Inc Bartow	408.3	3,082.5	1,825.6	CON
			-29,546.6	EXP
IMC Phosphates Company - South Pierce	407.5	3,071.4	3,942.0	CON
			-2,628.0	EXP
Cargill Green Bay (Formerly Farmland Hydro, L.P Green Bay)	409.5	1.080,	6,895.0	CON
•			-9,726.5	EXP
Cargill Fertilizer - Bartow	409.8	3,086.6	6,753.8	CON
Hardee Power Station	404.8	3,057.4	9,673.2	CON
Lakeland Electric, Larsen Power Plant	408.9	3,102.5	925.9	CON

TABLE 6-7 SUMMARY OF SO $_{\rm 2}$ EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS AT THE CHASSAHOWITZKA NWA

			Maximum	PSD Increment
	UTM Coor	dinates	SO2	Affecting
Facility Name	East (km)	North (km)	Emissions * (TPY)	Emissions (CON/EXP) b
Lakeland Electric, McIntosh Power Plant	409.0	3,106.2	19,686.8	CON
U.S. Agri-Chemicals - Ft. Meade	416.0	3,069.0	4,383.2	CON
old right channels in the second	410.0	5,005.0	-3,374.3	EXP
Cutrale Citrus Juices USA, Inc.	421.6	3,103.7	1,676.7	CON
Auburndale Power Partners, LP	420.8	3,103.3	598.3	CON
Florida Distillers - Auburndale	421.4	3,102.9	0.3	CON
FPC - Intercession City Plant	446.3	3,126.0	17,025.9	CON
PC - Intercession City Flant	440.3	3,120.0	17,023.9	CON
IPS - Shady Hills	347.2	3,138.8	1,333.7	CON
Estech/Swift Polk	411.5	3,074.2	-4,853.1	EXP
FL Crushed Stone Kiln 1	360.0	3,162.5	3,531.8	CON
FPC Polk County Site	414.3	3,073.9	858.6	CON
General Portland Cement #4	358.0	3,090.6	-2,189.7	EXP
General Portland Cement #5	358.0	3,090.6	-2,409.0	EXP
MC-Agrico Pierce	404.1	3,079.0	-1,644.9	EXP
mperial Phosphates (Brewer)	404.8	3,069.5	-669.5	EXP
Mobil Electrophos Division	405.6	3,079.4	-3,334.4	EXP
Stauffer (Shutdown)	-325.6	3,116.7	-2,263.0	EXP
US Agri-Chem Bartow	413.2	3,086.3	-1,578.5	EXP
Asphalt Pavers 3	359.9	3,162.4	78.2	CON
Asphalt Pavers 4	361.4	3,168.4	78.2	CON
Borden Hillsborough	394.6	3,069.6	-225.3	EXP
Borden Polk	414.5	3,109.0	-183.9	EXP
Couch Const-Zephyrhills (Asphalt)	390.3	3,129.4	123.1	CON
Couch Const-Odessa (Asphalt)	340.7	3,119.5	252.0	CON
Dris Paving (Asphalt)	340.6	3,119.2	8.0	CON
Dolime	404.8	3,069.5	-354.6	EXP
		•		
Evans Packing	383.3	3,135.8	7.0	CON
E R Jahna (Lime Dryer)	386.7	3,155.8	28.5	CON
FDOC Boiler #3	382.2	3,166.1	103.9	CON
L Mining and Materials Kiln	356.2	3,169.9	50.4	CON
FPC - Crystal River	334.2	3,204.5	-75,537.6	EXP
	20.12		70,135.6	CON
FPC Debary	467.5	3,197.2	16,213.0	CON
Hospital Corp of America	333.4	3,141.0	5.6	CON
Kissimmee Utilities	447.7	3,127.9	1,022.0	CON
Kissimmee Utilites Exist	460.1	3,129.3	1,115.9	CON
Lake Cogen	434.0	3,198.8	175.2	CON
Mulberry Cogeneration	413.6	3,080.6	464.1	CON

TABLE 6-7
SUMMARY OF SO₂ EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS
AT THE CHASSAHOWITZKA NWA

	UTM Coor	dinates	Maximum SO2	PSD Increment Affecting
Facility Name	East (km)	North (km)	Emissions ^a (TPY)	Emissions (CON/EXP) b
Oman Construction	359.8	3,164.9	72.7	CON
Orlando Utilities Commission - Stanton	483.5	3,150.6	24,083.0	CON
Overstreet Paving	355.9	3,143.7	127.6	CON
Pasco Cty RRF	347.1	3,139.2	490.1	CON
Pasco Cogen	385.6	3,139.0	175.2	CON
Reedy Creek Energy Services- EPCOT	442.0	3,139.0	127.2	CON
Reedy Creek Energy Services	443.1	3,144.3	5.2	CON
Ridge Cogeneration	416.7	3,100.4	479.7	CON
PCS	328.3	3,368.8	10,000.0	CON
		,	-13,213.0	EXP
Suwannee American Cement	321.4	3,315.9	124.4	CON
Florida Rock Thompson S. Baker Cement Plant	348.4	3,287.0	77.5	CON

^b Comsuming (CON) sources are sources that were constructed or modified after the PSD baseline date. Expanding (EXP) sources are sources that have shutdown or have been modified since the baseline date.

TABLE 6-8 SUMMARY OF NO $_{\rm X}$ EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS AT THE CHASSAHOWITZKA NWA

	Facility		UTM Coor	dinates		Relative to	CNWA ^a		Maximum NOx	PSD Increment Affecting
Plant	Facility	County	East	North	x	Y	Direction	Distance	Emissions	Emissions
ID	Name	·	(km)	(km)	(km)	(km)	(deg.)	(km)	(TPY)	(CON/EXP)
Modeling Area b										
0530021	Brooksville Cement And Power Plants	Hernando	361.3	3162.4	23.5	-12.8	119	26.8	6,873.2	CON
0170004	Crystal River Power Plant	Citrus	334.3	3204.5	-3.5	29.3	353	29.5	31,536.0	
1010056	Pasco County Resource Recovery Facility	Pasco	348.6	3139.0	10.8	-36.2	163	37.8	1008.1	
1010373	Shady Hills Generating Station	Pasco	348.7	3138.4	10.9	-36.8	163	38.4	756.3	
0570005	CF IndustriesPlant City	Hillsborough	388.0	3116.0	50.2	-59.2	140	77.6	312.1	CON
0570127	Mckay Bay Refuse-To-Energy Facility	Hillsborough	360.2	3092.2	22.4	-83.0	165	86.0	679.0	
	,,	boo.o.ag	30012			-		00.0	-1316.0	
0570038	TECO, Hookers Point	Hillsborough	358.0	3091.0	20.2	-84.2	167	86.6	582.0	
	,		-			•			-4,558.0	
0570261	Hillsborough Cty. RRF	Hillsborough	368.2	3092.7	30.4	-82.5	160	87.9	768.0	
0570040	TECO Bayside Power Station	Hillsborough	360.1	3087.5	22.3	-87.7	166	90.5	708.4	CON
	•								-79,088.0	EXP
0570008	Mosaic Riverview Facility	Hillsborough	362.9	3082.5	25.1	-92.7	165	96.0	313.1	CON
	-	· ·							-110.9	EXP
1050004	C.D. Mcintosh, Jr. Power Plant	Polk	409.0	3106.2	71.2	-69.0	134	99.1	17,829.0	CON
1050003	Lakeland Electric, Larsen Power Plant	Polk	408.9	3102.5	71.1	-72.7	136	101.7	3825.0	CON
									-639.0	EXP
1050057	Mosaic Phosphates (Nichols)	Polk	398.4	3084.2	60.6	-91.0	146	109.3	-208.5	EXP
0010087	Thompson S. Baker Cement Plant	Alachua	348.4	3287.0	10.6	111.8	5	112.3	2,047.6	CON
1050059	Mosaic Phosphates (New Wales)	Polk	396.7	3079.4	58.9	-95.8	148	112.5	781.4	CON
1050046	Mosaic - Bartow Facility	Polk	409.8	3086.6	72.0	-88.6	141	114.2	215.3	CON
1050034	Mosaic Phosphates (CFMO)	Polk	398.2	3075.7	60.4	-99.5	149	116.4	244.0	CON
1050053	Mosaic - Green Bay Facility	Polk	409.5	3080.1	71.7	-95.1	143	119.1	254.9	CON
0970014	Progress Energy- Intercession City Plant	Osceola	446.3	3126.0	108.5	-49.2	114	119.1	15,155.9	CON
0010006	GRU - Deerhaven Generating Station	Alachua	365.7	3292.6	27.9	117.4	13	120.7	6,873.5	CON
1050217	Polk Power Partners - Mulberry Cogen Facility	Polk	413.6	3080.6	75.8	-94.6	141	121.2	353.0	CON
0810010	FPL - Manatee Power Plant	Manatee	367.3	3054.2	29.5	-121.1	166	124.6	23,145.6	CON
1050233	TECO, Polk Power Station	Polk	402.5	3067.4	64.7	-107.9	149	125.7	2290.2	CON
1050234	Progress Energy Florida - Hines	Polk	414.3	3073.9	76.5	-101.3	143	127.0	1348.8	CON
1270028	FPC - Debary Facility	Volusia	467.5	3197.2	129.7	22.0	80	131.6	7,162.6	CON
1270020	FPC - Turner Plant	Volusia	473.4	3193.3	135.6	18.1	82	136.8	-1826.1	EXP
1070005	Georgia-Pacific Corp. Pulp/Paper Mill	Putnam	434.0	3283.4	96.2	108.2	42	144.8	2,691.7	CON
									-1,677.€	
0950137	Stanton Energy Center	Orange	483.5	3150.6	145.7-	-24.6	100	147.8	11826.0	
1070025	SECI Seminole Generating Station	Putnam	438.9	3289.3	101.1	114.1	42	152.4	33731.4	CON

TABLE 6-8 SUMMARY OF NO_X EMITTING FACILITIES INCLUDED IN THE PSD CLASS I INCREMENT CONSUMPTION ANALYSIS AT THE CHASSAHOWITZKA NWA

	Facility		UTM Coor	dinates		Relative to	CNWA ²		Maximum NO _x	PSD Increme Affecting
Plant Facility ID Name	County	East (km)	North (km)	X (km)	Y (km)	Direction (deg.)	Distance (km)	Emissions (TPY)	Emissions (CON/EXP	
0490043	Vandolah Power Co. LLC	Hardee	408.8	3044.5	71.0	-130.7	152	148.7	1008.4	CON
0810007	Tropicana Products, Inc.	Manatee	346.8	3,040.9	9.0	-130.7	176	134.6	1331.9	

^a The approximate center of the Chassahowitzka NWA is located at UTM Coordinates:

337.8 km East 3175.2 km

North

^b The modeling area for the project is estimated to be

TABLE 6-9
PROJECT BUILDING DIMENSIONS USED IN THE MODELING ANALYSIS

Stucture	Hei ft	ght m	Leng ft	gth m	ft	idth m	
Unit 4 Boiler Structure	277	84.4	185	56.5	152	46.5	
Unit 5 Boiler Structure	277	84.4	185	56.5	152	46.5	
Turbine Building	97	29.5	105	32.0	573	174.8	
Unit 4 Precipitator	91	27.8	118	36.0	204	62.2	а
Unit 5 Precipitator	91	27.8	1.18	36.0	204	62.2	
Unit 4 SCR	214	65.3	71	21.7	100	30.4	а
Unit 5 SCR	214	65.3	1404	21.7	100	30.4	
Unit 4 Absorber	125	38.0	133	40.4	89	27.1	
Unit 5 Absorber	125	38.0	133	40.4	89	27.1	
Helper Cooling Tower	33	10.0	2590	789.7	51	15.4	
Unit 1 Boiler Structure	198	60.4	99	30.1	135	41.3	
Unit 2 Boiler Structure	208	63.4	120	36.6	120	36.6	
Adm Building	12	3.7	114	34.7	114	34.7	
Adm Building	75	22.9	424	129.2	78	23.6	
Tank NW	40	12.2	235	71.6	a 235	71.6	
Tank SW	40	12.2	235	71.6	a 235	71.6	
Tank NE	40	12.2	190	57.9	a 190	57.9	
Tank SE	40	12.2	190	57.9	a 190	57.9	

^a Diameter

TABLE 6-10

MAXIMUM PM₁₀, CO SO₂, AND NO₃ CONCENTRATIONS PREDICTED FOR CRYSTAL RIVER UNITS 4 & 5 BY OPERATING LOAD

WITH PROPOSED STACK OF 550 FT (SO2 = 0.27 LB/MMBTU/HR)

_	Emissions (lb/hr) for Operating Load					um Conce for Opera	ntration (ug/m ¹ ting Load	') 	PSD Class II Significant	
Pollutant	100% Load Excursion	100% Load	75% Load	50% Load	Averaging Time	100% Load Excursion	100% Load	75% Load	50% Load	Impact Levels (ug/m³)
Modeled rate	7.937	NM	7.937	7.937	Annual	0.007	NM	0.010	0.015	NA
					24-Hour	0.097		0.128	0.167	NA
					8-Hour	0.213		0.280	0.418	NA
					3-Hour	0.313		0.409	0.533	NA
					l-Hour	0.393		0.491	0.994	NA
Project PSD Pollutant										
PM ₁₀	720.0	NM	510.0	340.0	Annual	0.66	NM	0.63	0.66	1
					24-Hour	8.8		8.2	7.2	5
CO	2,160	NM	1,530	1,020	8-Hour	57.9	NM	54.0	53.7	500
					1-Hour	107		94.7	127.8	2,000
Project Non-PSD Pollutan	t									
SO ₂	3,888.0	NM	2,754.0	1,836.0	Annual	3.58	NM	3.40	3.57	1
					24-Hour	47.4		44.5	38.6	5
					3-Hour	153		142	123.3	25
NO _x /NO ₂	7,200	NM	5,100	3,400	Annual	6.62	NM	6.30	6.61	1

NA= not applicable NM= not modeled

Pollutant concentrations were based on a modeled or generic concentration predicted using a modeled emission rate.

Specific pollutant concentrations were estimated by multiplying the modeled concentration by the ratio of the specific pollutant emission rate to the modeled emission rate.

^a Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service stations at Tampa and Ruskin, respectively.

August 2006

TABLE 6-11

MAXIMUM PM₁₀, SO₂, AND NO₂ CONCENTRATIONS PREDICTED FOR THE PROJECT

WITH PROPOSED STACK OF 550 FT

							PSD Class I
	Maximum			Location	b		Significant
Averaging Time	Concentration		ordinates (m)		dinates (m) ^b	Time Period	Impact Leve
and Rank	(μg/m³)	East	North	x	у	(YYMMDDHH)	(μg/m³)
Project PSD Pollutant							
PM ₁₀ IMPACTS							
Annual							
Highest	0.00	NA	NA	NA	NA	1123124	1
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
24-Hour							
Highest	0.84	343,800	3,211,400	9,023	6,007	1070624	5
	1.09	344,800	3,210,400	10,023	5,007	2011124	
	0.66	340,800	3,214,400	6,023	9,007	3060924	
	0.76	334,262	3,205,668	-515	275	4051424	
	0.62	334,065	3,205,671	-712	278	5061024	
Project Non-PSD Pollutant							
SO, IMPACTS							
Annual							
Highest	0.00	NA	NA	NA	NA	1123124	i
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
24-Hour							
Highest	4.2	343,800	3,211,400	9,023	6,007	1070624	5
9	5.6	344,800	3,210,400	10,023	5,007	2011124	-
	2.7	340,800	3,214,400	6,023	9,007	3060924	
	3.2	337,800	3,215,400	3,023	10,007	4033024	
	2.8	340,800	3,215,400	6,023	10,007	5012124	
3-Hour							
Highest	29.1	340,800	3,214,400	6,023	9,007	1052709	25
	44.4	339,800	3,213,400	5,023	8,007	2021212	
	43.4	339,800	3,213,400	5,023	8,007	3020715	
	33.0	340,800	3,213,400	6,023	8,007	4101212	
	17.3	340,800	3,215,400	6,023	10,007	5012112	
NO, IMPACTS							
Annual							
Highest	0.20	334,360	3,205,667	-417	274	1123124	1
	0.27	334,360	3,205,667	-417	274	2123124	
	0.22	334,360	3,205,667	-417	274	3123124	
	0.25	334,311	3,205,667	-466	274	4123124	
	0.11	334,360	3,205,667	-417	274	5123124	

Note: YYMMDDHH = Year, Month, Day, Hour Ending.

334,776.80,

3,205,393.42 .

Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service stations at Tampa and Ruskin, respectively.
Concentrations are due to the difference in impacts predicted for the proposed stack and existing stacks for Units 4 and 5.

^b Relative to the proposed stack for Units 4 and 5 with East and North UTM coordinates (km):

^c A "0.0" concentration indicates that the impacts were zero or less.

TABLE 6-12

MAXIMUM PM_{10} , SO_2 , AND NO_2 CONCENTRATIONS PREDICTED FOR CRYSTAL RIVER UNITS 4 AND 5 BY OPERATING LOAD AT THE PSD CLASS I AREA OF THE CHASSAHOWITZKA NWA USING AERMOD

WITH PROPOSED STACK OF 550 FT (SO2 \approx 0.27 LB/MMBTU/HR)

_	Emissions (lb/hr) for Operating Load						ntration (ug/m³ ting Load) 	PSD Class I Significant	
Pollutant	100% Load Excursion	100% Load	75% Load	50% Load	Averaging Time	100% Load Excursion	100% Load	75% Load	50% Load	Impact Levels (ug/m³)
Modeled rate	7.937	NM	7.937	7.937	Annual	0.001	NM	0.001	0.001	NA
					24-Hour	0.009		0.010	0.012	NA
					8-Hour	0.018		0.021	0.024	NA
					3-Hour	0.028		0.031	0.036	NA
					I-Hour	0.085		0.092	0.100	NA
Project PSD Pollutant										•
PM ₁₀	720.0	NM	510.0	340.0	Annual	0.068	NM	0.06	0.05	0.2
					24-Hour	0.85		0.6	0.5	0.3
Project Non-PSD Pollutan	t									
SO ₂	3,888.0	NM	2,754.0	1,836.0	Annual	0.37	NM	0.31	0.25	0.1
					24-Hour	4.6		3.5	2.8	0.2
					3-Hour	14		11	8.4	1
NO _x / NO ₂	7,200	NM	5,100	3,400	Annual	0.68	NM	0.58	0.46	0.1

NA= not applicable NM= not modeled

Pollutant concentrations were based on a modeled or generic concentration predicted using a modeled emission rate.

Specific pollutant concentrations were estimated by multiplying the modeled concentration by the ratio of the specific pollutant emission rate to the modeled emission rate.

^a Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service stations at Tampa and Ruskin, respectively.

TABLE 6-13

MAXIMUM PM₁₀, SO₂, AND NO₂ CONCENTRATIONS PREDICTED FOR THE PROJECT AT THE PSD CLASS I AREA OF THE CHASSAHOWITZKA NWA USING AERMOD WITH PROPOSED STACK OF 550 FT

							PSD Class I
	Maximum			Location			Significant
Averaging Time	Concentration *. c		rdinates (m)	Local Cool	rdinates (m) ^b	Time Period	Impact Level
and Rank	(μg/m³)	East	North	x	у	(YYMMDDHH)	(μg/m³)
Project PSD Pollutant							
PM ₁₀ IMPACTS							
Annual							
Highest	0.00	NA	NA	NA	NA	1123124	0.2
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
24-Hour							
Highest	0.00	NA	NA	NA	NA	1123124	0.3
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
Project Non-PSD Pollutant SO ₁ IMPACTS							
Annual							
· 	0.00	214	314	NA	NA	1123124	0.1
Highest		NA	NA				0.1
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
24-Hour							
Highest	0.00	NA	NA	NA	NA	1123124	0.2
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA	3123124	
	0.00	NA	NA	NA	NA	4123124	
	0.00	NA	NA	NA	NA	5123124	
3-Hour							
Highest	0.3	335,260	3,183,589	483	-21,804	1032509	1
	0.1	335,260	3,183,589	483	-21,804	2102509	
	0.0	335,143	3,175,279	366	-30,114	3041706	
	0.2	335,260	3,183,589	483	-21,804	4033009	
	0.0	338,502	3,182,620	3,725	-22,773	5022021	
NO, IMPACTS							
Annual							
Highest	0.00	NA	NA	NA	NA NA	1123124	0.1
	0.00	NA	NA	NA	NA	2123124	
	0.00	NA	NA	NA	NA NA	3123124	
	0.00	NA	NA	NA	NA NA	4123124	
	0.00	NA	NA	NA	NA	5123124	

Note: YYMMDDHH = Year, Month, Day, Hour Ending.

334,776.80 ,

3,205,393.42 .

Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service stations at Tampa and Ruskin, respectively.

Concentrations are due to the difference in impacts predicted for the proposed stack and existing stacks for Units 4 and 5.

^b Relative to the proposed stack for Units 4 and 5 with East and North UTM coordinates (km):

^c A "0.0" concentration indicates that the impacts were zero or less.

TABLE 6-14

MAXIMUM PM₁₀, SO₂, AND NO₂ CONCENTRATIONS PREDICTED FOR UNITS 4 AND 5

AT THE PSD CLASS 1 AREAS OF THE CHASSAHOWITZKA AND ST. MARKS NWA USING CALPUFF

WITH PROPOSED STACK OF 550 FT

	Chassahowit	zka NWA	St. Mark	s NWA	PSD Class I	
	Maximum		Maximum		Significant	
Averaging Time	Concentration *	Time Period	Concentration a	Time Period	Impact Level	
and Rank	$(\mu g/m^3)$	(YYMMDDHH)	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m³)	
Project PSD Pollutant				_		
PM ₁₀ IMPACTS						
Annual						
Highest	0.10	1123124	0.02	1123124	0.2	
-	0.15	2123124	0.02	2123124		
	0.12	3123124	0.02	3123124		
24-Hour						
Highest	2.17	1111524	0.37	1011724	0.3	
	5.04	2112724	0.33	2042524		
	2.84	3101824	0.31	3022524		
Project Non-PSD Pollutant						
SO ₂ IMPACTS						
<u>Annual</u>						
Highest	0.47	1123124	0.06	1123124	0.1	
	0.73	2123124	0.06	2123124		
	0.57	3123124	0.09	3123124		
<u>24-Hour</u>						
Highest	11.6	1111524	1.2	1121224	0.2	
	25.0	2112724	0.97	2021924		
	15.0	3101824	1.4	3071324		
3-Hour						
Highest	38.7	1030809	5.3	1011809	1	
	63.3	2112703	3.9	2032506		
	40.3	3011406	5.0	3071312		
NO₂ IMPACTS						
<u>Annual</u>						
Highest	0.69	1123124	0.04	1123124	0.1	
	1.18	2123124	0.04	2123124		
	0.86	3123124	0.05	3123124		

Concentrations are based on highest concentrations predicted using CALPUFF with CALMET meteorological data from 2001 to 2003 provided by VISTAS.

TABLE 6-15 MAXIMUM PM₁₀, SO₂, AND NO₂ CONCENTRATIONS PREDICTED FOR THE PROJECT AT THE PSD CLASS I AREAS OF THE CHASSAHOWITZKA AND ST. MARKS NWA USING CALPUFF WITH PROPOSED STACK OF 550 FT

	Chassahowitz	ka NWA	St. Marks	NWA	PSD Class I	
	Maximum		Maximum		Significant	
Averaging Time	Concentration a, b	Time Period	Concentration a, b	Time Period	Impact Level: (μg/m³)	
and Rank	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m³)	(YYMMDDHH)		
Project PSD Pollutant						
PM ₁₀ IMPACTS						
Annual						
Highest	0.00	1123124	0.000	1123124	0.2	
Ü	0.00	2123124	0.000	2123124		
	0.00	3123124	0.000	3123124		
24-Hour						
Highest	2.06	1111524	0.12	1112224	0.3	
	1.91	2112724	0.11	2042524		
	0.47	3012724	0.06	3031224		
Project Non-PSD Pollutant						
SO ₂ IMPACTS						
<u>Annual</u>						
Highest	0.00	1123124	0.00	1123124	0.1	
	0.00	2123124	0.00	2123124		
	0.00	3123124	0.00	3123124		
24-Hour						
Highest	10.3	1111524	0.20	1112224	0.2	
-	5.0	2022424	0.15	2091324		
	1.7	3021224	0.18	3012924		
3-Hour						
Highest	30.3	1111524	1.7	1042209	1	
	25.4	2022403	1.2	2121809		
	11.9	3120121	1.0	3110415		
NO ₂ IMPACTS						
<u>Annual</u>						
Highest	0.35	1123124	0.015	1123124	0.1	
	0.46	2123124	0.013	2123124		
	0.31	3123124	0.015	3123124		

^a Concentrations are based on highest concentrations predicted using CALPUFF with CALMET meteorological data from 2001 to 2003 provided by VISTAS.

Concentrations are due to the difference in impacts predicted for the proposed stack and existing stacks for Units 4 and 5.

 $^{^{\}rm b}$ $\,$ A "0.0" concentration indicates that the impacts were zero or less.

TABLE~6-16 MAXIMUM 3-HOUR AVERAGE SO_2 CONCENTRATIONS PREDICTED FOR UNITS 4 AND 5 AT THE PSD CLASS I AREA OF THE ST. MARKS NWA USING CALPUFF FOR THE EXISTING STACKS AND PROPOSED STACK OF 550 FT

	St. Marks NWA							
	Existing	Stacks	Propose	d Stack				
Averaging Time and Rank	Maximum Concentration ^a (µg/m³)	Time Period (YYMMDDHH)	Maximum Concentration ^a (µg/m³)	Time Period (YYMMDDHH)	Significant Impact Levels (µg/m³)			
Project Non-PSD Pollutant								
SO ₂ IMPACTS 3-Hour								
Highest	20.4	1011809	5.3	1011809	1			
-	13.0	2111512	3.9	2032506				
	16.9	3043009	5.0	3071312				

Concentrations are based on highest concentrations predicted using CALPUFF with CALMET meteorological data from 2001 to 2003 provided by VISTAS.

TABLE 6-17 MAXIMUM PM $_{10}$, SO $_{2}$, AND NO $_{3}$ IMPACTS PREDICTED FOR COMPARISON TO THE AAQS

		Conc	Concentration (µg/m³) Receptor Location							
Averaging Time			Modeled	Back	UTM Coordinates (m)		Local Coor	dinates (m) b	Time Period	AAQS
and Rank	Analysis	Total	Sources	ground	East	North	x	у	(YYMMDDHH)	(µg/m ³)
Project PSD Pollutant PM ₁₀ Concentrations										
Annual										
Highest	Screening	23.6	6.9	17	336,149	3,204,837	1,372	-556	1123124	50
		23.4 24.1	6.7 7.4	17 17	336,099	3,204,838	1,322 1,372	-555 -556	2123124 3123124	
		24.1	7.4 7.5	17	336,149 336,149	3,204,837 3,204,837	1,372	-556	4123124	
		23.3	6.6	17	336,149	3,204,837	1,372	-556	5123124	
		25.5	0.0	• • • • • • • • • • • • • • • • • • • •	330,147	3,204,037	1,572	-550	3123124	
	Refined	24.2	7.5	17	336,149	3,204,837	1,372	-556	4123124	
24-Hour										
Highest, second-highest	Screening	49	23	26	336,697	3,204,828	1,920	-565	1122924	1 50
-	=	52	26	26	336,049	3,204,839	1,272	-554	2031624	
		54	28	26	339,388	3,204,784	4,611	-609	3010924	
		52	26	26	335,950	3,204,841	1,173	-552	4022124	
		57	31	26	336,049	3,204,839	1,272	-554	5070124	
	Refined	57	31	26	336,049	3,204,839	1,272	-554	5070124	
Project Non-PSD Pollutant										
Annual Highest	Screening	18.3	12.8	6	332,319	3,203,398	-2,458	-1,995	1123124	60
· iigiicat	Screening	18.4	12.9	6	332,996	3,205,685	-1,781	292	2123124	00
		17.4	11.9	6	340,511	3,204,937	5,734	-456	3123124	
		18.2	12.7	6	340,800	3,205,400	6,023	7	4123124	
		19.1	13.6	6	332,663	3,202,963	-2,114	-2,430	5123124	
	Refined	19.1	13.6	6	332,663	3,202,963	-2,114	-2,430	5123124	
24-Hour										
Highest, second-highest	Screening	145.3	111.3	34	333,567	3,202,438	-1,210	-2,955	1041824	260
g	Dar verring	129.7	95.7	34	334,664	3,202,438	-113	-2,955	2030424	
		143.1	109.1	34	333,033	3,202,578	-1,744	-2,815	3110924	
		152.2	118.2	34	333,817	3,202,438	-960	-2,955	4092524	
		139.6	105.6	34	333,667	3,202,438	-1,110	-2,955	5041524	
	Refined	152.2	118.2	34	333,817	3,202,438	-960	-2,955	4092524	
3. Hour										
3-Hour Highest, second-highest	Screening	450	306	144	340,800	3,207,400	6,023	2,007	1072912	1,30
. J,		443	299	144	334,166	3,202,438	-611	-2,955	2021112	. ,
		434	290	144	334,664	3,202,438	-113	-2,955	3090818	
		437	293	144	334,265	3,202,438	-512	-2,955	4092524	
		429	285	144	334,764	3,202,438	-13	-2,955	5050618	
	Refined	450	306	144	340,800	3,207,400	6,023	2,007	1072912	
NO2 Concentrations										
<u>Annual</u> Highest	Screening	18.5	7.3	11	336,500	3,205,200	1,723	-193	1123124	100
ringhest	acreening	20.3	7.5 9.1	11	333,336	3,205,681	-1,723 -1,441	288	2123124	100
		18.9	9.1 7.7	11	333,600	3,206,100	-1,441 -1,177	707	3123124	
		19.0	7.7	11	333,385	3,205,680	-1,177	287	4123124	
		18.9	7.8	11	336,500	3,205,100	1,723	-293	5123124	
					•	,				
	Refined	20.3	9.1	11	333,336	3,205,681	-1441	288	2123124	

Note: YYMMDDHH = Year, Month, Day, Hour Ending.

334,776.80 , 3,205,393.42 .

Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service station at Tampa.

^b Relative to the proposed stack for Units 4 and 5 with East and North UTM coordinates (km):

TABLE~6-18 MAXIMUM PM $_{10}$, SO $_{1}$, AND NO $_{2}$ IMPACTS PREDICTED FOR COMPARISON TO THE PSD CLASS II INCREMENTS

		Concentration (µg/m³) *		Pt	Location			pen Class !!
		(μg/m) Modeled	- UTM C	Receptor rdinates (m)	Location Local Coord	inates (m) b	Time Period (YYMMDDHH)	PSD Class 11 Increment (µg/m³)
Averaging Time and Rank	Analysis	Sources	East	North	X X	y y		
Project PSD Pollutant								
PM ₁₀ Concentrations Annual								
Highest	Screening	6.2	336,049	3,204,839	1,272	-554	1123124	17
		5.9	336,049	3,204,839	1,272	-554	2123124	
		6.6	336,099	3,204,838	1,322	-555	3123124	
		6.5	336,099	3,204,838	1,322	-555	4123124	
		5.9	336,099	3,204,838	1,322	-555	5123124	
	Refined	6.6	336,099	3,204,838	1,322	-555	4123124	
24-Hour								
Highest, second-highest	Screening	20.9	335,200	3,205,700	423	307	1071124	30
•	-	22.4	335,100	3,205,700	323	307	2012524	
		25.1	336,498	3,204,832	1,721	-561	3010924	
		23.1	336,348	3,204,834	1,571	-559	4080524	
		26.8	336,099	3,204,838	1,322	-555	5012024	
	Refined	26.8	336,099	3,204,838	1,322	-555	5012024	
Project Non-PSD Pollutan	1							
SO ₂ Concentrations Annual								
Highest	Screening	2.3	340,420	3,204,937	5,643	-456	1123124	20
•		2.4	340,511	3,204,937	5,734	-456	2123124	
		1.9	340,511	3,204,937	5,734	-456	3123124	
		2.2	340,800	3,205,400	6,023	7	4123124	
		3.3	340,420	3,204,937	5,643	-456	5123124	
	Refined	3.3	340,420	3,204,937	5,643	-456	5123124	
24-Hour								
Highest, second-highest	Screening	30.5	336,600	3,205,500	1,823	107	1071224	91
		34.7	340,511	3,204,937	5,734	-456	2122624	
		30.8	340,420	3,204,937	5,643	-456	3011224	
		29.0	340,420	3,204,937	5,643	-456	4111624	
		38.3	336,300	3,205,100	1,523	-293	5032824	
	Refined	38.3	336,300	3,205,100	1,523	-293	5032824	
3-Hour								
Highest, second-highest	Screening	107	336,600	3,205,400	1,823	7	1071215	512
		108	336,500	3,205,200	1,723	-193	2031312	
		94	336,800	3,205,600	2,023	207	3053018	
		125	336,800	3,205,400	2,023	7	4091718	
		130	336,300	3,205,100	1,523	-293	5052415	
	Refined	130	336,300	3,205,100	1,523	-293	5052415	
NO ₂ Concentrations								
Annual Highest	Screening	6.3	336,500	3,205,200	1,723	-193	1123124	25
-	-	6.7	333,434	3,205,679	-1,343	286	2123124	-
		6.4	336,400	3,205,100	1,623	-293	3123124	
		6.5	336,400	3,205,100	1,623	-293	4123124	
		6.7	336,400	3,205,100	1,623	-293	5123124	
		6.7						

Note: YYMMDDHH = Year, Month, Day, Hour Ending.

334,776.80 3,205,393.42 .

Concentrations are based on highest concentrations predicted using AERMOD with five years of meteorological data from 2001 to 2005 of surface and upper air data from the National Weather Service station at Tampa.

b Relative to the proposed stack for Units 4 and 5 with East and North UTM coordinates (km):

TABLE 6-19

MAXIMUM PM₁₀, SO₂, AND NO₂ PSD CLASS I INCREMENT CONSUMPTION PREDICTED AT THE PSD CLASS I AREA OF THE CHASSAHOWITZKA NWA USING CALPUFF WITH PROPOSED STACK OF 550 FT

	Chassahowitz Maximum	PSD Class I		
	Maximum Concentration a, b	mu v i i	PSD Class I Increment (μg/m³)	
Averaging Time		Time Period		
and Rank	(μg/m³)	(YYMMDDHH)		
Project PSD Pollutant				
PM ₁₀ IMPACTS				
Annual				
Highest	0.43	1123124	4	
	0.38	2123124		
	0.29	3123124		
24-Hour				
Highest	3.57	1102724	8	
	7.33	2101724		
	4.48	3011424		
Project Non-PSD Pollutant				
SO ₂ IMPACTS				
<u>Annual</u>				
Highest	0.00	1123124	2	
	0.00	2123124		
	0.00	3123124		
24-Hour				
Highest	4.8	1091024	5	
	5.4	2121824		
	7.2	3082724		
3-Hour				
Highest	24.8	1111603	25	
	24.6	2011509		
	15.6	3082706		
NO ₂ IMPACTS				
<u>Annual</u>				
Highest	0.56	1123124	2	
	0.99	2123124		
	0.64	3123124		

Concentrations are based on highest concentrations predicted using CALPUFF with CALMET meteorological data from 2001 to 2003 provided by VISTAS.

Concentrations are due to the difference in impacts predicted for the proposed stack and existing stacks for Units 4 and 5.

^b A "0.0" concentration indicates that the impacts were zero or less.

TABLE 6-20
CONTRIBUTION OF CRYSTAL RIVER UNITS 4 AND 5 TO TIME PERIODS PREDICTED TO EXCEED THE 24-HOUR ALLOWABLE SO, INCREMENT AT THE CHASSAHOWITZKA NWA PSD CLASS I AREA

				Hour		Maxi	mum	Class I Significant			ritzka NWA eptor ^c
	Julian			Ending		Concentrat	lon (μg/m³)"	Impact Level	_	Lambert Conformal Coordin	
Year	Day	Month	Day	for Period	Rank	Modeled Sources	Units 4 & 5 b	(μg/m³)		x (km)	y(km)
-Hour Exc	eedances							-	_		
2002	352	12	18	24	2nd	5.03	<0.0	0.2	1	1408.318	-1154.049
2002	352	12	18	24	2nd	5.08	<0.0	0.2	2	1409.13	-1153.92
2002	352	12	18	24	2nd	5.18	<0.0	0.2	3	1409.941	-1153.791
2002	352	12	18	24	2nd	5.28	<0.0	0.2	4	1410.753	-1153.661
2002	352	12	18	24	2nd	5.15	<0.0	0.2	5	1407.359	-1153.254
2002	352	12	18	24	2nd	5.21	<0.0	0.2	6	1408.171	-1153.124
2002	352	12	18	24	2nd	5.29	<0.0	0.2	7	1408.983	-1152.995
2002	352	12	18	24	2nd	5.33	<0.0	0.2	8	1409.794	-1152.866
2002	352	12	18	24	2nd	5.38	<0.0	0.2	9	1410.606	-1152.737
2002	352	12	18	24	2nd	5.14	<0.0	0.2	10	1406.401	-1152.458
2002	352	12	18	24	2nd	5.17	<0.0	0.2	11	1407.212	-1152.329
2002	352	12	18	24	2nd	5.19	<0.0	0.2	12	1408.024	-1152.2
2002	352	12	18	24	2nd	5.21	<0.0	0.2	13	1408.835	-1152.07 l
2002	352	12	18	24	2nd	5.24	<0.0	0.2	14	1409.647	-1151.941
2002	30	ï	30	24	2nd	5.10	<0.0	0.2	15	1410.458	-1151.812
2002	352	12	18	24	2nd	5.10	<0.0	0.2	16	1406.254	-1151.533
2002	352	12	18	24	2nd	5.13	<0.0	0.2	17	1407.065	-1151.404
2002	352	12	18	24	2nd	5.17	<0.0	0.2	18	1407.877	-1151.275
2002	30	ï	30	24	2nd	5.24	<0.0	0.2	19	1408.688	-1151.146
2002	30	i	30	24	2nd 2nd	5.13	<0.0	0.2	20	1409.5	-1151.017
2002	30	1	30	24	2nd	5.03	<0.0	0.2	21	1410.311	-1150.888
2003	239	8	27	24	2nd	5.65	<0.0>	0.2	ι	1408.318	-1154.049
2003	239	8	27	24	2nd	5.94	<0.0	0.2	2	1409.13	-1153.92
2003	239	8	27	24	2nd	6.21	<0.0	0.2	3	1409.941	-1153.791
2003	239	8	27	24	2nd	6.48	<0.0	0.2	4	1410.753	-1153.661
2003	239	8	27	24	2nd	5.68	<0.0	0.2	5	1407.359	-1153.254
2003	239	8	27	24	2nd	5.95	<0.0	0.2	6	1408.171	-1153.124
2003	239	8	27	24	2nd	6.22	<0.0	0.2	7	1408.983	-1152.995
2003	239	8	27	24	2nd	6.46	<0.0	0.2	8	1409.794	-1152.866
2003	279	10	6	24	2nd	6.55	<0.0	0.2	9	1410.606	-1152.737
2003	239	8	27	24	2nd	5.69	<0.0	0.2	10	1406.401	-1152.458
2003	239	8	27	24	2nd	5.96	<0.0	0.2	11	1407.212	-1152.329
2003	239	8	27	24	2nd	6.21	<0.0	0.2	12	1408.024	-1152.2
2003	239	8	27	24	2nd	6.45	<0.0	0.2	13	1408.835	-1152.071
2003	239	8	27	24	2nd	6.66	<0.0	0.2	14	1409.647	-1151.941
2003		10						0.2			
	279	8	6 27	24 24	2nd	6.80	<0.0	0.2	15	1410.458	-1151.812
2003	239				2nd	5.94	<0.0	0.2	16	1406.254	-1151.533
2003	239	8	27	24	2nd	6.19	<0.0		17	1407.065	-1151.404
2003	239	8	27	24	2nd	6.44	<0.0	0.2	18	1407.877	-1151.275
2003	239	8	27	24	2nd	6.65	<0.0	0.2	19	1408.688	-1151.146
2003	239	8	27	24	2nd	6.84	<0.0	0.2	20	1409.5	-1151.017
2003	239	8	27	24	2nd	7.03	<0.0	0.2	21	1410.311	-1150.888
2003	239	8	27	24	2nd	6.39	<0.0	0.2	22	1406.918	-1150.48
2003	239	8	27	24	2nd	6.61	<0.0	0.2	23	1407.73	-1150.351
2003	239	8	27	24	2nd	6.80	<0.0	0.2	24	1408.541	-1150.221
2003	239	8	27	24	2nd	6.98	<0.0	0.2	25	1409.352	-1150.092
2003	239	8	27	24	2nd	7.16	<0.0	0.2	26	1410.164	-1149.963
2003	239	8	27	24	2nd	6.55	<0.0	0.2	27	1406.771	-1149.555
2003	239	8	27	24	2nd	6.74	<0.0	0.2	28	1407.582	-1149.426
2003	239	8	27	24	2nd	6.92	<0.0	0.2	29	1408.394	-1149.297
2003	239	8	27	24	2nd	7.08	<0.0	0.2	30	1409.205	-1149.168
2003	239	8	27	24	2nd	7.25	<0.0	0.2	31	1410.016	-1149.038
2003	239	8	27	24	2nd	6.70	<0.0	0.2	32	1406.624	-1148.631
2003	239	8	27	24	2nd	6.87	<0.0	0.2	33	1407.435	-1148.50 t
2003	239	8	27	24	2nd	7.02	<0.0	0.2	34	1408.247	-1148.372
2003	239	8	27	24	2nd	7.16	<0.0	0.2	35	1409.058	-1148.243
2003	279	10	6	24	2nd	7.08	<0.0	0.2	36	1409.869	-1148.11 <i>4</i>
2003	239	10	6	24	2nd	6.84	<0.0	0.2	37	1406.477	-1147.706
2003	279	10	6	24	2nd	6.89	<0.0	0.2	38	1407.288	-1147.577
2003	279	10	6	24	2nd	6.78	<0.0>	0.2	39	1408.099	-1147.448
2003	279	10	6	24	2nd	6.60	<0.0	0.2	40	1408.911	-1147.319
2003	279	10	6	24	2nd	6.37	0.0	0.2	41	1409.722	-1147.189
2003	279	10	6	24	2nd	5.65	0.0	0.2	42	1410.385	-1146.136
2003	238	8	26	24	2nd	5.53	<0.0	0.2	43	1410.238	-1145.211
2003	238	8	26	24	2nd	5.73	<0.0	0.2	44	1411.049	-1145.082
2003	279	10	6	24	2nd	6.07	0.02	0.2	45	1404.414	-1145.19
2003	279	10	6	24	2nd	5.93	0.01	0.2	46	1405.225	-1145.061
2003	279	10	6	24	2nd	5.79	0.01	0.2	47	1406.036	-1144.933
2003	279	10	6	24	2nd	5.66	0.00	0.2	48	1406.847	-1144.804
2003	279	10	6	24	2nd	5.52	<0.0	0.2	49	1407.658	-1144.675
2003	238	8	26	24	2nd 2nd	5.56	<0.0	0.2	50	1410.091	-1144.073
2003	238	8	26	24	2nd 2nd	5.48	<0.0	0.2	51	1410.091	-1144.40/

TABLE 6-20 CONTRIBUTION OF CRYSTAL RIVER UNITS 4 AND 5 TO TIME PERIODS PREDICTED TO EXCEED THE 24-HOUR ALLOWABLE SO, INCREMENT AT THE CHASSAHOWITZKA NWA PSD CLASS I AREA

Hour Julian Ending				Maxim Concentratio				Chassahowitzka N' Receptor ' Lambert Conformal Co			
Year	Day	Month	Day	for Period	Rank	Modeled Sources	Units 4 & 5 b	(μg/m³)		x (km)	y (km)
2003	238	8	26	24	2nd	5.37	<0.0	0.2	52	1411.712	-1144.028
2003	279	10	6	24	2nd	5.90	0.0	0.2	53	1403.457	-1144,395
2003	279	10	6	24	2nd	5.75	0.0	0.2	54	1404.268	-1144.266
2003	279	10	6	24	2nd	5.61	0.0	0.2	55	1405.078	-1144.137
2003	279	10	6	24	2nd	5.47	0.0	0.2	56	1405.889	-1144.008
2003	279	10	6	24	2nd	5.33	0.0	0.2	57	1406.7	-1143.879
2003	238	8	26	24	2nd	5.21	<0.0	0.2	58	1407.511	-1143.75
2003	238	8	26	24	2nd	5.11	<0.0	0.2	59	1411.565	-1143.104
2003	279	10	6	24	2nd	5.75	0.1	0.2	60	1402.499	-1143.599
2003	279	10	6	24	2nd	5.59	0.0	0.2	61	1403.31	-1143.47
2003	279	10	6	24	2nd	5.43	0.0	0.2	62	1404.121	-1143341
2003	279	10	6	24	2nd	5.29	0.0	0.2	63	1404.931	-1143.213
2003	279	10	6	24	2nd	5.16	0.0	0.2	64	1405,742	-1143.084
2003	238	8	26	24	2nd	5.08	<0.0	0.2	65	1406.553	-1142.955
2003	238	8	26	24	2nd	5.10	<0.0	0.2	66	1407.364	-1142.826
2003	279	10	6	24	2nd	5.81	0.1	0.2	67	1400.731	-1142.931
2003	279	10	6	24	2nd	5.62	0.1	0.2	68	1401.542	-1142.803
2003	279	10	6	24	2nd	5.46	0.1	0.2	69	1402.353	-1142.674
2003	279	10	6	24	2nd	5.30	0.0	0.2	70	1403.163	-1142.546
2003	279	10	6	24	2nd	5.16	0.0	0.2	71	1403.974	-1142.417
2003	279	10	6	24	2nd	5.03	0.0	0.2	72	1404.785	-1142.288
2003	279	10	6	24	2nd	5.21	0.1	0.2	76	1402.206	-1141.75
2003	279	10	6	24	2nd	5.06	0.1	0.2	77	1403.017	-1141.621
2003	238	8	26	24	3rd	5.04	<0.0	0.2	4	1408.318	-1154.049
2003	238	8	26	24	3rd	5.03	<0.0	0.2	9	1409.13	-1153.92
2003	238	8	26	24	3rd	5.02	<0.0	0.2	15	1409.941	-1153.791
2003	238	8	26	24	3rd	5.00	<0.0	0.2	21	1410.753	-1153.661
2003	238	8	26	24	3rd	5.06	<0.0	0.2	40	1407.359	-1153.254
2003	238	8	26	24	3rd	5.27	<0.0	0.2	41	1408.171	-1153.124
2003	238	8	26	24	3rd	5.39	<0.0	0.2	42	1408.983	-1152.995
2003	279	10	6	24	3rd	5.44	0.0	0.2	43	1409.794	-1152.866
2003	279	10	6	24	3rd	5.33	0.0	0.2	44	1410.606	-1152.737
2003	238	8	26	24	3rd	5.04	<0.0	0.2	48	1406.401	-1152.458
2003	238	8	26	24	3rd	5.17	<0.0	0.2	49	1407.212	-1152.329
2003	279	10	6	24	3rd	5.12	0.0	0.2	50	1408.024	-1152.2
2003	238	8	26	24	3rd	5.00	<0.0	0.2	56	1408.835	-1152,071
2003	238	8	26	24	3rd	5.10	<0.0	0.2	57	1409.647	-1151.941
2003	279	10	6	24	3rd	5.19	0.0	0.2	58	1410.458	-1151.812
2003	238	8	26	24	3rd	5.01	<0.0	0.2	64	1406.254	-1151.533
2003	279	10	6	24	3rd	5.04	0.0	0.2	65	1407.065	-1151.404

Based on the CALPUFF model using 3 years of CALMET meteorological data for 2001, 2002, and 2003, 4-km Florida domain.

b Includes change in SO₂ impacts for Units 4 and 5 with proposed SO₂ emissions and new stack minus the SO₂ impacts from Units 1 and 2 with baseline SO₂ emissions.

^c Based on 113 National Park Service receptors for Chassahowitzka NWA

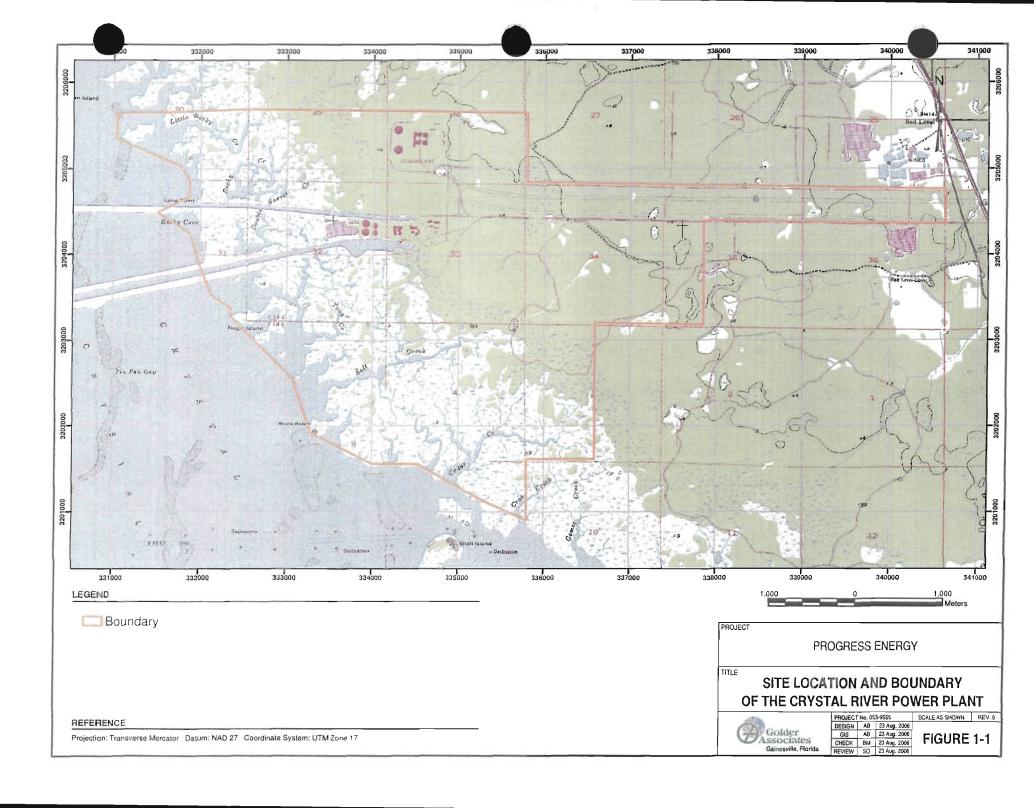
TABLE 7-1 SENSITIVITY GROUPINGS OF VEGETATION BASED ON VISIBLE INJURY AT DIFFERENT SO2 EXPOSURES A

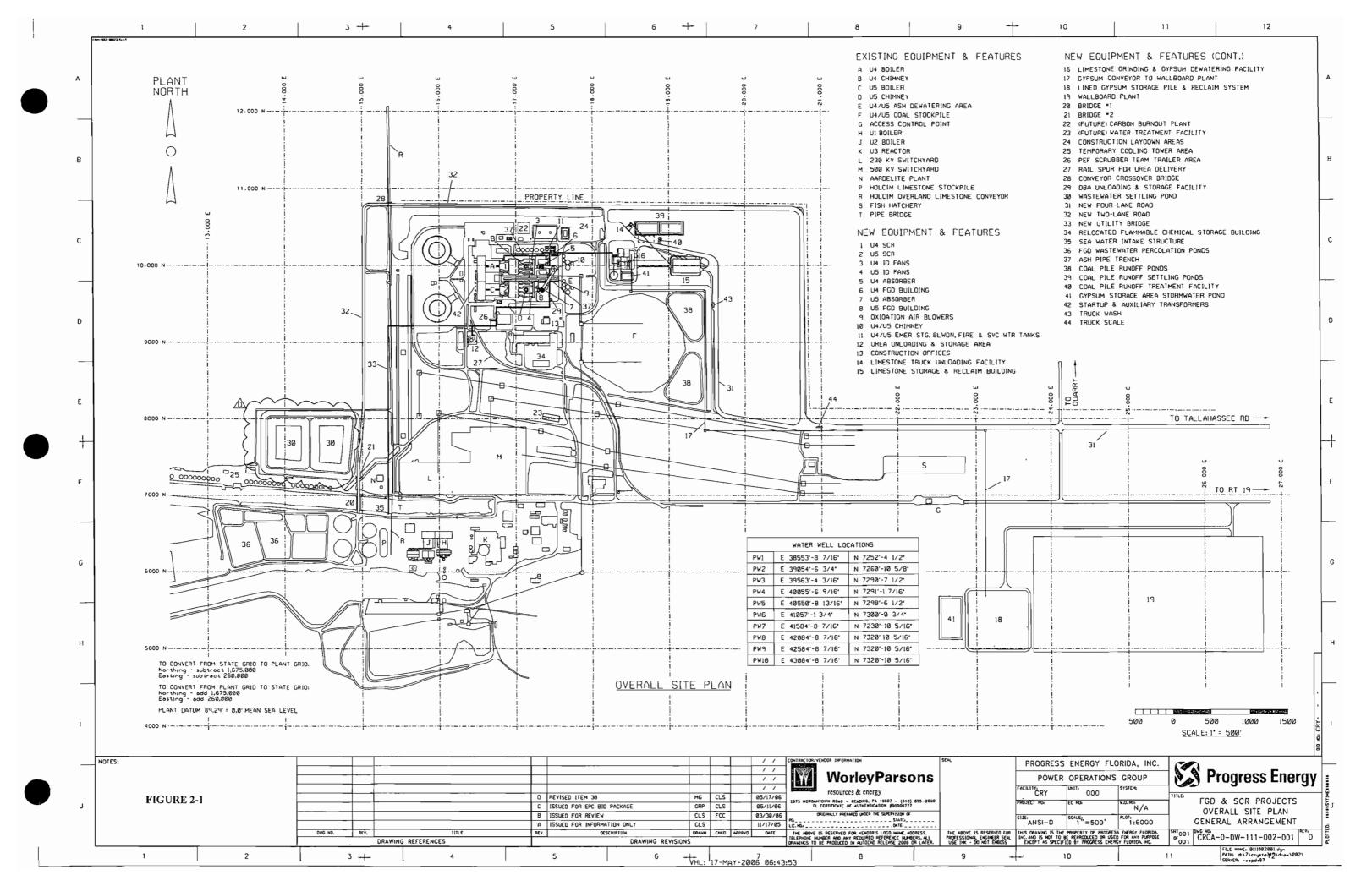
Sensitivity Grouping	SO ₂ Cond	centration	Plants		
	1-Hour	3-Hour	_		
Sensitive	1,310 - 2,620 μG/m ³	790 - 1,570 μG/m ³	Ragweeds		
	(0.5 - 1.0 ppm)	(0.3 - 0.6 ppm)	Legumes		
			Blackberry		
			Southern pines		
			Red and black oaks		
			White ash		
			Sumacs		
Intermediate	2,620 - 5,240 μG/m ³	$1,570 - 2,100 \mu G/m^3$	Maples		
	(1.0 - 2.0 ppm)	(0.6 - 0.8 ppm)	Locust		
			Sweetgum		
			Cherry		
			Elms		
			Tuliptree		
			Many crop and garden species		
Resistant	$>5,240 \mu G/m^3$	$>2,100 \mu G/m^3$	White oaks		
	(>2.0 ppm)	(>0.8 ppm)	Potato		
			Upland cotton		
			Corn		
			Dogwood		
			Peach		

Based on observations over a 20-year period of visible injury occurring on over 120 species growing in the vicinities of coal-fired power plants in the southeastern United States.

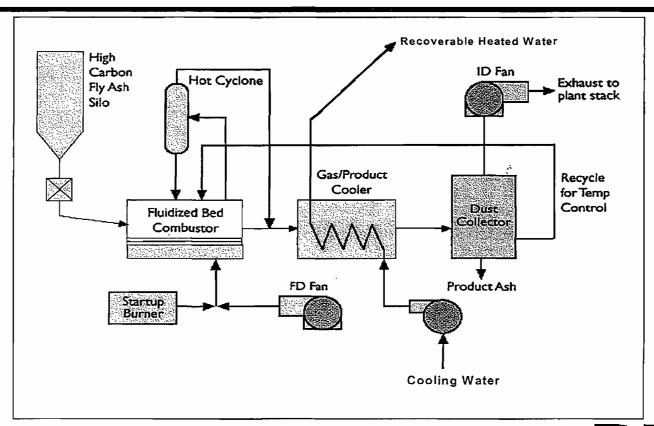
Source: EPA, 1982a.

TABLE 7-2

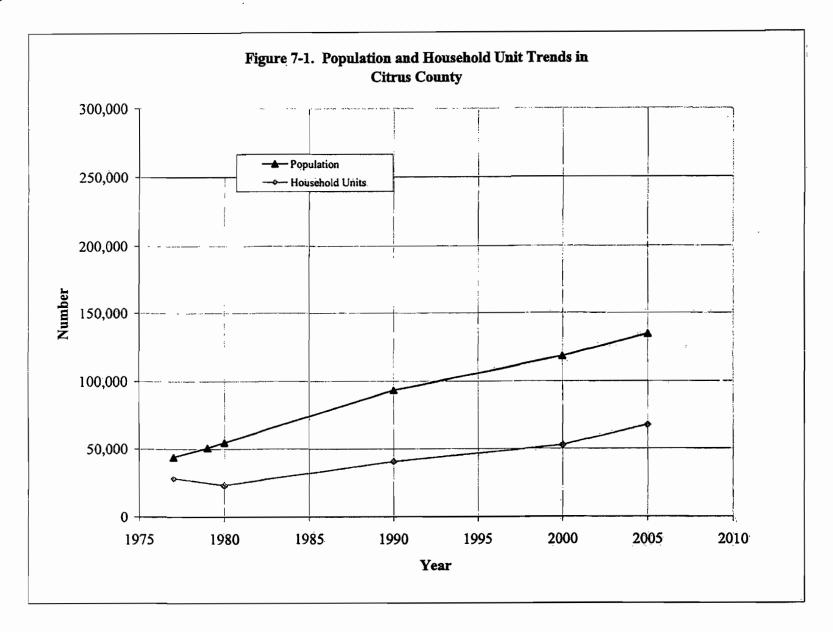

EXAMPLES OF REPORTED EFFECTS OF AIR POLLUTANTS AT CONCENTRATIONS BELOW NATIONAL SECONDARY AMBIENT AIR QUALITY STANDARDS


Pollutant	Reported Effect	Concentration (µg/m³)	Exposure
Sulfur Dioxide ^a	Respiratory stress in guinea pigs	427 to 854	1 hour
	Respiratory stress in rats	267	7 hours/day; 5 day/week for 10 weeks
	Decreased abundance in deer mice	13 to 157	continually for 5 months
Nitrogen Dioxideb,c	Respiratory stress in mice	1,917	3 hours
	Respiratory stress in guinea pigs	96 to 958	8 hours/day for 122 days
Particulates ^a	Respiratory stress, reduced respiratory disease defenses	120 PbO ₃	continually for 2 months
	Decreased respiratory disease defenses in rats, same with hamsters	100 NiCl ₂	2 hours

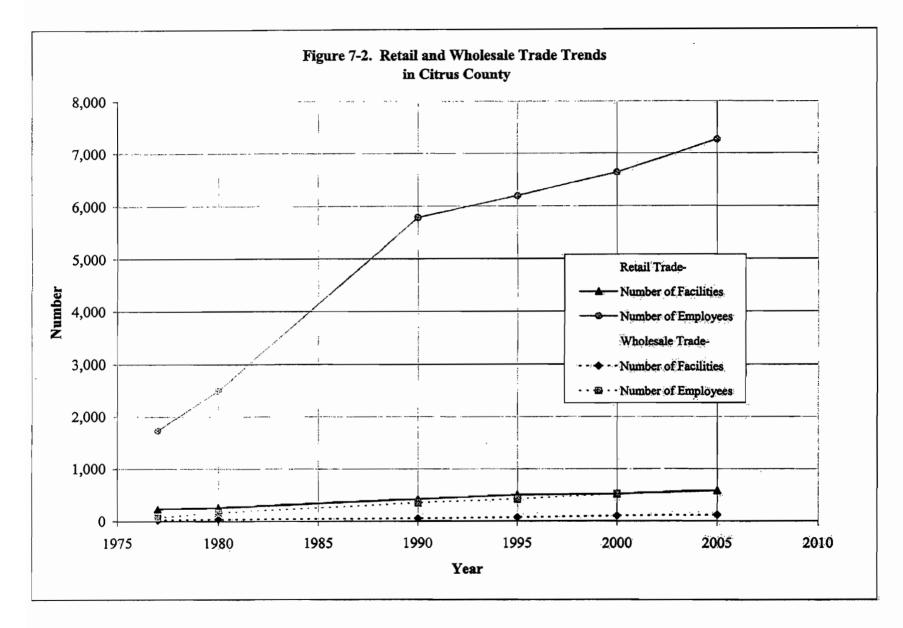
Sources: a Newman and Schreiber, 1988.

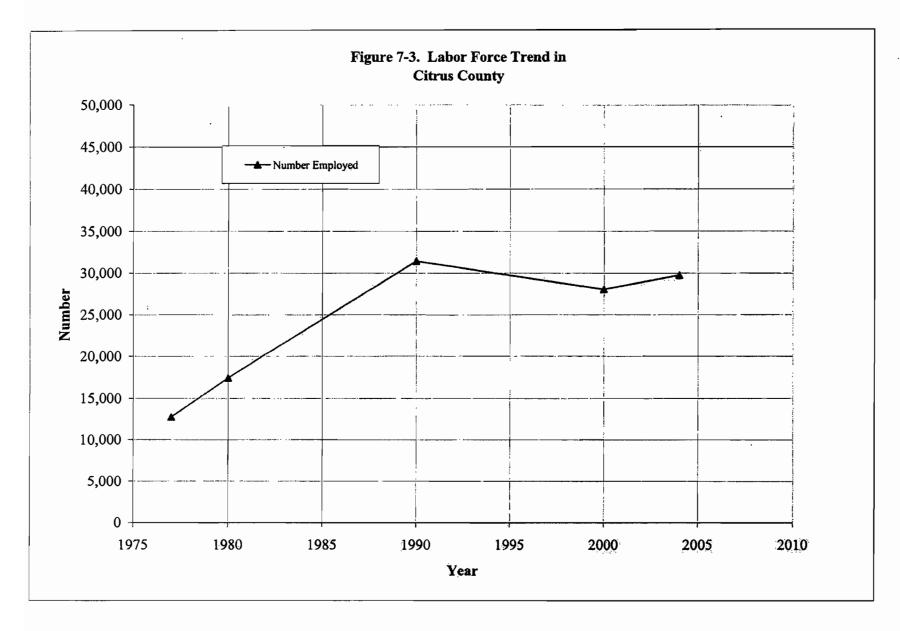

^b Gardner and Graham, 1976.

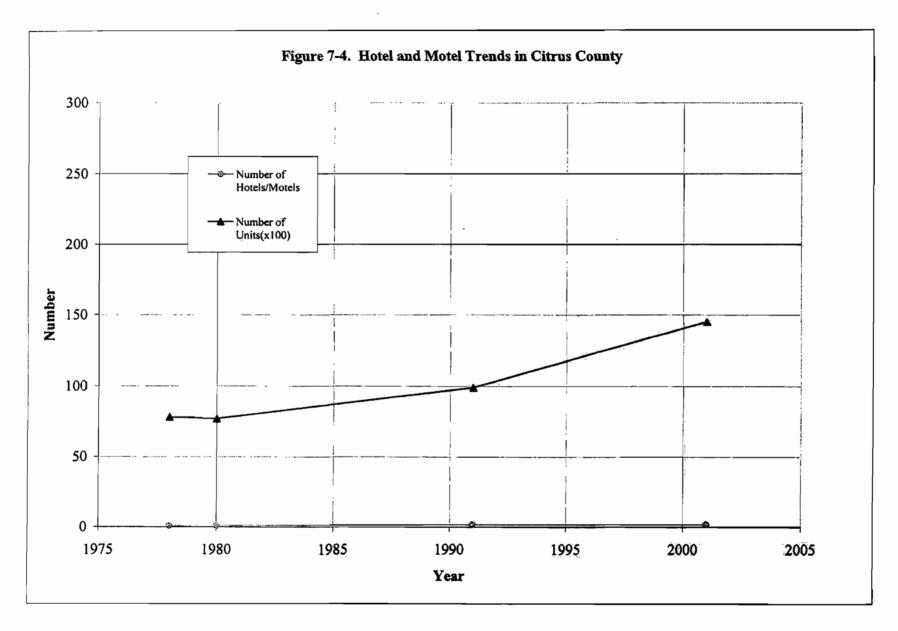
^c Trzeciak et al., 1977.

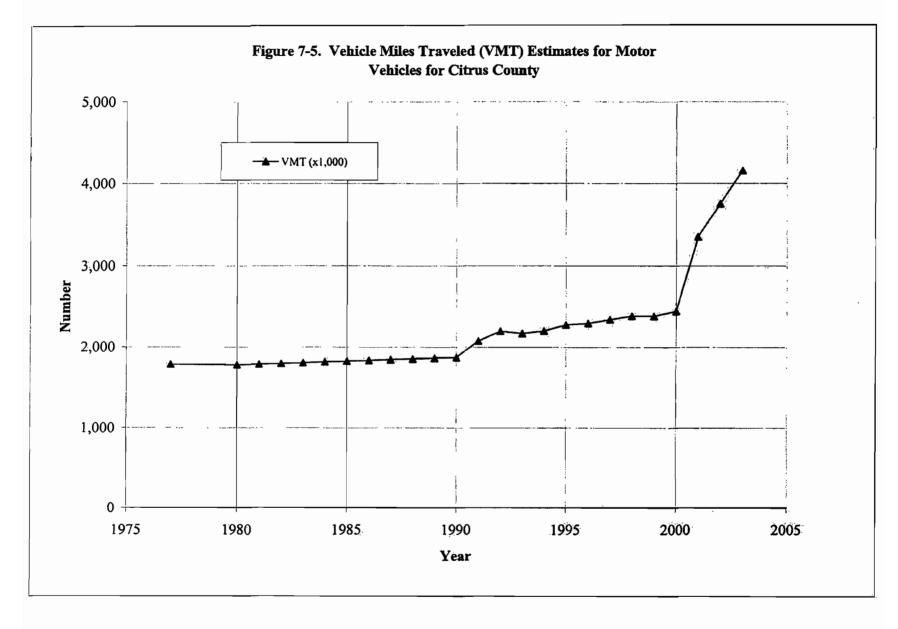


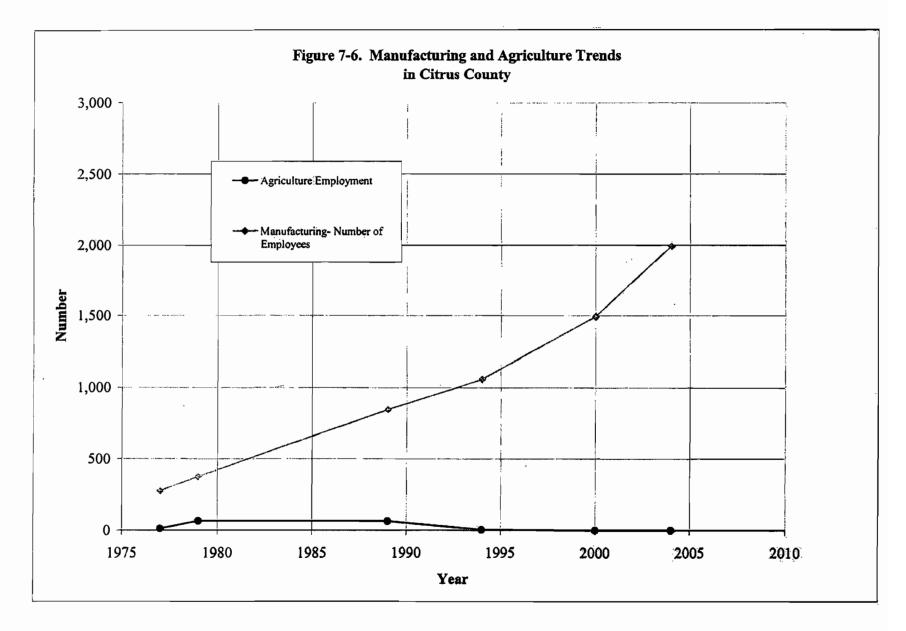
Carbon Burn-Out Schematic

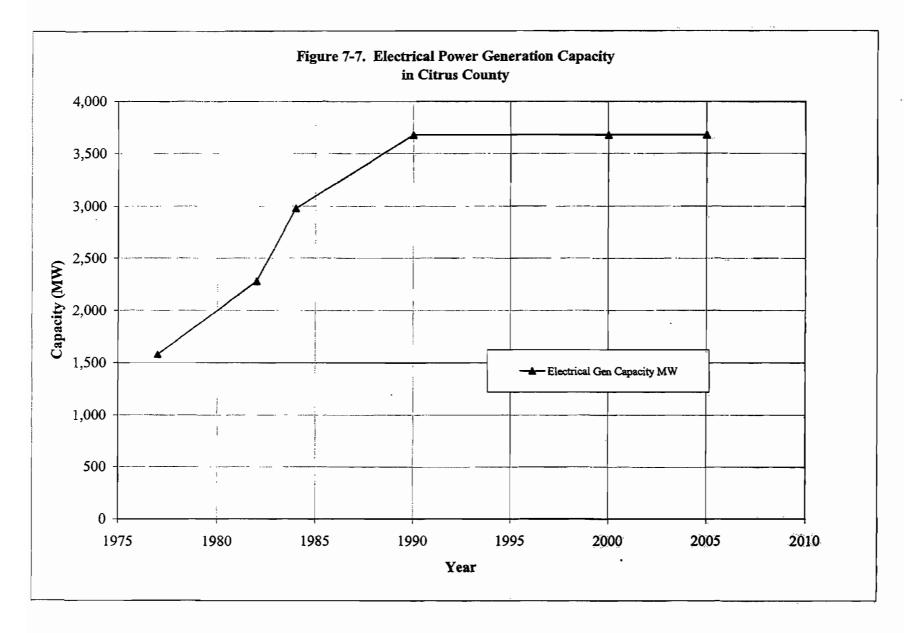


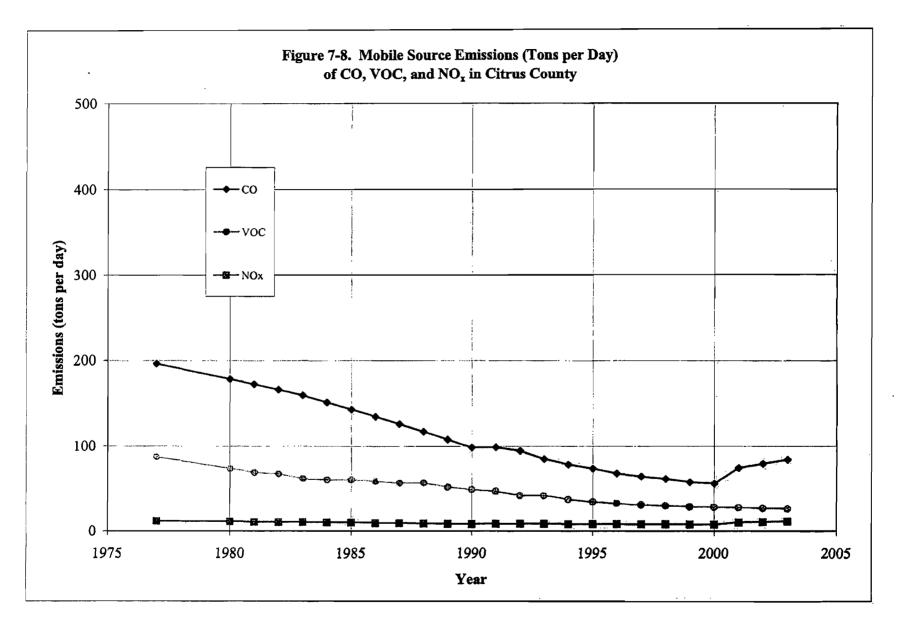


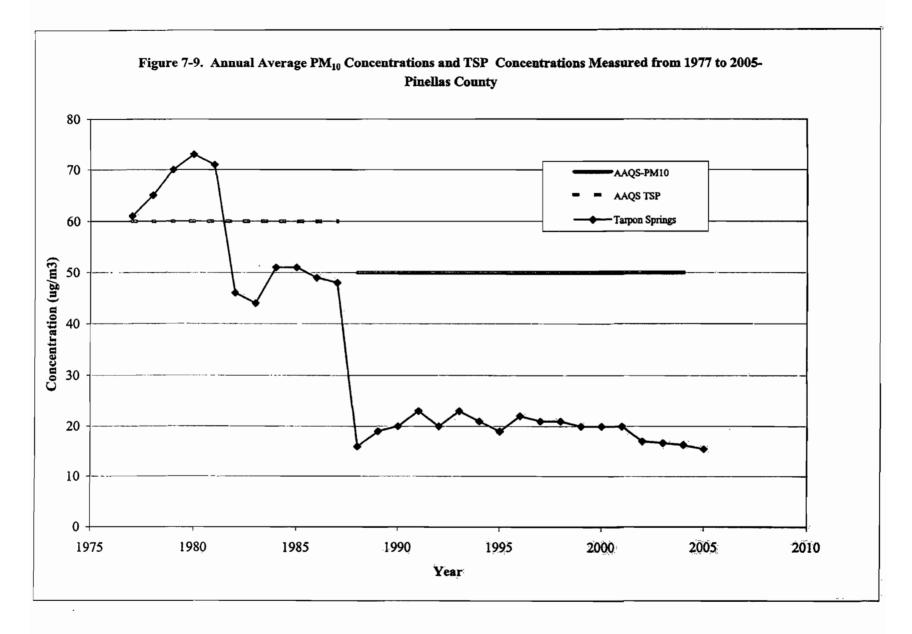


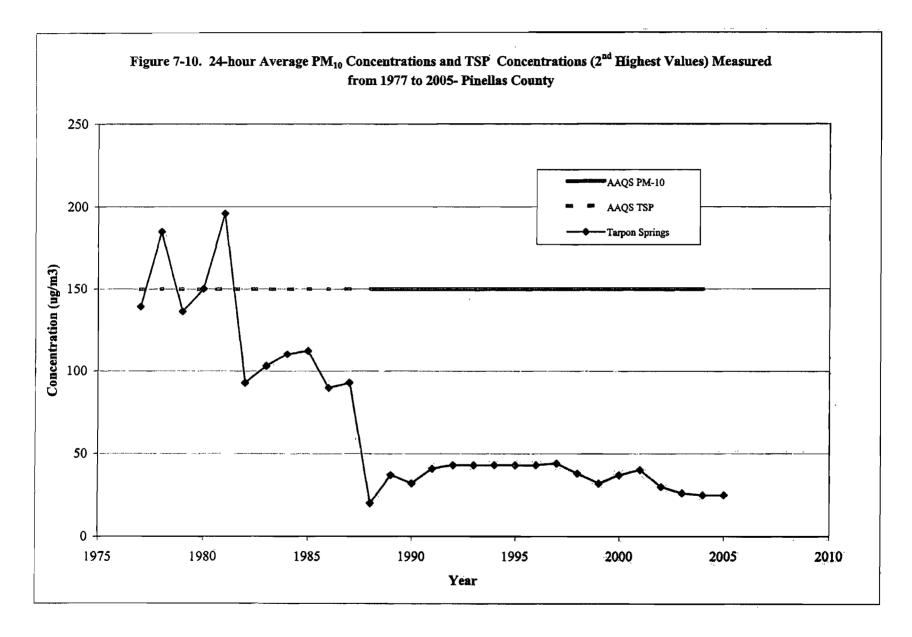


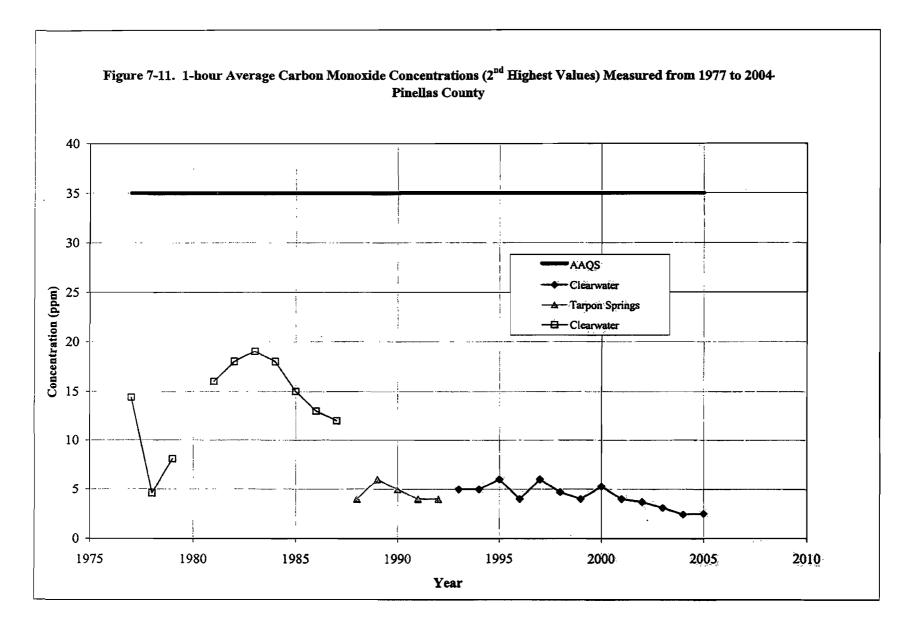


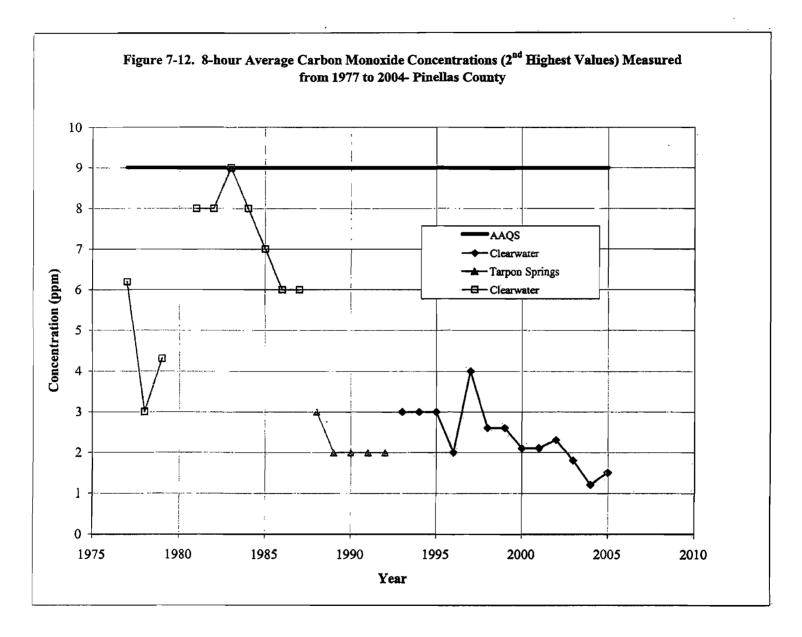


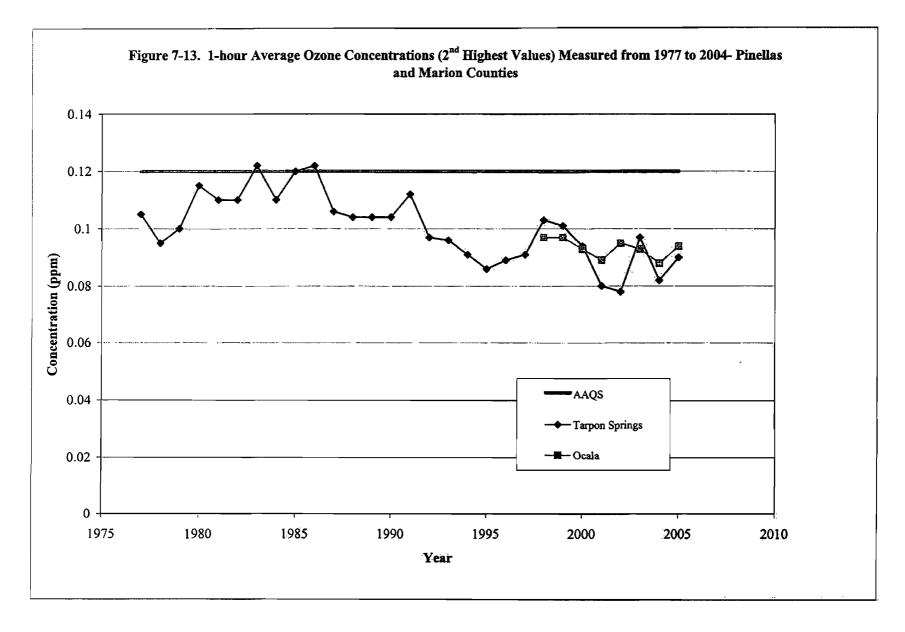


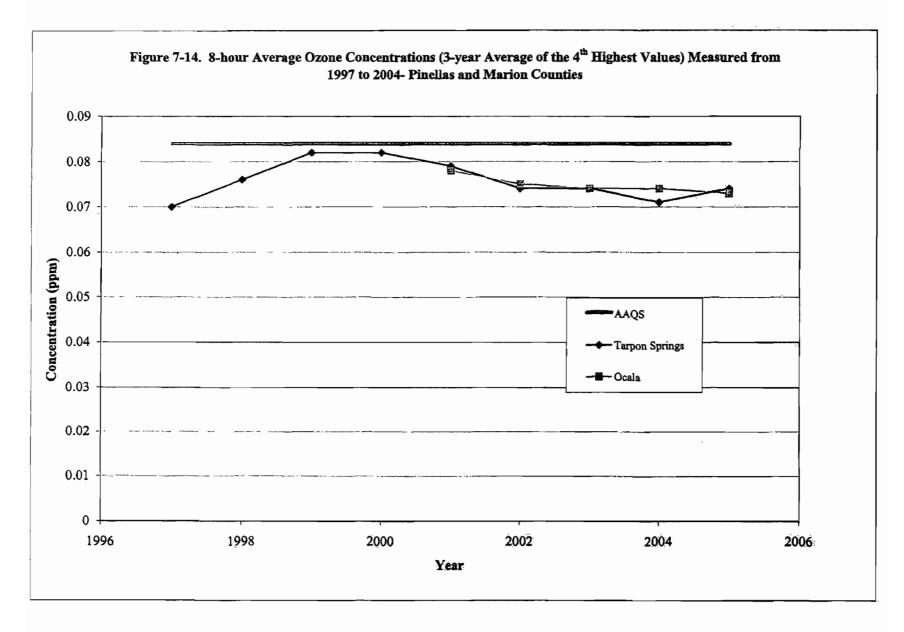












Department of RECEIVED Environmental Protection SEP 05 2006

Division of Air Resource Management

APPLICATION FOR AIR PERMIT - LONG FORM OF AIR REGULATION

I. APPLICATION INFORMATION

Air Construction Permit – Use this form to apply for an air construction permit for a proposed project:

- subject to prevention of significant deterioration (PSD) review, nonattainment area (NAA) new source review, or maximum achievable control technology (MACT) review; or
- where the applicant proposes to assume a restriction on the potential emissions of one or more pollutants to escape a federal program requirement such as PSD review, NAA new source review, Title V, or MACT; or
- at an existing federally enforceable state air operation permit (FESOP) or Title V permitted facility.

Air Operation Permit – Use this form to apply for:

- an initial federally enforceable state air operation permit (FESOP); or
- an initial/revised/renewal Title V air operation permit.

Air Construction Permit & Revised/Renewal Title V Air Operation Permit (Concurrent Processing Option)

— Use this form to apply for both an air construction permit and a revised or renewal Title V air operation permit incorporating the proposed project.

To ensure accuracy, please see form instructions.

<u>Id</u>	<u>entification of Facility</u>						
1.	Facility Owner/Company Name: PROGRES	S ENERGY FLORID	A, INC.				
2.	Site Name: CRYSTAL RIVER POWER PLAN	Г					
3.	Facility Identification Number: 0170004						
4.	Facility Location: Street Address or Other Locator: NORTH OF	CRYSTAL RIVER,	WEST OF U.S. 19				
	City: CRYSTAL RIVER County: C	ITRUS	Zip Code: 34428				
5.	Relocatable Facility? ☐ Yes ☐ No	6. Existing Title ⊠ Yes	V Permitted Facility? ☐ No				
A	oplication Contact		-				
1.	Application Contact Name: DAVE MEYER, S	SENIOR ENVIRONM	ENTAL SPECIALIST				
2.	Application Contact Mailing Address Organization/Firm: PROGRESS ENERGY FL	ORIDA					
	Street Address: 100 CENTRAL AVE CX1	IB	4				
	City: ST. PETERSBURG Sta	ate: FL	Zip Code: 33701				
3.	Application Contact Telephone Numbers						
	Telephone: (727) 820-5295 ext.	Fax: (727) 820-	-5229				
4.	Application Contact Email Address: DAVE.	MEYER@PGNMAIL.	СОМ				
A	Application Processing Information (DEP Use)						
1.	Date of Receipt of Application:						
2.	Project Number(s):						
3.	PSD Number (if applicable):						
4.	Siting Number (if applicable):						

Purpose of Application

This application for air permit is submitted to obtain: (Check one) Air Construction Permit Air construction permit. Air Operation Permit ☐ Initial Title V air operation permit. ☐ Title V air operation permit revision. Title V air operation permit renewal. Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is required. Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is not required. Air Construction Permit and Revised/Renewal Title V Air Operation Permit (Concurrent Processing) Air construction permit and Title V permit revision, incorporating the proposed project. Air construction permit and Title V permit renewal, incorporating the proposed project. Note: By checking one of the above two boxes, you, the applicant, are requesting concurrent processing pursuant to Rule 62-213.405, F.A.C. In such case, you must also check the following box: ☐ I hereby request that the department waive the processing time

Application Comment

Progress Energy Florida (PEF) is currently considering upgrades to further improve the environmental performance of existing Units 4 and 5 (EU Nos. 004 and 003, respectively) by installing new/upgraded air emission control devices. An air construction application has been submitted to address the installation of selective catalytic reduction (SCR) systems on Units 4 and 5, as well as the installation of an alkali injection system.

requirements of the air construction permit to accommodate the processing time frames of the Title V air operation permit.

This application requests authorization of additional upgrades for each unit including Installation of low NOx burners, flue gas desulfurization (FGD) systems, alkali injection systems, upgrades to the existing ESPs and a carbon burn out (CBOTM) system. In addition, PEF is requesting the flexibility to fire additional fuel blends (i.e., sub-bituminous coal and petroleum coke) and revise the current heat input value of each boller, as referenced in Title V Air Operation Permit 0170004-011-AV, from 6,665 MMBtu/hr to 7,200 MMBtu/hr.

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

1. Owner/Authorized Representative Name:

BERNIE CUMBIE, PLANT MANAGER

2. Owner/Authorized Representative Mailing Address...

Organization/Firm: PROGRESS ENERGY

Street Address: 100 CENTRAL AVE CN77

City: ST PETERSBURG State: FLORIDA Zip Code: **33701**

3. Owner/Authorized Representative Telephone Numbers...

Telephone: (352) 563-4484 ext. (352) 563-4496

4. Owner/Authorized Representative Email Address: BERNIE.CUMBIE@PGNMAIL.COM

5. Owner/Authorized Representative Statement:

I, the undersigned, am the owner or authorized representative of the facility addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other requirements identified in this application to which the facility is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit.

ignature Date

DEP Form No. 62-210.900(1) - Form

Scope of Application

Emissions		Air	Air			
Unit ID	Description of Emissions Unit	Permit	Permit			
Number	Type Type					
004	FFSG, Unit 4		NA			
003	FFSG, Unit 5		NA			
016	Material Handling Activities		NA			
	CBO Feed Fly Ash Silo		NA			
	CBO Product Fly Ash Storage Dome		NA			
	CBO Product Fly Ash Loadout Storage Silo		NA			
	CBO Product Fly Ash Fugitives		NA			
	CBO Fluidized Bed Combustor (FBC)	-	NA			
			P. (4)			

Application Processing Fee

Check one:
☐ Attached - Amount: \$ 7,500 ☐ Not Applicable

Application Responsible Official Certification

Complete if applying for an initial/revised/renewal Title V permit or concurrent processing of an air construction permit and a revised/renewal Title V permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

1.	. Application Responsible Official Name:							
2.	Application Responsible Official Qualification (Check one or more of the following options, as applicable):							
	For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C.							
	 For a partnership or sole proprietorship, a general partner or the proprietor, respectively. For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. 							
_	The designated representative at an Acid Rain source.							
3.	Application Responsible Official Mailing Address Organization/Firm:							
	Street Address:							
	City: State: Zip Code:							
4.	Application Responsible Official Telephone Numbers Telephone: () - ext. Fax: () -							
5.	Application Responsible Official Email Address:							
6.	Application Responsible Official Certification:							
	I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other applicable requirements identified in this application to which the Title V source is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, I certify that the facility and each emissions unit are in compliance with all applicable requirements to which they are subject, except as identified in compliance plan(s) submitted with this application.							
	Signature Date							

T	ofessional Engineer Certification
	Professional Engineer Name: SCOTT OSBOURN
	Registration Number: 57557
	Professional Engineer Mailing Address
	Organization/Firm: Golder Associates Inc.**
	Street Address: 5100 West Lemon St., Suite 114
	City: Tampa State: FL Zip Code: 33609
	Professional Engineer Telephone Numbers
	Telephone: (813) 287-1717 ext.211 Fax: (813) 287-1716
	Professional Engineer Email Address: SOSBOURN@GOLDER.COM
	Professional Engineer Statement:
	I, the undersigned, hereby certify, except as particularly noted herein*, that:
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.
	(4) If the purpose of this application is to obtain an air construction permit (check here ⊠, if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here □, if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here , if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.
	Signature Date Date
	(seal) 40. 67867

DEP Form No. 62-210.900(1) - Form

053-9555 8/31/2006 Effective: 02/02/06 6

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility	L	ocation	and	Type
-----------------	---	---------	-----	-------------

1.	1. Facility UTM Coordinates Zone 17 East (km) 334.3 North (km) 3204.5			2. Facility Latitude/Longitude Latitude (DD/MM/SS) 28/57/34 Longitude (DD/MM/SS) 82/42/01				
3.	Governmental Facility Code:	4. Facility Status Code:	5.	Facility Major Group SIC Code: 49	6. Facility SIC(s):			
7.	Facility Comment:		•					

Facility Contact

1.	Facility Contact Name: DAVE MEYER, SENIOR ENVIRONMENTAL SPECIALIST
2.	Facility Contact Mailing Address
	Organization/Firm: PROGRESS ENERGY
	Street Address: 100 CENTRAL AVE CX1B
	City: ST PETERSBURG State: FLORIDA Zip Code: 33701
3.	Facility Contact Telephone Numbers:
	Telephone: (727) 820-5295 ext. Fax: (727) 820-5229
4.	Facility Contact Email Address: DAVE.MEYER@PGNMAIL.COM

Facility Primary Responsible Official

Complete if an "application responsible official" is identified in Section I. that is not the facility "primary responsible official."

	* * * * *						
1.	Facility Primary Responsible	Official Name:					
2.	Facility Primary Responsible Organization/Firm: Street Address:	Official Mailing A	Address				
	birect radicss.						
	City:	State:			Zip	Code:	
3.	Facility Primary Responsible	Official Telephone	e Numbers	S			
	Telephone: () -	ext.	Fax:	()	-	
4.	Facility Primary Responsible	Official Email Ad	dress:				

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06 7

053-9555

8/3 1/2006

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

1.	☐ Small Business Stationary Source	Unknown
2.	☐ Synthetic Non-Title V Source	-
3.	☐ Title V Source	
4.	Major Source of Air Pollutants, Other than Hazardous A	ir Pollutants (HAPs)
5.	Synthetic Minor Source of Air Pollutants, Other than HA	Ps
6.	☐ Major Source of Hazardous Air Pollutants (HAPs)	
7.	☐ Synthetic Minor Source of HAPs	
8.	☐ One or More Emissions Units Subject to NSPS (40 CFR	Part 60)
9.	☐ One or More Emissions Units Subject to Emission Guide	elines (40 CFR Part 60)
10.	One or More Emissions Units Subject to NESHAP (40 C	CFR Part 61 or Part 63)
11.	☐ Title V Source Solely by EPA Designation (40 CFR 70.3	(a)(5))
12.	Facility Regulatory Classifications Comment:	
Uni	its are subject to the CAMR rule in 2010.	

List of Pollutants Emitted by Facility

Pollutant Emitted	2. Pollutant Classification	3. Emissions Cap [Y or N]?
PM	A	N N
r IVI	^	
PM10	A	N
SO2	A	N
со	A	N
NOx	A	N
voc	A	N
SAM	Α	N
		_

B. EMISSIONS CAPS

Facility-Wide or Multi-Unit Emissions Caps

1. Pollutant Subject to Emissions Cap	2. Facility Wide Cap [Y or N]? (all units)	3. Emissions Unit ID No.s Under Cap (if not all units)	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
	_				
			-		
		-			-
					-
					-

7.	Facility-	Wide or I	Multi-Unit	Emissions C	Cap C	Comment:

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	Facility Plot Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-1 Previously Submitted, Date:
2.	Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figures 2-1 & 2-2 Previously Submitted, Date:
3.	Precautions to Prevent Emissions of Unconfined Particulate Matter: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Section 2.3 Previously Submitted, Date:
Ad	ditional Requirements for Air Construction Permit Applications
1.	Area Map Showing Facility Location: ☐ Attached, Document ID: ☐ Not Applicable (existing permitted facility)
2.	Description of Proposed Construction or Modification: Attached, Document ID: See Report, Section 1.0
3.	Rule Applicability Analysis: ☑ Attached, Document ID: See Report, Section 3.0
4.	List of Exempt Emissions Units (Rule 62-210.300(3)(a) or (b)1., F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable (no exempt units at facility)
5.	Fugitive Emissions Identification (Rule 62-212.400(2), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
6.	Preconstruction Air Quality Monitoring and Analysis (Rule 62-212.400(5)(f), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
7.	Ambient Impact Analysis (Rule 62-212.400(5)(d), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
8.	Air Quality Impact since 1977 (Rule 62-212.400(5)(h)5., F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
9.	Additional Impact Analyses (Rules 62-212.400(5)(e)1. and 62-212.500(4)(e), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
10.	Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable

DEP Form No. 62-210.900(1) – Form 053-9555 Effective: 02/02/06 11 8/31/2006

Additional Requirements for FESOP Applications 1. List of Exempt Emissions Units (Rule 62-210.300(3)(a) or (b)1., F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable (no exempt units at facility) Additional Requirements for Title V Air Operation Permit Applications 1. List of Insignificant Activities (Required for initial/renewal applications only): ☐ Attached, Document ID: ☐ Not Applicable (revision application) 2. Identification of Applicable Requirements (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought): ☐ Attached, Document ID: Not Applicable (revision application with no change in applicable requirements) 3. Compliance Report and Plan (Required for all initial/revision/renewal applications): ☐ Attached, Document ID:_ Note: A compliance plan must be submitted for each emissions unit that is not in compliance with all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing. 4. List of Equipment/Activities Regulated under Title VI (If applicable, required for initial/renewal applications only): ☐ Attached, Document ID: ☐ Equipment/Activities On site but Not Required to be Individually Listed ☐ Not Applicable 5. Verification of Risk Management Plan Submission to EPA (If applicable, required for initial/renewal applications only): ☐ Attached, Document ID:____ ☐ Not Applicable 6. Requested Changes to Current Title V Air Operation Permit: ☐ Attached, Document ID: ☐ Not Applicable Additional Requirements Comment

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form 053-9555 Effective: 02/02/06 13 8/31/2006

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)								
	 ☑ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☐ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 								
<u>En</u>	nissions Unit	<u>Des</u>	cription and Sta	<u>ıtus</u>					
1.	Type of Emis	ssio	ns Unit Addresse	d in	this Section	n: (Check one)		
	process o	r pr		acti	vity, which	pro	ses, as a single em duces one or mor stack or vent).		
	process o	r pr		id ac	ctivities wh	ich l	has at least one de		ons unit, a group of ble emission point
							ses, as a single em hich produce fug		
2.	Description of	of E	nissions Unit Ad	ldre	ssed in this	Sec	tion:		
FO	SSIL FUEL ST	EAN	GENERATOR-5	(PH	ASE II ACII	RA	IN UNIT)		
3.	Emissions U	nit I	dentification Nur	nbe	r: 003				
4.	Emissions Unit Status Code:	5.	Commence Construction Date: 12/1/06	6.	Initial Startup Date:	7.	Emissions Unit Major Group SIC Code: 49	8.	Acid Rain Unit? ⊠ Yes □ No
9.	. Package Unit: Manufacturer: Model Number:								
10.	10. Generator Nameplate Rating: 760 MW								
11.	Emissions Un	nit C	Comment:						
	PULVERIZED	CO	AL DRY BOTTOM	1 BC	ILER, WAL	L-FI	RED.		
							•		

Emissions Unit Control Equipment

<u> </u>
1. Control Equipment/Method(s) Description:
Electrostatic Precipitator - High Efficiency (95.0 – 99.9%)
Proposed:
Selective Catalytic Reduction (SCR) (Permit Application Submitted April 25, 2006) Low NOx Burners (LNB) Alkali Injection System Wet Limestone Flue Gas Desulfurization (FGD) Electrostatic Precipitator (ESP) Upgrades
2. Control Device or Method Code(s): 010, 139, 205, 032/070, 042

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	1. Maximum Process or Throughput Rate:			
2.	Maximum Production Rate:			
3.	Maximum Heat Input Rate: 7,20	0 million Btu/hr		
4.	Maximum Incineration Rate:	pounds/hr		
		tons/day		
5.	Requested Maximum Operating	Schedule:		
	,	24 hours/day	7days/week	
		52weeks/year	8760hours/year	
6.	Operating Capacity/Schedule Co	omment:		

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: EU 003		2. Emission Point T 1	Type Code:	
3. Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:					
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission		
5.	Discharge Type Code: V	6. Stack Height 550 feet	· 4	7. Exit Diameter: 30.5 feet	
8.	Exit Temperature: 130 °F	9. Actual Volumetric Flow Rate: 2,205,195 acfm		10. Water Vapor: %	
11	. Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emission Point Height: feet		
13.	Emission Point UTM Coo Zone: East (km): North (km)		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)		
15.	Emission Point Comment:		,		
Sta	Stack parameters provided for 100% load and maximum heat input of 7,200 MMBtu/hr.				

EMISSIONS UNIT INFORMATION

Section [1] EU 003 - FFSG, Unit 5

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 6

Bituminous coal & bituminous coal briquette mixture

1. Segment Description (Process/Fuel Type):

2.	Source Classification Cod 1010010100	e (SCC):	3. SCC Units Tons Bitum		s Coal Burned
4.	Maximum Hourly Rate: 316.5	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum 9	% Ash:	9.	Million Btu per SCC Unit: 24
10.	Segment Comment:			•	
val	Bituminous coal and coal lue of 11,375 Btu/lb (HHV) ar				
Se	gment Description and Ra	ite: Segment 2 o	f <u>6</u>		
1.	Segment Description (Prod	cess/Fuel Type):			
	Distillate fuel oil				
2.	Source Classification Code 10100501	e (SCC):	3. SCC Units 1000 Gallons		tillate Oil (No. 1 & 2) Burned
4.	Maximum Hourly Rate: 48.297	5. Maximum A	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur: 0.73	8. Maximum % Ash: 0.1		9.	Million Btu per SCC Unit: 138
10.	Segment Comment:				
	Fuel oil used for startup				

EMISSIONS UNIT INFORMATION

Section [1] EU 003 - FFSG, Unit 5

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 3 of 6

1.	Segment Description (Process/Fuel Type):				
	Natural gas as startup and low-load flame stabilization fuel				
2.	Source Classification Cod	a (SCC):	3. SCC Units:		
2.	10100601	e (SCC).	-	ic Feet Natural Gas Burned	
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:	
10.	. Segment Comment:				
	Natural gas as startup and	low-load flame s	tabilization fuel		
Se	gment Description and Ra	ite: Segment 4 c	of <u>6</u>		
1.	Segment Description (Prod	cess/Fuel Type):			
	On specification used oil				
		(2.2.2)			
2.	Source Classification Cod 10101302	e (SCC):	3. SCC Units: 1000 Gallon	s Waste Oil Burned	
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:	
10.	Segment Comment:				
	Used oil specification: Are	enic 5 PPM Cadr	nium 2 PPM. Chr	omium 10 PPM, Lead 100 PPM,	
	Total Halogens 1000 PPM,	PCB 50 PPM, 10	million gal/12 mo	onth limit for all 4 steam	
	generating units (FFSG 1, 2, 4, & 5)				

EMISSIONS UNIT INFORMATION

Section [1] EU 003 - FFSG, Unit 5

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 5 of 6

1.	Segment Description (Pro	cess/Fuel Type):			
	Sub-Bituminous Coal Blend (up to 50% sub-bituminous coal)				
2.	. Source Classification Code (SCC): 1010010100		3. SCC Units: Tons Sub-Bituminous Coal Blend Burned		
4.	Maximum Hourly Rate:	5. Maximum A	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur: 3.13	8. Maximum 9	% Ash:	9.	Million Btu per SCC Unit: 20.1
10.	10. Segment Comment:				
	Sub-bituminous coal and bituminous coal blend. Maximum hourly rate based on an average heating value of 10,034 Btu/lb (HHV) and 7,200 MMBtu/hr maximum heat input.				
Se	Segment Description and Rate: Segment 6 of 6				

<u>50</u>	Beginent Description and Nate. Segment of Or				
1.	. Segment Description (Process/Fuel Type):				
	Bituminous Coal and Petroleum Coke Blend (up to 30% petroleum coke)				
2.	2. Source Classification Code (SCC): 1010881800 3. SCC Units: Tons Petroleum Coke and Coal Blend Burned				
4.	Maximum Hourly Rate: 309	5. Maximum	Annual Rate:	6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur: 3.13	8. Maximum % Ash: 9. Million Btu per SCC Unit: 23.3			
10	10. Segment Comment: Bituminous coal and petroleum coke blend. Maximum hourly rate based on an average				
	heating value of 11,650 Btu/lb (HHV) and 7,200 MMBtu/hr maximum heat input.				

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	Secondary Control Device Code	4. Pollutant Regulatory Code
со		_	EL
NOX	139	205	EL
SAM	032/070	042	EL
PM	010		EL
PM10	010		NS
SO2	042		EL
voc			EL
	-		
	,		_

POLLUTANT DETAIL INFORMATION
Page [1] of [7]
Carbon Monoxide - CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

 Pollutant Emitted: CO – Carbon Monoxide 	2. Total Percent Effi	ciency of Control:	
3. Potential Emissions:	1 *	nthetically Limited?	
1,440 lb/hour 5,06 3	3 tons/year □	Yes 🛛 No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.2 lb/MMBtu		7. Emissions Method Code:	
Reference: Vendor Specification/Pro	cess Knowledge	2	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-mon From: To:	th Period:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years		
10. Calculation of Emissions: Ib/hr = 0.2 Ib/MMBtu * 7,200 MMBtu/hr = 1,440 lb/hr TPY = (6,800/7,200 MMBtu/hr)*1,440 lb/hr * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 5,063 TPY			
11. Potential Fugitive and Actual Emissions Co.	mment:		

POLLUTANT DETAIL INFORMATION Page [1] of [7] Carbon Monoxide - CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.2 lb/MMBtu	4. Equivalent Allowable Emissions: 1,440lb/hour 5,063tons/year
5.	Method of Compliance: EPA Method 10; Annually	
	Allowable Emissions Comment (Description	
_	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):
All	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):

POLLUTANT DETAIL INFORMATION

Page [2] of [7]

Nitrogen Oxides - NO_x

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: NO _x – Nitrogen Oxides	2. Total Perce	ent Efficie	ency of Control:
3. Potential Emissions: 3,384 lb/hour 11,799	5 tons/year	4. Synth ☐ Ye	netically Limited? es ⊠ No
5. Range of Estimated Fugitive Emissions (as to tons/year	5. Range of Estimated Fugitive Emissions (as applicable): to tons/year		
6. Emission Factor: 0.47 lb/MMBtu Reference: PSD Avoidance.			7. Emissions Method Code: 0
8.a. Baseline Actual Emissions (if required): 24,069 tons/year	8.b. Baseline 2 From: 1/2003		Period: 2/2004
9.a. Projected Actual Emissions (if required): 23,797 tons/year	9.b. Projected ⊠ 5 yea	Monitorians 10	-
(11,899 TPY per unit)			
10. Calculation of Emissions: Ib/hr = 7,200 MMBtu/hr * 0.47 lb/MMBtu = 3,384 lb/hr. TPY = (6,800/7,200 MMBtu/hr)*3,384 lb/hr * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 11,899 TPY			
11. Potential Fugitive and Actual Emissions Comment:			

POLLUTANT DETAIL INFORMATION Page [2] of [7] Nitrogen Oxides - NO_x

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

$\underline{\mathbf{A}}$	lowable Emissions Allowable Emissions 1 o	f <u>3</u>			
1.	Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.47 lb/MMBtu heat input	4. Equivalent Allowable Emissions: 3,384 lb/hour 11,899 tons/year			
5.	Method of Compliance: EPA Method 20/7E RATA: Continuous Emissi	on Monitoring (CEM), annual average			
	6. Allowable Emissions Comment (Description of Operating Method): PSD Avoidance				
Al	lowable Emissions Allowable Emissions of				
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:				
6.	6. Allowable Emissions Comment (Description of Operating Method):				
Al	lowable Emissions Allowable Emissions 3 of	f <u>3</u>			
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of Operating Method):			

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

053-9555 8/31/2006

POLLUTANT DETAIL INFORMATION Page [3] of [7] SAM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

applying for an an operation permit.			
 Pollutant Emitted: Sulfuric Acid Mist – SAM 	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:	•	4. Synth	netically Limited?
86.4 lb/hour 303 .	.8 tons/year	□ Ye	•
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):		
6. Emission Factor: 0.012 lb/MMBtu Reference: Vendor Specification/Pro	cess Knowledge	e	7. Emissions Method Code: 2
	<u> </u>		Dominal.
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From: To:	24-montn	Репоа:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 yea	l Monitorii ars □ 10	•
10. Calculation of Emissions:			
Ib/hr = 7,200 MMBtu/hr * 0.012 Ib/MMBtu = 80 TPY = (6,800/7,200 MMBtu/hr)*86.4 lb/hr * 87 303.8 TPY		/2000 lb * 0).85 Capacity Factor =
11. Potential Fugitive and Actual Emissions Comment:			
-			
<u> </u>			

POLLUTANT DETAIL INFORMATION Page [3] of [7] SAM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.012	4. Equivalent Allowable Emissions: 86.4 lb/hour 303.8 tons/year
5.	Method of Compliance: EPA Method 8 or 8A; Initial Test Only	
6.	Allowable Emissions Comment (Description	n of Operating Method):
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):

POLLUTANT DETAIL INFORMATION Page [4] of [7] Particulate Matter Total - PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: PM – Particulate Matter Total	2. Total Perc	ent Efficie	ency of Control:
		4. Synth ☐ Ye	netically Limited? es ⊠ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.03 lb/MMBtu Reference: Vendor Specification/Process Knowledge			7. Emissions Method Code: 2
8.a. Baseline Actual Emissions (if required): tons/year			
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 yea	Monitorii irs □ 10	_
10. Calculation of Emissions: Ib/hr = 7,200 MMBtu/hr * 0.03 Ib/MMBtu = 216 Ib/hr TPY = (6,800/7,200 MMBtu/hr)*216 Ib/hr * 8760 hrs/yr * 1 ton/2000 Ib * .85 Capacity Factor = 759.5 TPY			
11. Potential Fugitive and Actual Emissions Comment:			

POLLUTANT DETAIL INFORMATION

Page [4] of [7]

Particulate Matter Total - PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.03 lb/MMBtu heat input	4.	Equivalent Allowable Emissions: 759.5 tons/year
5.	Method of Compliance: EPA Method 5 or 5B; Annually		
6.	Allowable Emissions Comment (Description	of C	Operating Method):
<u>Al</u>	lowable Emissions Allowable Emissions	of	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	perating Method):
All	owable Emissions Allowable Emissions	of	f
1.	Basis for Allowable Emissions Code:	ı	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
_	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	perating Method):

POLLUTANT DETAIL INFORMATION

Page [5] of [7]

Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM ₁₀ – Particulate Matter	2. Total Percent I	Efficiency of Control:
3. Potential Emissions:		Synthetically Limited?
	5 tons/year	☐ Yes
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 0.03 lb/MMBtu	Maria de la	7. Emissions Method Code:
Reference: Vendor Specification/Proc		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-n From: To:	nonth Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Mos ☐ 5 years ☐	nitoring Period: ☐ 10 years
10. Calculation of Emissions:	=	
PM_{10} is assumed to be equal to PM.		
11. Potential Fugitive and Actual Emissions Con	mment:	

POLLUTANT DETAIL INFORMATION
Page [5] of [7]
Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.03 lb/MMBtu	4. Equivalent Allowable Emissions: 216 lb/hour 759.5 tons/year
	Method of Compliance: See PM.	
	Allowable Emissions Comment (Description	
<u>Al</u>	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	of Operating Method):
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	of Operating Method):

POLLUTANT DETAIL INFORMATION

Page [6] of [7]

Sulfur Dioxide – SO₂

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SO ₂ – Sulfur Dioxide	2. Total Perc	ent Efficiency of Control:
3. Potential Emissions:		4. Synthetically Limited?
1,944 lb/hour 6,83	5 tons/year	☐ Yes ⊠ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 0.27 lb/MMBtu Reference: Based on modeled impac	ta	7. Emissions Method Code:
•		
8.a. Baseline Actual Emissions (if required):		24-month Period:
51,031 tons/year	From: 1/2003	3 To: 12/2004
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitoring Period:
13,670 tons/year		ars 10 years
(6,835 TPY per unit)		
10. Calculation of Emissions:	L	
lb/hr = 7,200 MMBtu/hr * 0.27 lb/MMBtu = 1,944 lb/hr TPY = (6,800/7,200 MMBtu/hr)*1,944 lb/hr * 8760 hr/yr * 1 ton/2000 lb * .85 Capacity Factor = 6,835 TPY		
11. Potential Fugitive and Actual Emissions Co	mment:	

POLLUTANT DETAIL INFORMATION Page [6] of [7] Sulfur Dioxide – SO₂

2. Future Effective Date of Allowable

Emissions:

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 3

1. Basis for Allowable Emissions Code:

Other

l .				
3. Allowable Emissions and Units: 0.27 lb/MMBtu heat input	4. Equivalent Allowable Emissions: 1,944 lb/hour 6,835tons/year			
5. Method of Compliance: Continuous Emission Monitor (CEM) 30-day rollin Program).				
6. Allowable Emissions Comment (Description of Operating Method):				
Allowable Emissions 2 of	f <u>3</u>			
Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description of Operating Method):				
Allowable Emissions 3 of	f <u>3</u>			
Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description	of Operating Method):			

DEP Form No. 62-210.900(1) – Form 053-9555 Effective: 02/02/06 31 8/31/2006

POLLUTANT DETAIL INFORMATION
Page [7] of [7]
Volatile Organic Compounds - VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: VOC – Volatile Organic Compounds	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:		4. Syntl	netically Limited?
28.8 lb/hour 101. :	2 tons/year	☐ Ye	es 🛛 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.004 lb/MMBtu	aaa Kaawlada	_	7. Emissions Method Code:
Reference: Vendor Specification/Prod	<u>. </u>		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:	24-month To:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	l Monitori ars □ 10	C
10. Calculation of Emissions: Ib/hr = 0.004 lb/MMBtu * 7,200 MMBtu/hr = 28.8 lb TPY = (6,800/7,200 MMBtu/hr)*28.8 lb/hr * 8760 hr TPY		lb * 0.85 C	capacity Factor = 101.2
11. Potential Fugitive and Actual Emissions Co.	mment:		

EMISSIONS UNIT INFORMATION Section [1]

POLLUTANT DETAIL INFORMATION Page EU 003 - FFSG, Unit 5 **Volatile Organic Compounds - VOC**

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.004 lb/MMBtu	4. Equivalent Allowable Emissions: 28.8 lb/hour 101.2 tons/year
5.	Method of Compliance: EPA Method 18, 25, or 25a; base load.	
	Allowable Emissions Comment (Description	
	lowable Emissions Allowable Emissions	of 2. Future Effective Date of Allowable
1.	Basis for Allowable Emissions Code:	Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	107.2022
6.	Allowable Emissions Comment (Description	on of Operating Method):
All	owable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
		lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

[7] of

[7]

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE20 – Visible Emissions	2. Basis for Allowable ⊠ Rule	Opacity:
3.	Allowable Opacity: Normal Conditions: 20 % Ex Maximum Period of Excess Opacity Allower	cceptional Conditions:	27 % 6 min/hour
4.	Method of Compliance:		
5.	Visible Emissions Comment:		
	Unit has opacity monitor.		
<u>Visible Emissions Limitation:</u> Visible Emissions Limitation of			
1.	Visible Emissions Subtype:	2. Basis for Allowable ☐ Rule	Opacity:
3.	Allowable Opacity:		
	Normal Conditions:		% min/hour
4.	Method of Compliance:		
	•		
5.	Visible Emissions Comment:		

Section [1] EU 003 - FFSG, Unit 5

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 5

1.	Parameter Code: EM – Emission	2.	Pollutant(s): SO ₂	
3,	CMS Requirement:		Rule	Other
4.	Monitor Information Manufacturer: TECO/Enviroplan	·		
	Model Number: 43B		Serial Numbe	er: 43B-46236-275
5.	Installation Date: 04-APR-94	6.	Performance Spe 04-DEC-94	cification Test Date:
7.	Continuous Monitor Comment:			
	40 CFR 75, SO ₂			
<u>C</u>	ontinuous Monitoring System: Continuous	Mor	nitor 2 of 5	
1.	Parameter Code: VE Visible Emissions (opacity)		2. Pollutant(s): PM	
3.	CMS Requirement:		Rule	☐ Other
4.	Monitor Information Manufacturer: Durag/Enviroplan			
	Model Number: CEMOP-281		Serial Numbe	er: 29859
5.	Installation Date: 04-APR-94		6. Performance 04-DEC-94	Specification Test Date:
7.	Continuous Monitor Comment:	•	-	
	40 CFR 75			

DEP Form No. 62-210.900(1) - Form

Section [1] EU 003 - FFSG, Unit 5

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 3 of 5

1.	Parameter Code: EM – Emission	2.	Pollutant(s): NO _x
3.	CMS Requirement:		Rule
4.	Monitor Information Manufacturer: TECO/Enviroplan		
	Model Number: 42		Serial Number: 42-46066-275K
5.	Installation Date: 04-APR-94	6.	Performance Specification Test Date: 04-DEC-94
7.	Continuous Monitor Comment:		
	40 CFR 75, NO _x		
	, ,		
<u>Co</u>	ntinuous Monitoring System: Continuous	Mo	nitor <u>4</u> of <u>5</u>
1.	Parameter Code: CO ₂ – Carbon Dioxide		2. Pollutant(s):
3.	CMS Requirement:		Rule
4.	Monitor Information Manufacturer: TECO/Enviroplan		
	Model Number: 41H		Serial Number: 41H-45738-274
5.	Installation Date: 04-APR-94		6. Performance Specification Test Date: 04-DEC-94
7.	Continuous Monitor Comment:		
	40 CFR 75		
1	40 OF ICE 10		

Section [1] EU 003 - FFSG, Unit 5

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 5 of 5

1.	Parameter Code: FLOW – Volumetric Flow Rate	2.	Pollutant(s):	
3.	CMS Requirement:		Rule	☐ Other
4.	Monitor Information Manufacturer: United Sciences/Envi			
	Model Number: Ultraflow 100		Serial Numbe	r: 9303522
5.	Installation Date: 04-APR-94	6.	Performance Spe 04-DEC-94	cification Test Date:
7.	Continuous Monitor Comment:			
	40 CFR 75			
<u>Co</u>	ntinuous Monitoring System: Continuous	Moi	nitor of	
1.	Parameter Code:		2. Pollutant(s):	
3.	CMS Requirement:		Rule	Other
4.	Monitor Information Manufacturer:			
	Model Number:		Serial Numbe	r:
5.	Installation Date:		6. Performance	Specification Test Date:
7.	Continuous Monitor Comment:			

Section [1] EU 003 - FFSG, Unit 5

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-1 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID:
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: PSD, Sections 2.0/4.0 Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records Attached, Document ID: Appendix A Test Date(s)/Pollutant(s) Tested: PRB Coal Test; SAM Emissions
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	☐ Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) – Form 053-9555 Effective: 02/02/06 24 8/31/2006

Section [1] EU 003 - FFSG, Unit 5

Additional Requirements for Air Construction Permit Applications

1. Control Technology Review and Analysis (Rules 62	-212.400(10) and 62-212.500(7),				
F.A.C.; 40 CFR 63.43(d) and (e))					
Attached, Document ID: PSD, Section 4.0	☐ Not Applicable				
2. Good Engineering Practice Stack Height Analysis (F	Rule 62-212.400(4)(d), F.A.C., and				
Rule 62-212.500(4)(f), F.A.C.)					
Attached, Document ID: Section 2.4 Not	: Applicable				
3. Description of Stack Sampling Facilities (Required to	for proposed new stack sampling				
facilities only)					
☐ Attached, Document ID: Section 2.4	☐ Not Applicable				
Additional Requirements for Title V Air Operation P	ermit Applications				
1. Identification of Applicable Requirements					
☐ Attached, Document ID: ☐ Not App	olicable				
2. Compliance Assurance Monitoring					
☐ Attached, Document ID: ☐ Not App	blicable				
3. Alternative Methods of Operation					
Attached, Document ID: Not App	plicable				
4. Alternative Modes of Operation (Emissions Trading)					
Attached, Document ID: Not App	plicable				
5. Acid Rain Part Application					
☐ Certificate of Representation (EPA Form No. 7610-1)					
Copy Attached, Document ID:					
☐ Acid Rain Part (Form No. 62-210.900(1)(a))					
Attached, Document ID:					
☐ Previously Submitted, Date:					
☐ Repowering Extension Plan (Form No. 62-210.9	00(1)(a)1.)				
Attached, Document ID:					
Previously Submitted, Date:					
☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)				
Attached, Document ID:					
Previously Submitted, Date:					
Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)				
Attached, Document ID:					
Previously Submitted, Date:	2.000(1)()()				
Phase II NOx Compliance Plan (Form No. 62-21)	J.900(1)(a)4.)				
Attached, Document ID:					
Previously Submitted, Date:	000(1)(-)5)				
Phase II NOx Averaging Plan (Form No. 62-210.	900(1)(a)5.)				
Attached, Document ID:					
Previously Submitted, Date:	•				
☐ Not Applicable					

DEP Form No. 62-210.900(1) – Form 053-9555 Effective: 02/02/06 25 8/31/2006

Section [1] EU 003 - FFSG, Unit 5
Additional Requirements Comment

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application — Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06 13

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)						
	 ☑ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☑ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 						
<u>En</u>	nissions Unit	Description and Sta	atus				
1.	Type of Emi	ssions Unit Addresse	ed in this Section	on: (Check one)			
	process o		activity, which	dresses, as a single em h produces one or mor oint (stack or vent).	, ,		
	process o		nd activities wh	nich has at least one de	hissions unit, a group of finable emission point		
				dresses, as a single emilies which produce fug	•		
	Description of Emissions Unit Addressed in this Section: FOSSIL FUEL STEAM GENERATOR-4 (PHASE II ACID RAIN UNIT)						
3.	Emissions U	nit Identification Nur	mber: 004				
4.	Emissions Unit Status Code:	5. Commence Construction Date: 12/1/06	6. Initial Startup Date:	7. Emissions Unit Major Group SIC Code: 49	8. Acid Rain Unit? ☑ Yes ☐ No		
9.	9. Package Unit: Manufacturer: Model Number:						
10.	10. Generator Nameplate Rating: 760 MW						
11.	11. Emissions Unit Comment:						
	PULVERIZED COAL DRY BOTTOM BOILER, WALL-FIRED.						

Emissions Unit Control Equipment

1. Control Equipment/Method(s) Description:
Electrostatic Precipitator - High Efficiency (95.0 – 99.9%)
Proposed:
Selective Catalytic Reduction (SCR) (Permit Application Submitted April 25, 2006) Low NOx Burners (LNB) Alkali Injection System Wet limestone Flue Gas Desulfurization, (FGD) Electrostatic Precipitator (ESP) Upgrades
2. Control Device or Method Code(s): 010, 139, 205, 032/070, 042

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughp	ut Rate:			
2.	. Maximum Production Rate:				
3.	3. Maximum Heat Input Rate: 7,200 million Btu/hr				
4.	Maximum Incineration Rate:	pounds/hr			
		tons/day			
5.	Requested Maximum Operating	Schedule:			
		24 hours/day	7 days/week		
		52 weeks/year	8,760 hours/year		

6. Operating Capacity/Schedule Comment:

PEF Proposes to revise the maximum heat input from 6,665 MMBtu/hr to 7,200 MMBtu/hr, to be measured by fuel flow measurements and fuel analysis. The maximum annual average heat input is 6,800 MMBtu/hr.

Section [2] EU 004 - FFSG, Unit 4

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

For VE Tracking: Point in Common:				
Point in Common:				
7. Exit Diameter: 30.5 feet				
10. Water Vapor: %				
12. Nonstack Emission Point Height: feet				
14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)				
Stack parameters provided for 100% load and maximum heat input of 7,200 MMBtu/hr.				

Section [2] EU 004 - FFSG, Unit 4

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 6

Bituminous coal & bituminous coal briquette mixture

1. Segment Description (Process/Fuel Type):

2.	Source Classification Cod 1010010100	e (SCC):	3. SCC Units: Tons Bitum	inous Coal Burned		
4.	Maximum Hourly Rate: 316.5	5. Maximum A	Annual Rate:	6. Estimated Annual Activity Factor:		
7.	Maximum % Sulfur:	8. Maximum % Ash:		9. Million Btu per SCC Unit: 24		
10.	Segment Comment:			_		
val	Bituminous coal and coal briquette. Maximum hourly rate based on an average heating value of 11,375 Btu/lb (HHV) and 7,200 MMBtu/hr maximum heat input.					
Seg	gment Description and Ra	ite: Segment 2 o	f <u>6</u>			
1.	. Segment Description (Process/Fuel Type):					
	Distillate fuel oil					
2	Source Classification Code	• (SCC)·	3. SCC Units:			
۷.	10100501	e (SCC).		Distillate Oil (No. 1 & 2) Burned		
4.	4. Maximum Hourly Rate: 5. Maximum Annual Rate: 6. Estimated Annual Activity 48.297 Factor:					
7.	Maximum % Sulfur: 0.73	8. Maximum % Ash: 0.1		9. Million Btu per SCC Unit: 138		
10.	Segment Comment:		-			
	Fuel oil used for startup					
				· · · · · · · · · · · · · · · · · · ·		

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 3 of 6

1.	Segment Description (Process/Fuel Type):					
	Natural gas as startup and low-load flame stabilization fuel					
2,	Source Classification Code	e (SCC)·	3. SCC Units	·•		
	10100601	c (500).			eet Natural Gas Burned	
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum % Ash: 9. Million Btu per SCC Unit:				
10.	. Segment Comment:				-	
	Natural gas as startup and	low-load flame s	tabilization fuel			
Se	gment Description and Ra	ite: Segment 4 o	of <u>6</u>			
1.	Segment Description (Prod	cess/Fuel Type):	_			
	On specification used oil					
2	Source Classification Code	· (CCC)·	3. SCC Units			
۷.	10101302	e (SCC).			aste Oil Burned	
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	Saximum % Sulfur: 8. Maximum % Ash: 9. Million Btu per SCC Unit:				
10.	Segment Comment:					
	Used oil specification: Arsenic 5 PPM, Cadmium 2 PPM, Chromium 10 PPM, Lead 100 PPM, Total Halogens 1000 PPM, PCB 50 PPM, 10 million gal/12 month limit for all 4 steam generating units (FFSG 1, 2, 4, & 5)					

Section [2] EU 004 - FFSG, Unit 4

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 5 of 6

1.	Segment Description (Process/Fuel Type):							
	Sub-Bituminous Coal Blend (up to 50% sub-bituminous coal)							
2.	Source Classification Code (SCC): 1010010100 3. SCC Units: Tons Sub-Bituminous Coal Blend Burned							
4.	Maximum Hourly Rate: 358.8	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:			
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 20.1			
10.	. Segment Comment:							
	Sub-bituminous coal and be heating value of 10,034 Btu				rly rate based on an average um heat input.			
Seg	gment Description and Ra	ite: Segment 6 o	of <u>6</u>					
1.	Segment Description (Prod	cess/Fuel Type):						
	Bituminous Coal and Petro	oleum Coke Blend	d (up to 30% peti	roleu	m coke)			
	v							
2.	Source Classification Code 1010881800	e (SCC):	3. SCC Units Tons Petro Burned		coke and Coal Blend			
4.	Maximum Hourly Rate: 309	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:			
7.	Maximum % Sulfur: 3.13	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 23.3			
10.	Segment Comment:			•				
	Bituminous coal and petroleum coke blend. Maximum hourly rate based on an average heating value of 11,650 Btu/lb (HHV) and 7,200 MMBtu/hr maximum heat input.							

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	Secondary Control Device Code	4. Pollutant Regulatory Code
СО			EL
NOX	139	205	EL
SAM	032/070	042	EL
PM	010		EL
PM10	010		NS
SO2	042		EL
voc			EL
	-		_
_			
	-		,
			_
	-		
	_		
			`

POLLUTANT DETAIL INFORMATION
Page [1] of [7]
Carbon Monoxide - CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Pollutant Emitted: CO – Carbon Monoxide	2. Total Percent Efficiency of Control:					
3. Potential Emissions: 1,440 lb/hour 5,06	3 tons/year	4. Synthe	etically Limited?			
5. Range of Estimated Fugitive Emissions (as to tons/year						
6. Emission Factor: 0.2 lb/MMBtu Reference: Vendor Specification			7. Emissions Method Code: 2			
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:	24-month I Γο:	Period:			
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected	Monitorin ars □ 10 y	•			
10. Calculation of Emissions: Ib/hr = 0.2 Ib/MMBtu * 7,200 MMBtu/hr = 1,440 Ib/hr TPY = (6,800/7,200 MMBtu/hr)*1,440 Ib/hr * 8760 hr/yr * 1 ton/2000 Ib * 0.85 Capacity Factor = 5,063 TPY.						
11. Potential Fugitive and Actual Emissions Co	mment:					

POLLUTANT DETAIL INFORMATION of Page [7] [1] Carbon Monoxide - CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.2 lb/MMBtu	4.	Equivalent Allowable Emissions: 1,440 lb/hour 5,063 tons/year
5.	Method of Compliance: EPA Method 10; Annually		
	Allowable Emissions Comment (Description		
	lowable Emissions Allowable Emissions		·f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
			lb/hour tons/year
	Method of Compliance: Allowable Emissions Comment (Description	of (Operating Method):
All	lowable Emissions Allowable Emissions	0	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
Page [2] of [7]
Nitrogen Oxides - NO_x

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Pollutant Emitted: NO _x - Nitrogen Oxides	2. Total Perc	ent Efficie	ency of Control:			
3. Potential Emissions:		4. Synth	netically Limited?			
3,384 lb/hour 11,899	ons/year	□Y€	es 🛛 No			
5. Range of Estimated Fugitive Emissions (as	applicable):					
to tons/year						
6. Emission Factor: 0.47 lb/MMBtu			7. Emissions			
5			Method Code:			
Reference: PSD Avoidance.			0			
8.a. Baseline Actual Emissions (if required):	8.b. Baseline					
24,069 tons/year	From: 1/2003	To: 12	2/2004			
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitoria	ng Period:			
23,797 tons/year						
(11,899 TPY per unit)						
10. Calculation of Emissions:						
Ib/hr = 7,200 MMBtu/hr * 0.47 lb/MMBtu = 3,384 lb/hr. TPY = (6,800/7,200 MMBtu/hr)*3,384 lb/hr * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 11,899 TPY						
11. Potential Fugitive and Actual Emissions Comment:						

POLLUTANT DETAIL INFORMATION Page [2] of [7] Nitrogen Oxides - NO_x

2. Future Effective Date of Allowable

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions	Allowable	Emissions 1	of 2
---------------------	-----------	--------------------	-------------

1. Basis for Allowable Emissions Code:

	NOLL		Emissions:					
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:						
	0.47 lb/MMBtu heat input		3,384 lb/hour	11,899 tons/year				
5.	. Method of Compliance: EPA Method 20/7E RATA: Continuous Emission Monitoring (CEM), annual average.							
6.	Allowable Emissions Comment (Description	of	Operating Method):					
	PSD Avoidance							
Al	lowable Emissions of							
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable				
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year				
5.	Method of Compliance:							
6.	Allowable Emissions Comment (Description	of	Operating Method):					
Al	lowable Emissions of							
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable				
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year				
5.	Method of Compliance:							
6.	6. Allowable Emissions Comment (Description of Operating Method):							

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION Page [3] of [7] SAM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Pollutant Emitted: Sulfuric Acid Mist – SAM	2. Total Percent Efficiency of Control:						
3. Potential Emissions:		Synthetically Limi	ted?				
86.4lb/hour 303.6	8 tons/year	☐ Yes					
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year							
6. Emission Factor: 0.012 lb/MMbtu		7. Emission Method					
Reference: Vendor Specification/Pro-	cess Knowledge	2					
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-From: To:	month Period:					
9.a. Projected Actual Emissions (if required): tons/year	onitoring Period: ☐ 10 years						
10. Calculation of Emissions: Ib/hr = 7,200 MMBtu/hr * 0.012 lb/MMBtu = 86.4 lb/hr. TPY = (6,800/72,00 MMBtu/hr)*86.4 lb/hr * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 303.8 TPY							
11. Potential Fugitive and Actual Emissions Con	mment:						

POLLUTANT DETAIL INFORMATION Page [3] of [7] SAM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.012 lb/MMBtu	4.	Equivalent Allowable Emissions: 86.4 lb/hour 303.8 tons/year
5.	Method of Compliance: EPA Method 8 or 8A; Initial Test Only		
6.	Allowable Emissions Comment (Description	of C	Operating Method):
Al	lowable Emissions Allowable Emissions	o	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
			lb/hour tons/year
	Method of Compliance: Allowable Emissions Comment (Description	of C	Operating Method):
			·
<u>Al</u>	lowable Emissions Allowable Emissions	o	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: 1b/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	Operating Method):

POLLUTANT DETAIL INFORMATION
Page [4] of [7]
Particulate Matter Total - PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1. Pollutant Emitted:	2 Total Dama	ant Efficie	man of Control		
Pollutant Emitted: PM – Particulate Matter Total					
		4 ~ 1	1 11 71 1 10		
3. Potential Emissions:		•	netically Limited?		
216 lb/hour 759.	5 tons/year	☐ Ye	es 🛛 No		
5. Range of Estimated Fugitive Emissions (as	applicable):				
to tons/year					
6. Emission Factor: 0.03 lb/MMBtu			7. Emissions		
			Method Code:		
Reference: Vendor Specification/Pro	cess Knowledg	e	2		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:		
tons/year	From:	Го:			
On Designated Astrol Euripeiana (if required).	01 D : (1) (1) (1)				
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years				
tons/year	☐ 5 yea	ars 🗀 10	years		
10 C 1 1 t' CF ' '					
10. Calculation of Emissions:					
lb/hr = 7,200 MMBtu/hr * 0.03 lb/MMBtu =	216 lb/br				
TPY = (6,800/7,200 MMBtu/hr)*216 lb/hr *		ton/2000 lb	* .85 Capacity Factor		
= 759.5 TPY			• •		
11. Potential Fugitive and Actual Emissions Comment:					

POLLUTANT DETAIL INFORMATION
Page [4] of [7]
Particulate Matter Total - PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.03 lb/MMBtu heat input	4.	Equivalent Allowable Emissions: 216 lb/hour 759.5 tons/year		
5.	Method of Compliance: EPA Method 5 or 5B; Annually				
6.	Allowable Emissions Comment (Description	of (Operating Method):		
All	lowable Emissions Allowable Emissions	0	f		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):		
All	owable Emissions Allowable Emissions	0	f		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):		

POLLUTANT DETAIL INFORMATION

Page [5] of [7]

Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1. Pollutant Emitted: PM ₁₀ – Particulate Matter	2. Total Perc	ent Efficie	ency of Control:				
3. Potential Emissions: 216 lb/hour 759.							
	5 tons/year	□Y€	es 🛛 No				
 Range of Estimated Fugitive Emissions (as applicable): to tons/year 							
6. Emission Factor: 0.03 lb/MMBtu			7. Emissions Method Code:				
Reference: Vendor Specification/Prod	cess Knowledge	•	2				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline		Period:				
tons/year	From:	Го:					
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years						
10. Calculation of Emissions:							
PM_{10} is assumed to be equal to PM.							
11. Potential Fugitive and Actual Emissions Comment:							

POLLUTANT DETAIL INFORMATION
Page [5] of [7]
Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	. Future Effective Emissions:	Date of Allowable
3.	Allowable Emissions and Units: 0.03 lb MMBtu	. Equivalent Allo 216 lb/hour	
5.	Method of Compliance: See PM.		
6.	Allowable Emissions Comment (Description	f Operating Method	1) :
Al	lowable Emissions Allowable Emissions	of	
1.	Basis for Allowable Emissions Code:	. Future Effective Emissions:	Date of Allowable
3.	Allowable Emissions and Units:	. Equivalent Allo lb/hou	
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	Operating Method	d):
All	lowable Emissions Allowable Emissions	of	
1.	Basis for Allowable Emissions Code:	. Future Effective Emissions:	Date of Allowable
3.	Allowable Emissions and Units:	. Equivalent Allo- lb/ho	
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	Operating Method	1):

POLLUTANT DETAIL INFORMATION
Page [6] of [7]
Sulfur Dioxide – SO₂

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1. Pollutant Emitted: SO ₂ – Sulfur Dioxide	2. Total Perc	cent Efficiency of Control:	
3. Potential Emissions:	•	4. Synthetically Limited?	
1,944 lb/hour 6,83	5 tons/year	☐ Yes ⊠ No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.27 lb/MMBtu Reference: Based on modeled impac	ts.	7. Emissions Method Code: 2	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month Period:	
51,031 tons/year	From: 1/2003		
9.a. Projected Actual Emissions (if required): 13,670 tons/year	9.b. Projected Monitoring Period:		
(6,835 TPY per unit)			
10. Calculation of Emissions: Ib/hr = 7,200 MMBtu/hr * 0.27 Ib/MMBtu = 1,944 lb/hr TPY = (6,800/7,200MMBtu/hr)*1,944 lb/hr * 8760 hr/yr * 1 ton/2000 lb * .85 Capacity Fact = 6,835 TPY			
11. Potential Fugitive and Actual Emissions Co	mment:		

POLLUTANT DETAIL INFORMATION Page [6] of [7] Sulfur Dioxide – SO₂

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

1. Basis for Allowable Emissions Code: 2. Future Effective Date of Allowable

Allowable Emissions	Allowable Emissions 1 of 3	3
---------------------	----------------------------	---

Other	Emissions:	
3. Allowable Emissions and Units: 0.27 lb/MMBtu heat input	4. Equivalent Allowable Emissions:	
<u> </u>	1,944 lb/hour 6,835 tons/year	
5. Method of Compliance: Continuous Emission Monitor (CEM) 30-day roll	ing average 40 CFR Part 75 (Acid Rain Program)	
6. Allowable Emissions Comment (Descriptio		
Allowable Emissions 2		
Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year	
5. Method of Compliance:6. Allowable Emissions Comment (Description of Operating Method):		
Allowable Emissions of Allowable Emissions of	f	
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: 1b/hour tons/year	
5. Method of Compliance:		
6. Allowable Emissions Comment (Descriptio	n of Operating Method):	

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION
Page [7] of [7]
Volatile Organic Compounds - VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Pollutant Emitted: VOC – Volatile Organic Compounds	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:		•	netically Limited?
28.8 lb/hour 107.:	2 tons/year	☐ Ye	es 🛛 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.004 lb/MMBtu			7. Emissions Method Code:
Reference: Vendor Specification/Pro	cess Knowledge	9	2
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:	24-month To:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	l Monitori nrs □ 10	_
10. Calculation of Emissions:			
Ib/hr = 0.004 lb/MMBtu * 7,200 MMBtu/hr = 28.8 lb/hr TPY = (6,800/7,200 MMBtu/hr)*28.8 lb/hr * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 101.2 TPY			
11. Potential Fugitive and Actual Emissions Co	mment:		

POLLUTANT DETAIL INFORMATION
Page [7] of [7]
Volatile Organic Compounds - VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units: 0.004 lb/MMBtu	4.	Equivalent Allowable E 28.8lb/hour	missions: 101.2tons/year
5.	Method of Compliance: EPA Method 18, 25, or 25a; base load.			
	Allowable Emissions Comment (Description			
<u>Al</u>	lowable Emissions Allowable Emissions	o	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	n of C	Operating Method):	
Al	lowable Emissions Allowable Emissions	o	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year
5.	Method of Compliance:			•
6.	Allowable Emissions Comment (Description	n of C	Operating Method):	

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

Section [2] EU 004 - FFSG, Unit 4

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE20 - Visible Emissions	2. Basis for Allowable € ⊠ Rule	Opacity: Other
	Maximum Period of Excess Opacity Allowe	ceptional Conditions: ed:	27 % 6 min/hour
	Method of Compliance:		
5.	Visible Emissions Comment:		
	Unit has opacity monitor.		
Vis	sible Emissions Limitation: Visible Emission	ons Limitation of _	
1.	Visible Emissions Subtype:	2. Basis for Allowable 0 ☐ Rule	Opacity:
3.	Allowable Opacity:		
	Normal Conditions: % Exemple Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance:	····	min nour
••			
5.	Visible Emissions Comment:		-
	•		

EMISSIONS UNIT INFORMATION Section [2]

EU 004 - FFSG, Unit 4

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 5

1.	Parameter Code: EM - Emission	2.	Pollutant(s): SO ₂	
3.	CMS Requirement:		Rule	☐ Other
4.	Monitor Information Manufacturer: TECO/Enviroplan			
<u> </u>	Model Number: 43B			er: 43B-46236-275
5.	Installation Date: 04-APR-94	6.	Performance Spe 04-DEC-94	ecification Test Date:
7.	Continuous Monitor Comment:			
	40 CFR 75, SO ₂			
<u></u>				
<u>Co</u>	ntinuous Monitoring System: Continuous	Moı	nitor <u>2</u> of <u>5</u>	
1.	Parameter Code: VE – Visible Emissions (opacity)		2. Pollutant(s): PM	
3.	CMS Requirement:		Rule	☐ Other
4.	Monitor Information Manufacturer: Durag/Enviroplan			
	Model Number: CEMOP-281		Serial Numbe	er: 29859
5.	Installation Date: 04-APR-94		6. Performance 04-DEC-94	Specification Test Date:
7.	Continuous Monitor Comment:			
	40 CFR 75			

Section [2] EU 004 - FFSG, Unit 4

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 3 of 5

1.	Parameter Code: EM – Emission	2.	Pollutant(s): NO _x
3.	CMS Requirement:		Rule
4.	Monitor Information Manufacturer: TECO/Enviroplan		-
	Model Number: 42		Serial Number: 42-46066-275K
5.	Installation Date: 04-APR-94	6.	Performance Specification Test Date: 04-DEC-94
7.	Continuous Monitor Comment:		
	40 CFR 75, NO _x		
	,		
<u>Co</u>	ontinuous Monitoring System: Continuous	Moı	nitor <u>4</u> of <u>5</u>
1.	Parameter Code: CO ₂ - Carbon Dioxide		2. Pollutant(s):
3.	CMS Requirement:		Rule
4.	Monitor Information Manufacturer: TECO/Enviroplan		
	Model Number: 41H		Serial Number: 41H-45738-274
5.	Installation Date: 04-APR-94		6. Performance Specification Test Date: 04-DEC-94
7.	Continuous Monitor Comment:		_
	40 CFR 75		

EMISSIONS UNIT INFORMATION Section [2]

EU 004 - FFSG, Unit 4

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 5 of 5

1.	Parameter Code: FLOW – Volumetric Flow Rate	2.	Pollutant(s):
3.	CMS Requirement:		Rule
4.	Monitor Information Manufacturer: United Sciences/Envi		
	Model Number: Ultraflow 100		Serial Number: 9303522
5.	Installation Date: 04-APR-94	6.	Performance Specification Test Date: 04-DEC-94
7.	Continuous Monitor Comment:		
	40 CFR 75		
Co	ntinuous Monitoring System: Continuous	Moı	onitor of
1.	Parameter Code:		2. Pollutant(s):
_	CIVIC P		
3.	CMS Requirement:	<u>Ц</u>	Rule
4.	Monitor Information Manufacturer:		
	Model Number:		Serial Number:
5.	Installation Date:		6. Performance Specification Test Date:
• •			o, i i i i i i i i i i i i i i i i i i i
7.	Continuous Monitor Comment:		
7.	Continuous Monitor Comment:		
7.	Continuous Monitor Comment:		
7.	Continuous Monitor Comment:		
7.	Continuous Monitor Comment:		

Section [2] EU 004 - FFSG, Unit 4

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-1 Previously Submitted, Date
	2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID:
	3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: PSD, Sections 2.0/4.0 Previously Submitted, Date
	4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
	5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
ŀ	6.	Compliance Demonstration Reports/Records Attached, Document ID: Appendix A Test Date(s)/Pollutant(s) Tested: PRB Coal Test; SAM Emissions
		☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
		To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
		☐ Not Applicable
		Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
	7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) - Form

053-9555 Effective: 02/02/06 24 8/31/2006

Section [2] EU 004 - FFSG, Unit 4

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
	F.A.C.; 40 CFR 63.43(d) and (e))
	Attached, Document ID: PSD, Section 4.0 Not Applicable
2.	
	Rule 62-212.500(4)(f), F.A.C.)
	Attached, Document ID: Section 2.4 Not Applicable
3.	Description of Stack Sampling Facilities (Required for proposed new stack sampling facilities only)
	 ✓ Attached, Document ID: <u>Section 2.4</u> ✓ Not Applicable
Ac	Iditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements
	☐ Attached, Document ID: ☐ Not Applicable
2.	Compliance Assurance Monitoring
	Attached, Document ID: Not Applicable
3.	Alternative Methods of Operation
	Attached, Document ID: Not Applicable
4.	Alternative Modes of Operation (Emissions Trading)
	Attached, Document ID: Not Applicable
5.	Acid Rain Part Application
	Certificate of Representation (EPA Form No. 7610-1)
	Copy Attached, Document ID:
	☐ Acid Rain Part (Form No. 62-210.900(1)(a))
	Attached, Document ID:
	Previously Submitted, Date:
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
	☐ Attached, Document ID: ☐ Previously Submitted, Date:
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)
	Attached, Document ID:
	Previously Submitted, Date:
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
	Attached, Document ID:
	Previously Submitted, Date:
	Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
	Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Not Applicable

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

Section [2] EU 004 - FFSG, Unit 4 Additional Requirements Comment

EMISSIONS UNIT INFORMATION

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application — Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 13 8/31/2006

A. GENERAL EMISSIONS UNIT INFORMATION

1. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or

Title V Air Operation Permit Emissions Unit Classification

	renewal Title V air permit or FESOP o	•	t. Skip this ite	em if applying for an	air construction
	☐ The emissions unit.	unit addressed in	this Emission	s Unit Information S	ection is a regulated
		☐ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.			
	Emissions Unit Descr	<u>iption and Statu</u>	<u>1S</u>		
	1. Type of Emissions	Unit Addressed	in this Section	: (Check one)	
	process or prod	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).			
	process or prod	☐ This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.			
	_	☐ This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.			
	2. Description of Emi- fired steam units.	ssions Unit Addr	ressed in this S	Section: Material-han	dling activities for coal-
ſ	3. Emissions Unit Ide	ntification Numb	per: EU016		
ľ			6. Initial	7. Emissions Unit	8. Acid Rain Unit?
ĺ		Construction	Startup	Major Group	☐ Yes
	· · · · · · · · · · · · · · · · · · ·	Date: 2/01/06	Date: 11/01/08	SIC Code: 49	⊠ No
	9. Package Unit:				
ſ		Manufacturer: Model Number: 10. Generator Nameplate Rating: MW			
	11. Emissions Unit Con			sists of transport and	d storage of coal and
	limestone for FFSG Uni			sists of transport and	storage or coar and
1	1				

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 14 8/31/2006

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

Emissions Unit Control Equipment

1.	Control Equipment/Method(s) Description:
1.	Control Equipment Method(s) Description.
	Dust suppression by water sprays
	Miscellaneous control devices - enclosures
	Dust suppression - traffic control
	bust suppression - traine control
	(Refer to Condition H.3 of the current TV Permit No. 0170004-009-AV, which references
	Progress Energy's Best Management Plan (BMP) for particulate emissions)
	1 rogress Energy's Dest management Flam (Dim) for particulate emissions)
1	
1	
1	
1	
2.	Control Device or Method Code(s): 061
1	· - · · · · · · · · · · · · · · · · · ·

EMISSIONS UNIT INFORMATION

Section [3] MATERIAL-HANDLING ACTIVITIES

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

 Maximum Production Rate: Maximum Heat Input Rate: million Btu/hr Maximum Incineration Rate: pounds/hr tons/day Requested Maximum Operating Schedule:	
4. Maximum Incineration Rate: pounds/hr tons/day 5. Requested Maximum Operating Schedule: 24hours/day 7days/w 52weeks/year 8760hou	
tons/day 5. Requested Maximum Operating Schedule: 24hours/day 7days/w 52weeks/year 8760hou 6. Operating Capacity/Schedule Comment:	
5. Requested Maximum Operating Schedule: 24hours/day 52weeks/year 6. Operating Capacity/Schedule Comment:	
24hours/day 7days/w 52weeks/year 8760hou 6. Operating Capacity/Schedule Comment:	
52weeks/year 8760hou 6. Operating Capacity/Schedule Comment:	
6. Operating Capacity/Schedule Comment:	
	irs/year

EMISSIONS UNIT INFORMATION

Section [3] MATERIAL-HANDLING ACTIVITIES

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Flow Diagram: Various - C		2. Emission Point 7	Type Code:
3.	Descriptions of Emission Barge unloading, rail unloa storage piles and manipula coal yard and limestone ed	ading, coal crushir ation activities, sto	ng, various conveyors	and transfer points,
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission	
5.	Discharge Type Code: F	Stack Height feet	:	7. Exit Diameter: feet
8.	Exit Temperature: 77°F	9. Actual Volur acfm	netric Flow Rate:	10. Water Vapor: %
11.	Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emissi Various feet	on Point Height:
13. Emission Point UTM Coordinates Zone: East (km): North (km):		14. Emission Point I Latitude (DD/M) Longitude (DD/M)	•	
15.	Emission Point Comment: Fugitive emissions at amb			
	•			

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 17 8/31/2006

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1.	Segment Description (Process/Fuel Type): Coal Transport for Units 1 and 2.			
2.	Source Classification Cod	e (SCC):	3. SCC Units: Tons Trans	
4.	Maximum Hourly Rate: 900	5. Maximum 3.118,925	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:
10.	Segment Comment:			
Se	gment Description and Ra	ite: Segment 2	of <u>2</u>	-
1.	Segment Description (Pro			
	Coal Transport for Units 4	สกัน จ		
2.	Source Classification Cod	e (SCC):	3. SCC Units: Tons Trans	
4.	Maximum Hourly Rate: 2,500	5. Maximum 5,076,991	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit
10.	Segment Comment:			L.,

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1.	Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	РМ	061		WP
	PM10	061		WP
				
	 			
<u> </u>				
I				
				<u> </u>
			<u> </u>	
· ·				
ı				_

POLLUTANT DETAIL INFORMATION Page[1] of [1]

PΜ

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: PM	2. Total Perce	ent Efficie	ency of Control:
3. Potential Emissions:		-	netically Limited?
23.3 lb/hour 102	2 tons/year	Y€	es 🛭 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: See Table 2-5			7. Emissions
Reference:			Method Code:
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 2		Period:
tons/year	From: T	o:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	Monitoring 10	
10. Calculation of Emissions: Annual emissions (tons/year) and hourly em ash, and limestone handling. The project's incre limestone handling) is equal to 33.7 TPY. See Ta emissions and 8,760 hours per year.	emental change i	in annual	emissions (coal and
11. Potential Fugitive and Actual Emissions Co	mment:		

POLLUTANT DETAIL INFORMATION Page [1] of [1]

PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM10	2. Total Percent	t Efficiency of Control:	
3. Potential Emissions:	4.	,	
6.4 lb/hour 28. 0	tons/year	☐ Yes	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: See Table 2-5		7. Emissions Method Code:	
Reference:		3	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-	-month Period:	
tons/year	From: To:	•	
9.a. Projected Actual Emissions (if required): tons/year	<u>=</u>	Ionitoring Period: ☐ 10 years	
10. Calculation of Emissions: Annual emissions (tons/year) and hourly em ash, and limestone handling. The project's incredimestone handling) is equal to 10.79 TPY. See Temissions and 8,760 hours per year	emental change in	annual emissions (coal and	
11. Potential Fugitive and Actual Emissions Co.	mment:		

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1. Visible Emissions Subtype:	2. Basis for Allowable Opa	acity:
VE20	⊠ Rule □	Other
3. Allowable Opacity:		
	ceptional Conditions:	%
Maximum Period of Excess Opacity Allowe	ed:	min/hour
4. Method of Compliance: EPA Method 9		
5. Visible Emissions Comment:		
Visible Emissions Limitation: Visible Emissi	ons Limitation of	_
1. Visible Emissions Subtype:	2. Basis for Allowable Opa ☐ Rule ☐	ocity: Other
3. Allowable Opacity:		
	ceptional Conditions:	%
Maximum Period of Excess Opacity Allowe	ed:	min/hour
4. Method of Compliance:		
5. Visible Emissions Comment:		

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-1 Previously Submitted, Date
2.	operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID:
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
	✓ Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
7	Not Applicable Compliance Demonstration Reports/Records
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Not Applicable ■ Not Applicable Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 24 8/31/2006

EMISSIONS UNIT INFORMATION

Section [3]

MATERIAL-HANDLING ACTIVITIES

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
	F.A.C.; 40 CFR 63.43(d) and (e)) Attached, Document ID: Not Applicable
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and
	Rule 62-212.500(4)(f), F.A.C.)
	☐ Attached, Document ID: ⊠ Not Applicable
3.	Description of Stack Sampling Facilities (Required for proposed new stack sampling facilities only)
	☐ Attached, Document ID: ⊠ Not Applicable
Ad	Iditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements
	☐ Attached, Document ID: ☐ Not Applicable
2.	Compliance Assurance Monitoring
	Attached, Document ID: Not Applicable
3.	Alternative Methods of Operation
1	Attached, Document ID: Not Applicable Alternative Modes of Operation (Emissions Trading)
٦.	Attached, Document ID: Not Applicable
5.	Acid Rain Part Application
٠.	Certificate of Representation (EPA Form No. 7610-1)
	☐ Copy Attached, Document ID:
	☐ Acid Rain Part (Form No. 62-210.900(1)(a))
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
	Attached, Document ID:
	Previously Submitted, Date:
	New Unit Exemption (Form No. 62-210.900(1)(a)2.)
	☐ Attached, Document ID: ☐ Previously Submitted, Date:
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
	Attached, Document ID:
	Previously Submitted, Date:
	Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Not Applicable

EMISSIONS UNIT INFORMATION Section [3] MATERIAL-HANDLING ACTIVITIES

Additional Requirements Comment

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised/renewal. Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

EMISSIONS UNIT INFORMATION Section [4] CBO[™] Feed Fly Ash Silo

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	_	V air operation peri	•	ck one, if applying for tem if applying for an	
	emissions The emiss	s unit.		ons Unit Information Sons Unit Information S	
<u>Er</u>	nissions Unit	Description and Sta	atus		
1.	Type of Emis	ssions Unit Addresse	ed in this Section	on: (Check one)	
	process of		activity, which	dresses, as a single em a produces one or mor int (stack or vent).	
	process of		nd activities wh	ich has at least one de	nissions unit, a group of ifinable emission point
				dresses, as a single emes which produce fug	•
2.	Description o	of Emissions Unit Ac	ddressed in this	Section: CBO [™] Feed	Fly Ash Silo
3.	Emissions Ur	nit Identification Num	mber:		
4.	Emissions Unit Status Code:	5. Commence Construction Date: 06/01/07	6. Initial Startup Date: 11/1/08	7. Emissions Unit Major Group SIC Code: 49	8. Acid Rain Unit? ☐ Yes ☐ No
9.	Package Unit Manufacturer			Model Number:	
10.		ameplate Rating:	MW		
11.	. Emissions Ur	nit Comment:			

EMISSIONS UNIT INFORMATION Section [4] CBO[™] Feed Fly Ash Silo

Emissions Unit Control Equipment

Control Equipment/Method(s) Description: Fabric Filter- Low Temperature
2. Control Device or Method Code(s): 018

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughp	out Rate: 75 tons/hr	
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate:	million Btu/hr	-
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operating	g Schedule:	
		24hours/day	7days/week
		52weeks/year	8,760hours/year
6.	Operating Capacity/Schedule C	Comment:	

EMISSIONS UNIT INFORMATION Section [4]

Section [4] CBO[™] Feed Fly Ash Silo

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Flow Diagram: CBO-001		2. Emission Point 7	Гуре Code:
	Descriptions of Emission N/A ID Numbers or Descriptio			
5	N/A Discharge Type Code:	6. Stack Height		7. Exit Diameter:
٦.	H	93 feet	•	1.3 feet
8.	Exit Temperature: 77 °F	9. Actual Volur 3,040 acfm	netric Flow Rate:	10. Water Vapor: %
11.	Maximum Dry Standard F dscfm	Flow Rate:	12. Nonstack Emissi feet	on Point Height:
13.	Emission Point UTM Coo Zone: East (km):		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)	
1.5	North (km)		Longitude (DD/I	MM/SS)
15.	Emission Point Comment:		•	

EMISSIONS UNIT INFORMATION Section [4] CBOTM Feed Fly Ash Silo

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

1.	Segment Description (Proc Feed Fly Ash Storage	cess/Fuel Type):			
2.	Source Classification Cod 3-05-009-99	e (SCC):	3. SCC Units: Tons Trans		ed or Handled
4.	Maximum Hourly Rate: 75	5. Maximum . 320,000	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10.	Segment Comment:				
Se	gment Description and Ra	ite: Segment	of		
1.	Segment Description (Prod	cess/Fuel Type):			
2.	Source Classification Cod	e (SCC):	3. SCC Units:		
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10.	Segment Comment:				

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1.	Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	PM	018		NS
	PM10	018		NS
		_		
				_
		-		
				
\vdash		_	-	
				_
		<u>.</u>		
				-
			_	
			_	

POLLUTANT DETAIL INFORMATION Page [1] of [2]

PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM	2. Total Percent Effice 99 percent	ciency of Control:
3. Potential Emissions: 0.3 lb/hour 1.		nthetically Limited?
	<u> </u>	Yes 🛛 No
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor: 0.01 gr/dscf		7. Emissions Method Code:
Reference: Vendor Data		2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mon	th Period:
tons/year	From: To:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monito ☐ 5 years ☐ 1	-
10. Calculation of Emissions: See Table 2-4 for emission rate calculations		
11. Potential Fugitive and Actual Emissions Co	mment:	

POLLUTANT DETAIL INFORMATION Page [1] of [2] PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	RULE	2.	Emissions:
3.	Allowable Emissions and Units: 5% Opacity	4.	Equivalent Allowable Emissions: 0.3 lb/hour 1.1 tons/year
	Method of Compliance: EPA Reference Method 9		
6.	Allowable Emissions Comment (Description Rule 62-297.620(4), F.A.C.	of (Operating Method):
Al	lowable Emissions Allowable Emissions	c	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
All	lowable Emissions Allowable Emissions	c	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of	Operating Method):

POLLUTANT DETAIL INFORMATION Page [1] of [2]

PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: PM10	2. Total Percent Efficience 99 percent	ency of Control:
3. Potential Emissions:	4. Syntl	netically Limited?
0.3 lb/hour 1.	1 tons/year	es 🛛 No
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor: 0.01 gr/dscf		7. Emissions
Reference: Vendor Data		Method Code: 2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:
tons/year	From: To:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitori ☐ 5 years ☐ 10	_
10. Calculation of Emissions: See Table 2-4 for emission rate calculations		
11. Potential Fugitive and Actual Emissions Co	mment:	

POLLUTANT DETAIL INFORMATION Page [1] of [2] PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	5% Opacity	0.3 lb/hour 1.1 tons/year
5.	Method of Compliance: EPA Reference Method 9	
	LI A Reference method 3	
6.	Allowable Emissions Comment (Description	n of Operating Method):
	Rule 62-297.620(4), F.A.C.	,
	Jamahla Emissiona Allamahla Emissiona	· · · · · · · · · · · · · · · · · · ·
-	lowable Emissions Allowable Emissions	
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
		lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	n of Operating Method):
All	owable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
		lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	of Operating Method):

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE05	2. Basis for Allowable ⊠ Rule	Opacity: ☐ Other
3.	Allowable Opacity: Normal Conditions: 5 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance: EPA Reference Met	hod 9	
5.	Visible Emissions Comment: Rule 62-297.62	20(4), F.A.C.	
_			
<u>Vi</u>	sible Emissions Limitation: Visible Emissi	ons Limitation of _	
1.	Visible Emissions Subtype:	2. Basis for Allowable ☐ Rule	Opacity:
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance:	,	
5.	Visible Emissions Comment:		

EMISSIONS UNIT INFORMATION Section [4] CBO[™] Feed Fly Ash Silo

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

<u></u>	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	☐ Rule ☐ Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
,,	Continuous Monitor Comment:	
_		
<u>C</u>	ontinuous Monitoring System: Continuous	Monitor of
	Parameter Code:	Monitor of 2. Pollutant(s):
	Parameter Code:	
1.	Parameter Code: CMS Requirement:	2. Pollutant(s):
1. 3.	Parameter Code: CMS Requirement: Monitor Information	2. Pollutant(s):
1. 3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s):

EMISSIONS UNIT INFORMATION Section [4] CBOTM Feed Fly Ash Silo

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-2 Previously Submitted, Date			
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: NA Previously Submitted, Date			
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Section 2.3 Previously Submitted, Date			
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)			
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable			
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested:			
☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:				
	To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:			
	Not Applicable			
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.			
7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable			

EMISSIONS UNIT INFORMATION Section [4] CBOTM Feed Fly Ash Silo

Additional Requirements for Air Construction Permit Applications

1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),			
F.A.C.; 40 CFR 63.43(d) and (e))			
☐ Attached, Document ID: Section 2.3 ☐ Not Applicable			
2. Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d),	F.A.C., and		
Rule 62-212.500(4)(f), F.A.C.)			
☐ Attached, Document ID: ☐ Not Applicable			
3. Description of Stack Sampling Facilities (Required for proposed new stack	sampling		
facilities only)			
☐ Attached, Document ID: ☐ ☐ Not Applicable			
Additional Requirements for Title V Air Operation Permit Applications			
1. Identification of Applicable Requirements			
Attached, Document ID: Not Applicable			
2. Compliance Assurance Monitoring			
Attached, Document ID: Not Applicable			
3. Alternative Methods of Operation			
Attached, Document ID: Not Applicable			
4. Alternative Modes of Operation (Emissions Trading)			
Attached, Document ID: Not Applicable			
5. Acid Rain Part Application			
Certificate of Representation (EPA Form No. 7610-1)			
☐ Copy Attached, Document ID: Acid Rain Part (Form No. 62-210.900(1)(a))			
Acta Kain Fart (Form No. 62-210.900(1)(a))			
☐ Previously Submitted, Date:			
Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)			
Attached, Document ID:			
Previously Submitted, Date:			
☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)			
Attached, Document ID:			
Previously Submitted, Date:			
☐ Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)			
☐ Attached, Document ID:			
☐ Previously Submitted, Date:			
☐ Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)			
☐ Attached, Document ID:			
☐ Previously Submitted, Date:			
☐ Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)			
Attached, Document ID:			
Previously Submitted, Date:			
☐ Not Applicable			

Additional Requirements Comment

EMISSIONS UNIT INFORMATION

Section [4] CBO[™] Feed Fly Ash Silo

EMISSIONS UNIT INFORMATION Section [5] CBOTM Product Fly Ash Storage Dome

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form path & file name (Updated From Properties Menu)
Effective: 02/02/06 13 8/31/2006

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)						
	 ☑ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☐ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 						
<u>E</u> r	nissions Unit	Description and St	tatus				
1.	Type of Emi	ssions Unit Address	sed in this Section	n: (Check one)			
	☐ This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).						
	☐ This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.						
	☐ This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.						
2.	2. Description of Emissions Unit Addressed in this Section: CBO [™] Feed Fly Ash Storage Dome						
3.	Emissions U	nit Identification Nu	ımber:				
4.	Emissions Unit Status Code: C	5. Commence Construction Date: 06/01/07	6. Initial Startup Date: 11/1/08	7. Emissions Unit Major Group SIC Code: 49	8. Acid Rain Unit? ☐ Yes ☑ No		
9.	9. Package Unit: Manufacturer: Model Number:						
10	10. Generator Nameplate Rating: MW						
11.	11. Emissions Unit Comment:						

EMISSIONS UNIT INFORMATION Section [5] CBOTM Product Fly Ash Storage Dome

Emissions Unit Control Equipment

			_				
	1.	Control Equipment/Method(s) Description: Fabric Filter- Medium Temperature					
		, and a succession of the succ					
)				
			•				
	2	Control Device or Method Code(s): 017					
ı	٠-	. Control Dollor of Motion Control of the					

EMISSIONS UNIT INFORMATION

Section [5] CBOTM Product Fly Ash Storage Dome

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	1. Maximum Process or Throughput Rate: 75 tons/hr				
2.	Maximum Production Rate:				
3.	Maximum Heat Input Rate:	million Btu/hr			
4.	Maximum Incineration Rate:	pounds/hr			
		tons/day			
5.	Requested Maximum Operatin	g Schedule:			
		24hours/day	7days/week		
		52weeks/year	8,760hours/year		
6.	Operating Capacity/Schedule C	Comment:			
	*				
l					

EMISSIONS UNIT INFORMATION

Section [5] CBOTM Product Fly Ash Storage Dome

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Flow Diagram: CBO-002	Plot Plan or	2. Emission Point 7	Type Code:	
4.	3. Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking: N/A 1. ID Numbers or Descriptions of Emission Units with this Emission Point in Common: N/A				
5.	Discharge Type Code: H	6. Stack Height 106 feet	•	7. Exit Diameter: 2.2 feet	
8.	Exit Temperature: 200 °F	9. Actual Volur 7,600 acfm	netric Flow Rate:	10. Water Vapor: %	
11.	Maximum Dry Standard F 6,000 dscfm	low Rate:	12. Nonstack Emissi feet	on Point Height:	
13.	Emission Point UTM Coo Zone: East (km): North (km)		14. Emission Point I Latitude (DD/MI Longitude (DD/M	·	
15.	Emission Point Comment:				

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

1.	Segment Description (Process/Fuel Type): Product Fly Ash Storage					
2.	Source Classification Code 3-05-009-99	e (SCC):	3. SCC Units: Tons Trans		ed or Handled	
4.	Maximum Hourly Rate: 75	5. Maximum 2 320,000	Annual Rate:	6.	Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:	
10.	. Segment Comment:	<u>. </u>				
Seg	gment Description and Ra	te: Segment	of			
1.	1. Segment Description (Process/Fuel Type):					
	Carrier Charles Carlon Carl	- (0,00)	2 900 11-1-1-			
2.	Source Classification Code	e (SCC):	3. SCC Units:			
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum ⁶	% Ash:	9.	Million Btu per SCC Unit:	
10.	Segment Comment:			1.		

EMISSIONS UNIT INFORMATION

Section [5] CBOTM Product Fly Ash Storage Dome

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

		Regulatory Code
<i>'</i>		NS
,		NS
		·
-		
_		
_		
-	-	
_	-	
-		_
	_	

PΜ

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM	-, -:, -:,	
3. Potential Emissions:	4. S	enthetically Limited?
0.5 lb/hour 2. 3	3 tons/year □	Yes 🛛 No
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor: 0.01 gr/dscf		7. Emissions
Reference: Vendor Data		Method Code:
	01 D 11 04	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mo	nth Period:
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monit	•
tons/year	☐ 5 years ☐	10 years
10. Calculation of Emissions:		
See Table 2-4 for emission rate calculations		
11 Detential Exciting and Astrol Essistence Co		
11. Potential Fugitive and Actual Emissions Con	mment:	

PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable	Emissions	Allowable	Emissions 1	of 1
Alluwabic	EMINOSIONS	Allowabic	THIRDSIONS I	OI I

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of A Emissions:	Allowable	
3.	Allowable Emissions and Units: 5% Opacity	4.	Equivalent Allowable Em 0.5 lb/hour	issions: 2.3 tons/year	
5.	Method of Compliance: EPA Reference Method 9				
	6. Allowable Emissions Comment (Description of Operating Method): Rule 62-297.620(4), F.A.C.				
_ <u>All</u>	owable Emissions Allowable Emissions	(of	_	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of A Emissions:	Allowable	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Em lb/hour	issions: tons/year	
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):		
<u>All</u>	owable Emissions Allowable Emissions	c	f		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of A Emissions:	Allowable	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Em lb/hour	issions: tons/year	
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of	Operating Method):		

PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM10	l l		ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
0.5 lb/hour 2.3	tons/year		es 🛛 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.01 gr/dscf Reference: Vendor Data			7. Emissions Method Code: 2
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline :	24-month Γο:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 yea	Monitorii irs □ 10	•
10. Calculation of Emissions: See Table 2-4 for emission rate calculations			
11. Potential Fugitive and Actual Emissions Co.	mment:		

Section [5]
CBOTM Product Fly Ash Storage Dome

POLLUTANT DETAIL INFORMATION Page [1] of [2]

PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u> Allowable Emissio</u>	<u>ns</u> Allowable	Emissions <u>1</u> of <u>1</u>	

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Allo Emissions:	wable
3.	Allowable Emissions and Units: 5% Opacity	4.	Equivalent Allowable Emissi 0.5 lb/hour 2.3	ons: tons/year
5.	Method of Compliance: EPA Reference Method 9	_		
6.	6. Allowable Emissions Comment (Description of Operating Method): Rule 62-297.620(4), F.A.C.			
<u>Al</u>	lowable Emissions Allowable Emissions	0	f	
1.	Basis for Allowable Emissions Code:	.2.	Future Effective Date of Allo Emissions:	wable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissi lb/hour	ons: tons/year
5. 6.	Method of Compliance: Allowable Emissions Comment (Description	of(Inerating Method):	
0.			Sperating Method).	
Al	lowable Emissions Allowable Emissions	0	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allo Emissions:	wable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissi lb/hour	ons: tons/year
	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of	Operating Method):	

Section [5] CBOTM Product Fly Ash Storage Dome

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE05	2. Basis for Allowable Opacity ⊠ Rule □ Oth	
3.	Allowable Opacity: Normal Conditions: 5 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance: EPA Reference Met	hod 9	
5.	Visible Emissions Comment: Rule 62-297.62	20(4), F.A.C.	
<u>Vis</u>	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity Rule Oth	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

EMISSIONS UNIT INFORMATION Section [5] CBOTM Product Fly Ash Storage Dome

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

	ontinuous Monitoring System: Continuous	Monitor or	
1.	Parameter Code:	2. Pollutant(s):	
3.	CMS Requirement:	☐ Rule ☐ Other	
4.	Monitor Information Manufacturer:		
	Model Number:	Serial Number:	
5.	Installation Date:	6. Performance Specification Test Date:	
7.	Continuous Monitor Comment:		
Co	Continuous Monitoring System: Continuous Monitor of		
	Parameter Code:	2. Pollutant(s):	
	Parameter Code: CMS Requirement:		
1.	Parameter Code:	2. Pollutant(s):	
1. 3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s):	

Section [5] CBOTM Product Fly Ash Storage Dome

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-2 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: NA Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Section 2.3 Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Not Applicable ■ Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable

Section [5] CBO[™] Product Fly Ash Storage Dome

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
	F.A.C.; 40 CFR 63.43(d) and (e))
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and
	Rule 62-212.500(4)(f), F.A.C.)
	☐ Attached, Document ID: ⊠ Not Applicable
3.	Description of Stack Sampling Facilities (Required for proposed new stack sampling
	facilities only)
	☐ Attached, Document ID: ⊠ Not Applicable
<u>A</u> c	ditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements
	Attached, Document ID: Not Applicable
2.	Compliance Assurance Monitoring
	Attached, Document ID: Not Applicable
3.	Alternative Methods of Operation
	Attached, Document ID: Not Applicable
4.	Alternative Modes of Operation (Emissions Trading)
	Attached, Document ID: Not Applicable
5.	Acid Rain Part Application
	☐ Certificate of Representation (EPA Form No. 7610-1)
	☐ Copy Attached, Document ID:
	☐ Acid Rain Part (Form No. 62-210.900(1)(a))
	Attached, Document ID:
	☐ Previously Submitted, Date:
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
	Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)
	Attached, Document ID:
	Previously Submitted, Date:
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
	Attached, Document ID:
	Previously Submitted, Date:
	Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
	Attached, Document ID:
	Previously Submitted, Date:
	Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
	Attached, Document ID:
	Previously Submitted, Date:
	□ Not Applicable

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

Additional Requirements Comment

EMISSIONS UNIT INFORMATION

Section [5] CBO[™] Product Fly Ash Storage Dome

EMISSIONS UNIT INFORMATION Section [6] **CBO**[™] Product Fly Ash Loadout Storage Silo

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application — Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) - Form path & file name (Updated From Properties Menu) Effective: 02/02/06 13

Section [6] CBO[™] Product Fly Ash Loadout Storage Silo

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.		e V air operation perr		ck one, if applying for tem if applying for an	
	emission The emis	s unit.		ons Unit Information Sons Unit Information S	_
En	nissions Unit	Description and Sta	atus		
1.	Type of Emi	ssions Unit Addresse	ed in this Section	on: (Check one)	
	process o		activity, which	dresses, as a single em a produces one or mor- int (stack or vent).	_
	process o		nd activities wh	ich has at least one de	issions unit, a group of finable emission point
	more pro	cess or production u	nits and activiti	dresses, as a single em es which produce fug	itive emissions only.
2. Sto	2. Description of Emissions Unit Addressed in this Section: CBO [™] Product Fly Ash Loadout Storage Silo				
3.	Emissions U	nit Identification Nu	mber:		
4.	Emissions Unit Status Code: C	5. Commence Construction Date: 06/01/07	6. Initial Startup Date: 11/1/08	7. Emissions Unit Major Group SIC Code: 49	8. Acid Rain Unit? ☐ Yes ☐ No
9.	Package Uni Manufacture			Model Number:	
10.	Generator N	lameplate Rating:	MW		
11	. Emissions U	nit Comment:			

EMISSIONS UNIT INFORMATION Section [6] CBOTM Product Fly Ash Loadout Storage Silo

Emissions Unit Control Equipment

1.	Control Equipment/Method(s) Description: Fabric Filter- Medium Temperature
	ı
2.	Control Device or Method Code(s): 017

Section [6] CBOTM Product Fly Ash Loadout Storage Silo

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Through	put Rate: 75 tons/hr	
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate:	million Btu/hr	
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operatin	g Schedule:	
		24hours/day	7days/week
		52weeks/year	8,760hours/year
6.	Operating Capacity/Schedule C	Comment:	·
		•	
			·

Section [6] CBOTM Product Fly Ash Loadout Storage Silo

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: CBO-003 2. Emission Point Type Code: 2			Гуре Code:	
	3. Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking: N/A 4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common: Product Fly Ash Truck/Rail Loading Silo				
Pro	oduct Fly Ash Truck/Rail Lo	ading			
5.	Discharge Type Code:	6. Stack Height 87feet	:	7. Exit Diameter: 1.9 feet	
8.	Exit Temperature: 200 °F	9. Actual Volur 7,600 acfm	netric Flow Rate:	10. Water Vapor: %	
11.	Maximum Dry Standard I 6,000 dscfm	Flow Rate:	12. Nonstack Emission Point Height: feet		
13.	Emission Point UTM Coo Zone: East (km):		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)		
	North (km)		Longitude (DD/I	MM/SS)	
15.	Emission Point Comment	:			

Section [6] CBOTM Product Fly Ash Loadout Storage Silo

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

1.	Segment Description (Product Fly Ash Storage and					
2.	Source Classification Code 3-05-009-99	e (S	CC):	3. SCC Units: Tons Trans		ed or Handled
4.	Maximum Hourly Rate: 75	5.	Maximum . 320,000	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8.	Maximum '	% Ash:	9.	Million Btu per SCC Unit:
10.	Segment Comment:	•				
Se	gment Description and Ra			of		
1.						
2.	Source Classification Code	e (So	CC):	3. SCC Units:		
4.	Maximum Hourly Rate:	5.	Maximum .	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8.	8. Maximum % Ash:		9.	Million Btu per SCC Unit:
10.	Segment Comment:					

Section [6] CBO™ Product Fly Ash Loadout Storage Silo

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1.	Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	PM	017		NS
	PM10	017		NS
	-			
	_			-
				
				_
	-			
	-			

EMISSIONS UNIT INFORMATION Section [6] CBO™ Product Fly Ash Loadout Storage Silo

POLLUTANT DETAIL INFORMATION [2]

[1] Page of

PΜ

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted:	2. Total Percent Efficie	ency of Control:
PM	99 percent	
3. Potential Emissions:	4. Synth	netically Limited?
0.5 lb/hour 2.	3 tons/year ☐ Ye	es 🛛 No
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor: 0.01 gr/dscf		7. Emissions
		Method Code:
Reference: Vendor Data		2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:
tons/year	From: To:	
9.a. Projected Actual Emissions (if required): tons/year 10. Calculation of Emissions:	9.b. Projected Monitorin ☐ 5 years ☐ 10	•
See Table 2-4 for emission rate calculations		
11. Potential Fugitive and Actual Emissions Co	mment:	

EMISSIONS UNIT INFORMATION Section [6] CBOTM Product Fly Ash Loadout Storage Silo

POLLUTANT DETAIL INFORMATION Page [1] of [2]

РΜ

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Allowable E</u> i	missions	Allowable	Emissions	1	of 1	
----------------------	----------	-----------	------------------	---	------	--

1.	RULE	2.	Emissions:	I Allowable
3.	Allowable Emissions and Units: 5% Opacity	4.	Equivalent Allowable E 0.5 lb/hour	Emissions: 2.3 tons/year
5.	Method of Compliance: EPA Reference Method 9			
6.	Rule 62-297.620(4), F.A.C.			
All	lowable Emissions Allowable Emissions	<u> </u>	<u>f</u>	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date o Emissions:	f Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	Emissions: tons/year
5.6.	Method of Compliance: Allowable Emissions Comment (Description	of	Operating Method):	
All	lowable Emissions Allowable Emissions	0	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date o Emissions:	f Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	Emissions: tons/year
5.	Method of Compliance:			_
6.	Allowable Emissions Comment (Description	of (Operating Method):	

EMISSIONS UNIT INFORMATION Section [6] CBO[™] Product Fly Ash Loadout Storage Silo

POLLUTANT DETAIL INFORMATION Page [1] of [2]

PΜ

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM10	2. Total Percent Efficiency of Control: 99 percent			
3. Potential Emissions: 0.5 lb/hour 2.3	<u> </u>	hetically Limited? es ⊠ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.01 gr/dscf Reference: Vendor Data		7. Emissions Method Code: 2		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-month From: To:	Period:		
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitor ☐ 5 years ☐ 10	•		
10. Calculation of Emissions: See Table 2-4 for emission rate calculations				
11. Potential Fugitive and Actual Emissions Con	mment:			

POLLUTANT DETAIL INFORMATION

Page [1] of [2]

PΜ

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 5% Opacity	4.	Equivalent Allowable En 0.5 lb/hour	nissions: 2.3 tons/year
5.	Method of Compliance: EPA Reference Method 9			
6.	Allowable Emissions Comment (Description Rule 62-297.620(4), F.A.C.	of (Operating Method):	
<u>Al</u>	lowable Emissions Allowable Emissions	0	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En lb/hour	nissions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
<u>Al</u>	lowable Emissions Allowable Emissions	c	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En lb/hour	nissions: tons/year
5.	Method of Compliance:	•	· .	

Section [6] CBO[™] Product Fly Ash Loadout Storage Silo

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE05	2. Basis for Allowable Opacity: ⊠ Rule □ Other	er
3.	Allowable Opacity: Normal Conditions: 5 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance: EPA Reference Met	hod 9	
5.	Visible Emissions Comment: Rule 62-297.62	20(4), F.A.C.	
<u>Vi</u>	sible Emissions Limitation: Visible Emission	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: ☐ Rule ☐ Other	er
	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	ceptional Conditions: ed:	% min/hour
4.	Method of Comphance:		
5.	Visible Emissions Comment:		

Section [6] CBO™ Product Fly Ash Loadout Storage Silo

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

<u>Co</u>	ontinuous Monitoring System: Continuous	Monitor (of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	☐ Rule	Other
4.	Monitor Information Manufacturer:		
	Model Number:	Serial N	Number:
5.	Installation Date:	6. Performano	ce Specification Test Date:
Co	ontinuous Monitoring System: Continuous	Monitor o	of
	Parameter Code:	Monitor o	
	Parameter Code:		
1.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Polluta Rule	Other
 3. 4. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Polluta Rule Serial N	Other Number:
 3. 4. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Polluta Rule Serial N	Other

Section [6] CBOTM Product Fly Ash Loadout Storage Silo

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-2 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: NA Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Section 2.3 Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
	Not Applicable ■ Not Applicable Not Applicable
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute ☐ Attached, Document ID:

Section [6] CBO[™] Product Fly Ash Loadout Storage Silo

Additional Requirements for Air Construction Permit Applications

1.	. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),					
	F.A.C.; 40 CFR 63.43(d) and (e))					
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and					
	Rule 62-212.500(4)(f), F.A.C.)					
	☐ Attached, Document ID: ⊠ Not Applicable					
3.	Description of Stack Sampling Facilities (Required for proposed new stack sampling					
	facilities only)					
	☐ Attached, Document ID: ⊠ Not Applicable					
Ad	ditional Requirements for Title V Air Operation Permit Applications					
1.	Identification of Applicable Requirements					
	Attached, Document ID: Not Applicable					
2. (Compliance Assurance Monitoring					
	Attached, Document ID: Not Applicable					
3.	Alternative Methods of Operation					
	Attached, Document ID: Not Applicable					
4.	Alternative Modes of Operation (Emissions Trading)					
_	Attached, Document ID: Not Applicable					
5.	Acid Rain Part Application					
	Certificate of Representation (EPA Form No. 7610-1)					
	☐ Copy Attached, Document ID: ☐ Acid Rain Part (Form No. 62-210.900(1)(a))					
	Acid Rain Fait (Form No. 02-210.900(1)(a))					
	☐ Previously Submitted, Date:					
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)					
	Attached, Document ID:					
	Previously Submitted, Date:					
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)					
	Attached, Document ID:					
	Previously Submitted, Date:					
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)					
	Attached, Document ID:					
	☐ Previously Submitted, Date:					
	Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)					
	☐ Attached, Document ID:					
	☐ Previously Submitted, Date:					
	Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)					
	Attached, Document ID:					
	Previously Submitted, Date:					
	☐ Not Applicable					

Section [6] CBO TM Product Fly Ash Loadout Storage Silo							
Additional Requirements Comment							

EMISSIONS UNIT INFORMATION Section [7] CBOTM Product Fly Ash Fugitives

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application — Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form path & file name (Updated From Properties Menu)
Effective: 02/02/06 13 8/31/2006

EMISSIONS UNIT INFORMATION Section [7] CBOTM Product Fly Ash Fugitives

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	1. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)						
	 ☐ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☑ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 						
<u>E</u> 1	nissions Unit	Description and Sta	atus				
1.	Type of Emi	ssions Unit Addresse	ed in this Section	n: (Check one)			
	process o		activity, which	dresses, as a single em produces one or mor- int (stack or vent).			
	process o		nd activities wh	ich has at least one de	issions unit, a group of finable emission point		
	more pro	cess or production u	nits and activiti	lresses, as a single emes which produce fug	itive emissions only.		
2.	2. Description of Emissions Unit Addressed in this Section: CBO [™] Product Fly Ash Fugitives						
3.	Emissions U	nit Identification Nu	mber:				
4.	Emissions Unit Status Code: C	5. Commence Construction Date: 06/01/07	6. Initial Startup Date: 11/1/08	7. Emissions Unit Major Group SIC Code: 49	8. Acid Rain Unit? ☐ Yes ☑ No		
9.	Package Unit			Model Number:			
10			MW	11104011141110011			
	10. Generator Nameplate Rating: MW 11. Emissions Unit Comment:						

EMISSIONS UNIT INFORMATION Section [7] CBO™ Product Fly Ash Fugitives

Emissions Unit Control Equipment

1.	Control Equipment/Method(s) Description: Watering of roadways, as neccessary
	Tratering of roadways, as necessary
2	Control Device or Method Code(s): 062

EMISSIONS UNIT INFORMATION Section [7] CBOTM Product Fly Ash Fugitives

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	1. Maximum Process or Throughput Rate: 320,000 tons/yr of product fly ash			
2.	Maximum Production Rate:			
3.	Maximum Heat Input Rate:	million Btu/hr		
4.	Maximum Incineration Rate:	pounds/hr	_	
		tons/day		
5.	Requested Maximum Operatin	g Schedule:		
		24hours/day	7days/week	
		52weeks/year	8,760 hours/year	
6.	Operating Capacity/Schedule C	Comment:		
	,			

EMISSIONS UNIT INFORMATION Section [7] CBO[™] Product Fly Ash Fugitives

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: CBO-004		2.	Emission Point 7	Type Code:
	Descriptions of Emission N/A				
	ID Numbers or Descriptio N/A	ns of Emission Ui	nits v	with this Emission	
5.	Discharge Type Code: F	Stack Height feet	•		7. Exit Diameter: feet
8.	Exit Temperature: °F	9. Actual Volumetric Flow Rate: acfm		ic Flow Rate:	10. Water Vapor: %
11.	Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emission Point Height: feet		
13. Emission Point UTM Coordinates Zone: East (km): North (km):			14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)		
15.	Emission Point Comment:				

EMISSIONS UNIT INFORMATION Section [7] CBOTM Product Fly Ash Fugitives

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

1.	Segment Description (Product Fly Ash Handling	cess/Fuel Type):			
	Garage Classification Co. 1	(900)	2 00011-14-1		
2.	Source Classification Code 3-05-009-99	e (SCC):	3. SCC Units: Tons Trans		ed or Handled
4.	Maximum Hourly Rate: 104	5. Maximum 320,000	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10.	Segment Comment:) two ska re be	and acutalulus	. 42 4	hana of muodust fly and
	Max hourly rate based on 8	trucks per nour	, each containing	j 13 i	tons of product fly asn.
Se	gment Description and Ra	ite: Segment	of		
1.	Segment Description (Prod	cess/Fuel Type):			
2.	Source Classification Code	e (SCC):	3. SCC Units:		
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10.	Segment Comment:				-

EMISSIONS UNIT INFORMATION Section [7] CBO[™] Product Fly Ash Fugitives

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1.	Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	PM	062		NS
_	PM10	062		NS
		•		
		-		
_				
-				
-				
				
1				

POLLUTANT DETAIL INFORMATION

Page [1] of [2]

PΜ

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM	2. Total Percent Effic	iency of Control:				
3. Potential Emissions:		thetically Limited?				
	3tons/year Y	es ⊠ No				
5. Range of Estimated Fugitive Emissions (as	applicable):					
0.0 to 0.2 tons/year						
6. Emission Factor: NA		7. Emissions				
		Method Code:				
Reference: AP-42, Section 13.2.1		3				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	n Period:				
tons/year	From: To:					
9.a. Projected Actual Emissions (if required): tons/year 10. Calculation of Emissions:	9.b. Projected Monitor ☐ 5 years ☐ 10	•				
See Table 2-4 for emission rate calculations						
11. Potential Fugitive and Actual Emissions Comment:						

POLLUTANT DETAIL INFORMATION

Page [1] of [2]

PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Ai	Iowable Emissions Allowable Emissions	c	OI			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allov Emissions:	vable		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissio	ns:		
			lb/hour	tons/year		
	Method of Compliance:					
6.	6. Allowable Emissions Comment (Description of Operating Method):					
<u>Al</u>	lowable Emissions Allowable Emissions	c	of			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allow Emissions:	vable		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissio lb/hour	ns: tons/year		
5.	Method of Compliance:					
6.	6. Allowable Emissions Comment (Description of Operating Method):					
All	lowable Emissions Allowable Emissions	c	f			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allow Emissions:	vable		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissio lb/hour	ns: tons/year		
5.	Method of Compliance:					
6.	Allowable Emissions Comment (Description	of (Operating Method):	_		

EMISSIONS UNIT INFORMATION Section [7] **CBO™** Product Fly Ash Fugitives

POLLUTANT DETAIL INFORMATION

Page [1] of [2]

PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM10	2. Total Percent Efficiency of Control:		ency of Control:		
3. Potential Emissions:		4. Synth	netically Limited?		
lb/hour	tons/year	□Ye	es 🛛 No		
5. Range of Estimated Fugitive Emissions (as	applicable):				
0.0 to 0.2 tons/year					
6. Emission Factor: N/A			7. Emissions		
D. C			Method Code:		
Reference: AP-42, Section 13.2.1			3		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline		Period:		
tons/year	From:	Го:			
9.a. Projected Actual Emissions (if required):	9.b. Projected		-		
tons/year	∐ 5 yea	rs 🗌 10	years		
10. Calculation of Emissions:	-				
See Table 2-4 for emission rate calculations					
11 Potential Engitive and Actual Emissions Co.	mmont:				
11. Potential Fugitive and Actual Emissions Comment:					

PM10

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Al</u>	Allowable Emissions of					
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:					
6.	6. Allowable Emissions Comment (Description of Operating Method):					
<u>Al</u>	lowable Emissions Allowable Emissions	o	f			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:					
6.	6. Allowable Emissions Comment (Description of Operating Method):					
Al	lowable Emissions Allowable Emissions	o	f			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:					
6.	Allowable Emissions Comment (Description	of (Operating Method):			

EMISSIONS UNIT INFORMATION Section [7] CBOTM Product Fly Ash Fugitives

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Vis	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: ☐ Rule ☐ Other	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allow	sceptional Conditions: % ed: min/hou	ır
4.	Method of Compliance:		
5.	Visible Emissions Comment:		
Vi	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: ☐ Rule ☐ Other	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allow	sceptional Conditions: % ed: min/hou	ır
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

Section [7] CBO[™] Product Fly Ash Fugitives

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

Continuous	Continuous Monitoring System: Continuous Monitor of			
1. Paramete	er Code:	2. F	Pollutant(s):	
3. CMS Re	equirement:	\square R	Rule	Other
Manu	Information Ifacturer:	_	G : 137 1	
	Number:		Serial Numbe	
5. Installati	ion Date:	6. F	Performance Spe	cification Test Date:
7. Continuo	ous Monitor Comment:			
Continuous	Monitoring System: Continuous	Monit	or of	
Continuous 1. Paramete			or of . Pollutant(s):	
Paramete CMS Re	er Code:	2		Other
 Paramete CMS Re Monitor 	er Code:	2	. Pollutant(s):	
Paramete CMS Re Monitor Manu	er Code: equirement: Information	2	. Pollutant(s):	☐ Other
Paramete CMS Re Monitor Manu	er Code: quirement: Information facturer: Number:	2 □ R	e. Pollutant(s):	☐ Other

Section [7] CBOTM Product Fly Ash Fugitives

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Figure 2-2 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Section 2.3 Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	· · · · · · · · · · · · · · · · · · ·
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute ☐ Attached, Document ID:

DEP Form No. 62-210.900(1) – Form path & file name (Updated From Properties Menu)
Effective: 02/02/06 24 8/31/2006

Section [7] CBOTM Product Fly Ash Fugitives

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
	F.A.C.; 40 CFR 63.43(d) and (e)) ✓ Attached, Document ID: Section 2.3 ☐ Not Applicable
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and Rule 62-212.500(4)(f), F.A.C.)
	☐ Attached, Document ID: ☐ Not Applicable
3	Description of Stack Sampling Facilities (Required for proposed new stack sampling
٦.	facilities only)
	☐ Attached, Document ID: ⊠ Not Applicable
Ad	Iditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements
	☐ Attached, Document ID: ☐ Not Applicable
2. (Compliance Assurance Monitoring
	Attached, Document ID: Not Applicable
3.	Alternative Methods of Operation
	Attached, Document ID: Not Applicable
4.	Alternative Modes of Operation (Emissions Trading)
	Attached, Document ID: Not Applicable
5.	Acid Rain Part Application
	Certificate of Representation (EPA Form No. 7610-1)
	Copy Attached, Document ID:
	Acid Rain Part (Form No. 62-210.900(1)(a))
	Attached, Document ID:
	☐ Previously Submitted, Date: ☐ Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
	Attached, Document ID:
	Previously Submitted, Date:
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)
	Attached, Document ID:
	Previously Submitted, Date:
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
	Attached, Document ID:
	Previously Submitted, Date:
	☐ Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
	☐ Attached, Document ID:
	☐ Previously Submitted, Date:
	☐ Not Applicable

Section [7] CBOTM Product Fly Ash Fugitives Additional Requirements Comment

EMISSIONS UNIT INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form path & file name (Updated From Properties Menu)

Effective: 02/02/06 13 8/31/2006

Section [8] CBOTM Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

A. GENERAL EMISSIONS UNIT INFORMATION

1. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or

Title V Air Operation Permit Emissions Unit Classification

	renewal Title permit or FE	-	nit. Skip this i	tem if applying for an	air construction
	 ☑ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☑ The emissions unit addressed in this Emissions Unit Information Section is an 				
		ted emissions unit.			
En	nissions Unit	Description and Sta	atus		
1.	Type of Emi	ssions Unit Addresse	ed in this Section	on: (Check one)	
	process of		activity, which	dresses, as a single em produces one or more int (stack or vent).	
	process o		nd activities wh	ich has at least one de	issions unit, a group of finable emission point
	more pro	cess or production u	nits and activiti	dresses, as a single em es which produce fug	itive emissions only.
2. Co	Descripti mbustor (FBC	on of Emissions Uni) – FBC Return to Un	t Addressed in its 4 and 5	this Section: CBO [™] F	luidized Bed
3.	Emissions U	nit Identification Nur	mber:		
4.	Emissions	5. Commence	6. Initial	7. Emissions Unit	8. Acid Rain Unit?
	Unit Status Code:	Construction Date:	Startup Date:	Major Group SIC Code:	☐ Yes ⊠ No
	C C	06/01/07	11/1/08	49	
9.	Package Uni				
10	Manufacturer: Model Number:				
10. Generator Nameplate Rating: MW					
11.	11. Emissions Unit Comment:				

Section [8] CBOTM Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Emissions Unit Control Equipment

1.	Control Equipment/Method(s) Description: Fabric Filter for CBO. Exhaust ducted through Units 4 and 5 Controls:
	Selective Catalytic Reduction (SCR) Electrostatic Precipitation (ESP) Flue Gas Desulfurization (FGD)
2.	Control Device or Method Code(s): 017, 139, 010, and 067

Section [8] CBO^{TM} Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	. Maximum Process or Throughput Rate:		
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate: 95 n	nillion Btu/hr	
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operating		·
		24hours/day	7days/week
		52weeks/year	8,760hours/year
6.	Operating Capacity/Schedule Co	omment:	_
1			

Section [8] ${\sf CBO}^{\sf TM}$ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on I Flow Diagram: CBO-005	Plot Plan or	2.	Emission Point 7 2	Type Code:
	Descriptions of Emission N/A	Ŷ			
4.	ID Numbers or Descriptio 004-Unit No. 4 Steam Gene 005-Unit No. 5 Steam Gene CBO FBC Return	erator	nits v	with this Emission	Point in Common:
5.	Discharge Type Code: V	Stack Height550 feet	:		7. Exit Diameter: 30.5 feet
8.	Exit Temperature: 130 °F	9. Actual Volum 2,205,195 acf		ic Flow Rate:	10. Water Vapor: %
11.	Maximum Dry Standard F dscfm	low Rate:	12.	Nonstack Emissi feet	on Point Height:
13.	Emission Point UTM Coo Zone: East (km): North (km)		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)		
North (km): Longitude (DD/MM/SS) 15. Emission Point Comment: Stack parameters represent the host steam unit, as exhaust gases for CBO will be vented through either Unit 4 or Unit 5 prior to the SCR System.					

Section [8] CBO^{TM} Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1. Segment Description (Process/Fuel Type):

	Feed fly ash burned in the	CBO FBC		
2.	Source Classification Cod 1-02-002-17	le (SCC):	3. SCC Units Tons Burn	
4.	Maximum Hourly Rate: 75	5. Maximum 320,000	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum 100	% Ash:	9. Million Btu per SCC Unit: 2.76
10	. Segment Comment:			
Se	gment Description and Ra	ate: Segment 2 o	of <u>2</u>	
1.	Distillate fuel oil burned in	the CBO FBC (st		
		the CBO FBC (st	3. SCC Units	s: Gallons Burned
2.	Distillate fuel oil burned in Source Classification Cod	the CBO FBC (st	3. SCC Units	
2.	Source Classification Cod 1-02-005-02 Maximum Hourly Rate:	e (SCC):	3. SCC Units Thousand Annual Rate:	Gallons Burned 6. Estimated Annual Activity

Section [8] CBOTM Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	Secondary Control Device Code	4. Pollutant Regulatory Code
РМ	017, 010	067	NS
PM10	017, 010	067	NS
SO2	067		NS
NOx	139		NS
СО			NS
VOC			NS
_	<u>``</u>		
	-		
	-		
<u> </u>	-		
	-		
_			
	-		
	_		•
	-		
-	-		
		_	

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [1]of[6]

PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM	2. Total Perce 98 percent	ent Efficie	ency of Control:
3. Potential Emissions: 2.8 lb/hour 12.	.1tons/year	4. Synth ☐ Ye	netically Limited?
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.028 lb/MMBtu Reference: Vendor Data			7. Emissions Method Code: 5
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 2 From: T	24-month To:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	Monitorii rs □ 10	<u> </u>
10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculations. The 12.1 tons/yr is prior to control with the Units 4 and 5 ESPs. In accordance with the requirements of Rule 62-297.310(7)(a)4.b., F.A.C., PEF proposes to conduct initial and annual PM sampling of the combined CBO return and Units 4 or 5 exhaust			
streams downstream of the Units 4 or 5 FGD control systems, using EPA reference methods. 1. Potential Fugitive and Actual Emissions Comment: Percent efficiency of control, Field No. 2 is a conservative estimate of PM removal for Units 4 and 5 ESP/FGD control system.			

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [1]of[6] PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions	of			
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: 1b/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description of Operating Method):				
Allowable Emissions Allowable Emissions	of			
Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: 1b/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description of Operating Method):				
Allowable Emissions	of			
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description	n of Operating Method):			

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [2]of[6]

PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: PM10	2. Total Perc 99 percent		ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
2.8 lb/hour 12.	1tons/year		es 🛛 No
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 0.028 lb/MMBtu			7. Emissions
			Method Code:
Reference: Vendor Data			5
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	Го:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 yea	Monitorians □ 10	_
10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculation with the Units 4 or 5 ESPs.	culations. The 1	2.1 tons/y	r estimate is prior to
11. Potential Fugitive and Actual Emissions Co Percent efficiency of control, Field No. 2 is a 4 or 5 ESP/FGD control system.		stimate of	PM removal for Units

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [2]of[6]

PM10

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

AI.	Iowable Emissions Allowable Emissions	— ⁽	DI	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:	
			lb/hour tons/ye	ar
5.	Method of Compliance:			
	Allowable Emissions Comment (Description		Operating Method):	
All	lowable Emissions Allowable Emissions		of	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/ye	ar
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of	Operating Method):	
All	owable Emissions Allowable Emissions	c	of	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/ye	ear
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

POLLUTANT DETAIL INFORMATION

Section [8]

CBO™ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [3]of[6]

SO₂

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SO2	 Total Percent Efficiency of Control: 90 percent 		ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
494 lb/hour 2,163 .7	tons/year	□Y€	es 🖾 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 5.2 lb/MMBtu			7. Emissions Method Code:
Reference: Vendor Data			5
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 2	24-month Γο:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 yea	Monitorii rs □ 10	_
10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculate to control with the Units 4 or 5 FGDs.	ulations. The 2	,163.4 tor	ns/yr estimate is prior
PEF proposes to conduct continuous SO2 monit or 5 exhaust streams using the existing SO2 CEI FGD control systems.			
11. Potential Fugitive and Actual Emissions Cor Field is a conservative estimate of SO2 remo		nd 5 FGD	systems.

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

path & file name (Updated From Properties Menu) 26 8/31/2006

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [3]of[6]

SO2

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 5.2 lb/MMBtu	4.	Equivalent Allowable Emissions: 494 b/hour 2,163.7tons/year
	Method of Compliance: CEM		
	Allowable Emissions Comment (Description		
All	lowable Emissions Allowable Emissions		of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of	Operating Method):
All	lowable Emissions Allowable Emissions		of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION

Section [8]

Page

[4]of[6]

CBO™ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

NOx

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: NOx	2. Total Pero 90	ent Efficie	ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
74.3 lb/hour 325.	4 tons/year	□Y€	es 🛮 🖾 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.782 lb/MMBtu Reference: Vendor Data		`	7. Emissions Method Code: 5
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:	24-month To:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	l Monitorii nrs □ 10	_
10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculations of Emissions:	culations. The 3	325.4 tons	/yr estimate is prior to
PEF proposes to conduct continuous NOx moni or 5 exhaust streams using existing NOx CEMS systems.			
11. Potential Fugitive and Actual Emissions Co	mment:		

POLLUTANT DETAIL INFORMATION

Page

[4]of[6]

Section [8] ${\sf CBO^{\sf TM}}$ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

NOx

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.782 lb/MMBtu	4.	Equivalent Allowable Emissions: 74.3 lb/hour 325.4 tons/year
5.	Method of Compliance: CEM		
	Allowable Emissions Comment (Description		
_	lowable Emissions Allowable Emissions Basis for Allowable Emissions Code:		Future Effective Date of Allowable
1.	Dasis for Allowable Emissions Code.	۷.	Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
			lb/hour tons/year
	Method of Compliance: Allowable Emissions Comment (Description	of	Operating Method):
			<u> </u>
Al	lowable Emissions Allowable Emissions		of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	•	
6.	Allowable Emissions Comment (Description	of (Operating Method):

DEP Form No. 62-210.900(1) - Form Effective: 02/02/06

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5 Page

[5]of[6]

CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: CO	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
23.2 lb/hour 101 .	5 tons/year	☐ Ye	es 🖾 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.24 lb/MMBtu Reference: Vendor Data			7. Emissions Method Code: 5
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:	24-month To:	Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected ☐ 5 year	l Monitorii ars □ 10	_
10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calc	culations.	-	
11. Potential Fugitive and Actual Emissions Co	mment:		

POLLUTANT DETAIL INFORMATION

Section [8] ${\sf CBO^{\sf TM}}$ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [5]of[6]

CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.24 lb/MMBtu	4.	Equivalent Allowable Emissions: 23.2lb/hour 101.5tons/year
5.	Method of Compliance: EPA Method 10 on Unit 4 and/ or Unit 5		
	Allowable Emissions Comment (Description		
Al	lowable Emissions		of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
Al	lowable Emissions Allowable Emissions	(of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

POLLUTANT DETAIL INFORMATION

Section [8]

Page [6]of[6]

CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: VOC	2. Total Percent Efficie	ency of Control:
3. Potential Emissions:	4. Synth	netically Limited?
1.8 lb/hour 7.5	8 tons/year	es 🛚 No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 0.018 lb/MMBtu		7. Emissions
		Method Code:
Reference: Vendor Data		5
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:
tons/year	From: To:	
9.a. Projected Actual Emissions (if required): tons/year 10. Calculation of Emissions: See Tables 2-4 and 2-6 for emission rate calculation	9.b. Projected Monitori 5 years 10	_
11. Potential Fugitive and Actual Emissions Co	mment:	-

POLLUTANT DETAIL INFORMATION

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Page [6]of[6]

VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	- /
Allowable Emissions Allowable Emissions	
Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	of Operating Method):
Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	of Operating Method):

Section [8] CBO™ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE20	2. Basis for Allowable Opacity: ☐ Rule ☐ Oth	
	Maximum Period of Excess Opacity Allowe		% min/hour
4.	Method of Compliance: EPA Reference Met	hod 9	
5.	Visible Emissions Comment: Rule 62-297.62	20(4), F.A.C.	
<u>Vis</u>	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: Rule	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	cceptional Conditions:	% min/hour
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

Section [8] ${\sf CBO^{\sf TM}}$ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

<u>C</u>	ontinuous Monitoring System: Continuous	Moı	onitor of
1.	Parameter Code:	2.	Pollutant(s):
3.	CMS Requirement:		Rule Other
4.	Monitor Information Manufacturer:		
	Model Number:		Serial Number:
5.	Installation Date:	6.	Performance Specification Test Date:
	····		_
<u>Co</u>	ontinuous Monitoring System: Continuous	Moi	onitor of
	Parameter Code:	Mor	onitor of 2. Pollutant(s):
	Parameter Code: CMS Requirement:	Mon	
1.	Parameter Code:	Mon	2. Pollutant(s):
3.	Parameter Code: CMS Requirement: Monitor Information	Mon	2. Pollutant(s):
3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	Moi	2. Pollutant(s): Rule

Section [8] CBOTM Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit			
	revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought)			
	✓ Attached, Document ID: Figure 2-2 Previously Submitted, Date			
2				
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within			
	the previous five years and would not be altered as a result of the revision being sought)			
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title			
	V air operation permit revision applications if this information was submitted to the department			
	within the previous five years and would not be altered as a result of the revision being sought)			
	Attached, Document ID: PSD Report, Section 2.3 Previously Submitted, Date			
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except			
	Title V air operation permit revision applications if this information was submitted to the			
	department within the previous five years and would not be altered as a result of the revision being sought)			
	☐ Attached, Document ID: ☐ Previously Submitted, Date			
	Not Applicable (construction application)			
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within			
	the previous five years and would not be altered as a result of the revision being sought)			
	Attached, Document ID: Previously Submitted, Date			
	Not Applicable Not Applicable			
6.	Compliance Demonstration Reports/Records			
٠.	Attached, Document ID:			
	Test Date(s)/Pollutant(s) Tested:			
	☐ Previously Submitted, Date:			
	Test Date(s)/Pollutant(s) Tested:			
	· · · · · · · · · · · · · · · · · · ·			
	To be Submitted, Date (if known):			
	Test Date(s)/Pollutant(s) Tested:			
	Not Applicable ■			
	Note: For FESOP applications, all required compliance demonstration records/reports must be			
	submitted at the time of application. For Title V air operation permit applications, all required			
	compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.			
7				
7.	Other Information Required by Rule or Statute			
	☐ Attached, Document ID:			

Section [8] CBO[™] Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),			
	F.A.C.; 40 CFR 63.43(d) and (e))			
<u> </u>	Attached, Document ID: PSD Report, Section 2.3 Not Applicable			
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and Rule 62-212.500(4)(f), F.A.C.)			
	☐ Attached, Document ID: ☐ Not Applicable			
3	Description of Stack Sampling Facilities (Required for proposed new stack sampling			
5.	facilities only)			
	☐ Attached, Document ID: ⊠ Not Applicable			
<u>A</u> (dditional Requirements for Title V Air Operation Permit Applications			
1.	Identification of Applicable Requirements			
	☐ Attached, Document ID: ☐ Not Applicable			
2.	Compliance Assurance Monitoring			
	Attached, Document ID: Not Applicable			
3.	Alternative Methods of Operation			
_	Attached, Document ID: Not Applicable			
4.	Alternative Modes of Operation (Emissions Trading)			
	Attached, Document ID: Not Applicable			
5.	Acid Rain Part Application			
	Certificate of Representation (EPA Form No. 7610-1)			
	Copy Attached, Document ID:			
	☐ Acid Rain Part (Form No. 62-210.900(1)(a)) ☐ Attached, Document ID:			
	Previously Submitted, Date:			
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)			
	Attached, Document ID:			
	Previously Submitted, Date:			
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)			
	Attached, Document ID:			
	Previously Submitted, Date:			
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)			
	☐ Attached, Document ID:			
	☐ Previously Submitted, Date:			
	☐ Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)			
	☐ Attached, Document ID:			
	Previously Submitted, Date:			
	Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)			
	Attached, Document ID:			
	☐ Previously Submitted, Date:			
	☐ Not Applicable			

Section [8] ${\sf CBO}^{\sf TM}$ Fluidized Bed Combustor (FBC) – FBC Return to Units 4 and 5 **Additional Requirements Comment**

EMISSIONS UNIT INFORMATION

APPENDIX A

EXPECTED PERFORMANCE AND EMISSION INFORMATION

TABLES A-1 – A-27

TABLE A-1
UNIT 4 ACTUAL 2001 EMISSIONS RATES

Average 2001 Data:

Heat Input
Operating Hours
Coal Sulfur Content
Coal Consumption

46,720,863 MMBtu/yr (HHV)
8,381 hr/yr
0.69 weight percent S
1,892,573 tpy

Pollutant	Emissions Rate		
	lb/MMBtu	lb/hr	tpy
SO ₂ *	1.065	5,938.7	24,886
NO _x *	0.475	2,648.1	11,097
CO‡	0.020	114.1	478
VOCs‡	0.002	13.6	57
PM†	0.013	72.5	304
PM ₁₀ **	0.009	48.6	203
H ₂ SO ₄ mist	0.001	6.7	28

^{*}CEMS Data.

Sources: AOR, 2001.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM * 0.67.

TABLE A-2
UNIT 4 ACTUAL 2002 EMISSIONS RATES

Average 2002 Data:
Heat Input 39,652,425 MMBtu/yr (HHV)
Operating Hours 6,966 hr/yr
Coal Sulfur Content 0.70 weight percent S
Coal Consumption 1,596,694 tpy

Pollutant	Emissions Rate		
	lb/MMBtu	lb/hr	tpy
SO ₂ *	1.075	6,118.6	21,311
NO _x *	0.472	2,689.1	9,366
CO‡	0.020	116.1	404
VOCs‡	0.003	14.6	51
PM†	0.013	74.0	258
PM ₁₀ **	0.009	49.6	173
H₂SO₄ mist	0.001	6.9	24

^{*}CEMS Data.

Sources: AOR, 2002.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM.

TABLE A-3
UNIT 4 ACTUAL 2003 EMISSIONS RATES

Average 2003 Data:

Heat Input

Operating Hours

Coal Sulfur Content

Coal Consumption

50,470,986 MMBtu/yr (HHV)

8,598 hr/yr

0.70 weight percent S

2,018,650 blend weight percent

Pollutant	Emissions Rate		
	lb/MMBtu	lb/hr	tpy
SO ₂ *	1.066	6,258.4	26,905
NO _x *	0.503	2,951.2	12,687
CO‡	0.020	119.7	515
VOCs‡	0.002	14.2	61
РМ†	0.010	58.7	252
PM ₁₀ **	0.007	39.3	169
H ₂ SO ₄ mist	0.001	7.0	30

^{*}CEMS Data.

Sources:

AOR, 2003.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM.

TABLE A-4
UNIT 4 ACTUAL 2004 EMISSIONS RATES

Average 2004 Data:

Heat Input
Operating Hours
Coal Sulfur Content
Coal Consumption

46,796,141
MMBtu/yr (HHV)
8,341
nr/yr
0.64 weight percent S
1,900,531 tpy

Pollutant	Emissions Rate		
	lb/MMBtu	lb/hr	tpy
SO ₂ *	0.991	5,559.5	23,186
NO _x *	0.481	2,696.6	11,246
CO‡	0.020	114.5	477
VOCs‡	0.002	13.7	57
PM†	0.029	162.7	679
PM ₁₀ **	0.019	109.0	455
H ₂ SO ₄ mist	0.001	6.3	26

^{*}CEMS Data.

Sources: AOR, 2004.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**}PM₁₀ assumed equal to PM.

TABLE A-5
UNIT 4 ACTUAL 2005 EMISSIONS RATES

Average 2000 Data:
Heat Input 50,197,931 MMBtu/yr (HHV)
Operating Hours 8,030 hr/yr
Coal Sulfur Content 0.64 weight percent S
Coal Consumption 2,044,416 tpy

Pollutant	Emissions Rate		
	lb/MMBtu	lb/hr	tpy
SO ₂ *	0.992	6,200.7	24,896
NO _x *	0.465	2,907.1	11,672
CO‡	0.020	127.5	512
VOCs‡	0.002	15.4	62
PM†	0.010	62.5	251
PM ₁₀ **	0.007	41.9	168
H ₂ SO ₄ mist	0.001	7.0	28

^{*}CEMS Data.

Sources: AOR, 2000.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**}PM₁₀ assumed equal to PM.

TABLE A-6
UNIT 5 ACTUAL 2001 EMISSIONS RATES

Average 2001 Data:
Heat Input
42,041,141 MMBtu/yr (HHV)

Operating Hours 7,394 hr/yr

Coal Sulfur Content 0.69 weight percent S

Coal Consumption 1,706,480 tpy

Pollutant	Emissions Rate			
	lb/MMBtu	lb/hr	tpy	
SO ₂ *	1.066	6,063.6	22,417	
NO _x *	0.469	2,664.1	9,849	
CO‡	0.020	116.0	429	
VOCs‡	0.002	13.8	51	
PM†	0.013	73.9	273	
PM ₁₀ **	0.009	49.5	183	
H ₂ SO ₄ mist	0.001	6.8	25	

^{*}CEMS Data.

Sources: AOR, 2001.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM * 0.67.

TABLE A-7
UNIT 5 ACTUAL 2002 EMISSIONS RATES

Average 2002 Data:

Heat Input

44,499,728 MMBtu/yr (HHV)

Operating Hours

7,678 hr/yr

Coal Sulfur Content

0.70 weight percent S

Coal Consumption 1,791,010 tpy

Pollutant	Emissions Rate			
	lb/MMBtu	lb/hr	tpy	
SO ₂ *	1.074	6,223.5	23,892	
NO _x *	0.465	2,693.9	10,342	
CO‡	0.020	118.2	454	
VOCs‡	0.002	14.1	54	
PM†	0.013	75.3	289	
PM ₁₀ **	0.009	50.5	194	
H₂SO₄ mist	0.001	7.0	27	

^{*}CEMS Data.

Sources: AOR, 2002.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM.

TABLE A-8 UNIT 5 ACTUAL 2003 EMISSIONS RATES

Average 2003 Data:	
Heat Input	51,534,299 MMBtu/yr (HHV)
Operating Hours	8,582 hr/yr
Coal Sulfur Content	0.70 weight percent S
Coal Consumption	2,060,970 blend weight percent

Pollutant	Emissions Rate			
	lb/MMBtu	lb/hr	tpy	
SO ₂ *	1.066	6,401.8	27,470	
NO _x *	0.494	2,964.8	12,722	
CO‡	0.020	122.5	526	
VOCs‡	0.002	14.4	62	
PM†	0.023	138.1	593	
PM ₁₀ **	0.015	92.5	397	
H ₂ SO ₄ mist	0.001	7.2	31	

^{*}CEMS Data.

Sources: AOR, 2003.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**} PM_{10} assumed equal to PM.

TABLE A-9 UNIT 5 ACTUAL 2004 EMISSIONS RATES

Average 2004 Data:
Heat Input
Operating Hours
Coal Sulfur Content
Coal Consumption

49,482,991 MMBtu/yr (HHV)
8,492 hr/yr
0.64 weight percent S
2,009,652 tpy

Pollutant	Emissions Rate				
	lb/MMBtu	lb/hr	tpy		
			-		
SO ₂ *	0.990	5,770.4	24,501		
NO _x *	0.464	2,704.4	11,483		
co‡	0.020	118.9	505		
VOCs‡	0.002	14.4	61		
PM†	0.055	320.5	1,361		
PM ₁₀ **	0.037	214.7	912		
H ₂ SO ₄ mist	0.001	6.6	28		

^{*}CEMS Data.

Sources: AOR, 2004.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**}PM₁₀ assumed equal to PM.

TABLE A-10
UNIT 5 ACTUAL 2005 EMISSIONS RATES

Average 2000 Data:

Heat Input 51,213,314 MMBtu/yr (HHV)

Operating Hours 8,231 hr/yr

Coal Sulfur Content 0.64 weight percent S

Coal Consumption 2,088,723 tpy

Pollutant	Emissions Rate				
	lb/MMBtu	lb/hr	tpy		
SO ₂ *	0.993	6,177.4	25,423		
NO _x *	0.466	2,902.0	11,943		
CO‡	0.020	126.9	522		
VOCs‡	0.002	15.3	63		
PM†	0.020	124.4	512		
PM ₁₀ **	0.013	83.4	343		
H ₂ SO ₄ mist	0.001	7.0	29		

^{*}CEMS Data.

Sources: AOR, 2000.

[†]Stack test data.

[‡]AP-42 emission factor.

^{**}PM₁₀ assumed equal to PM.

Table A-11
Annual Emissions - Units 4 and 5

Pollutant	2001 (tpy)	2002 (tpy)	2003 (tpy)	2004 (tpy)	2005 (tpy)
					_
SO ₂	47,303	45,203	54,375	47,687	50,319
NO_x	20,946	19,708	25,409	22,729	23,615
CO	907	858	1,040	982	1,034
VOCs	108	105	123	118	125
PM	577	547	845	2,039	763
PM_{10}	387	366	566	1,366	511
H_2SO_4 mist	53	51	61	54	57
Heat Input	88,762,004	84,152,153	102,005,285	96,279,132	101,411,245

8/31/2006

Table A-12 Highest 2 Year Average - Units 4 and 5

Pol	Pollutant 2001-2002 (tpy)		2002-2003 2003-2004 (tpy) (tpy)		2004-2005 (tpy)	Highest 2 Year Average	
SO	2	46,253	49,789	51,031	49,003	51,031	
NO	D_x	20,327	22,559	24,069	23,172	24,069	
CC)	883	949	1,011	1,008	1,011	
VC)Cs	107	114	121	122	122	
PM	1	562	696	1,442	1,401	1,442	
PM	110	377	466	966	939	966	
H_2	SO₄ mist	52	56	58	56	58	
Не	at Input	86,457,079	93,078,719	99,142,209	98,845,189	99,142,209	

TABLES A-13 --- A-27

MATERIAL HANDLING AND OTHER PM EMISSIONS DATA

TABLE A-13 PAST ACTUAL AND FUTURE POTENTIAL COAL DATA FOR THE CRYSTAL RIVER POWER PLANT

Past Actuals	<u> </u>	Plant at full lo	ad - all year		
	Coal to 1 & 2		Coal to 1 & 2		
	Coal to 4 & 5	5.076,991	Coal to 4 & 5		
6,249,070	000,10 700	8,195,916	554.15 / 4 0		
3,2 .5,5 0		0,100,010		53%	Rail
60%	Percent Rail	95%	Percent Rail 1&2	0070	4,384,536
	Percent Barge		Percent Barge 1&2	47%	Barge
	7 Cloum Burge		Percent Rail 4&5	7170	3811379.8
			Percent Barge 4&5		0011070.0
5%	Percent direct to plant 1&2		Percent direct to plant 1&2		8,195,916
	Percent to ground 1&2		Percent to ground 1&2		0,100,010
	Percent direct to plant 4&5		Percent direct to plant 4&5		
	Percent to ground 4&5		Percent to ground 4&5		
	, ordere to ground had		, order to ground has		
43.389	Barge to Units 1 & 2	7,797	Barge to Units 1 & 2		
	Barge to ground to Units 1& 2	-	Barge to ground to Units 1& 2		
	Barge to Units 4 & 5		Barge to Units 4 & 5		
	Barge to ground to Units 4 & 5		Barge to ground to Units 4 & 8	5	
	g g		3 - 2 - 3		
65,084	Rail to Units 1 & 2	148,149	Rail to Units 1 & 2		
	Rail to ground to Units 1& 2	•	Rail to ground to Units 1& 2		
	Rail to Units 4 & 5		Rail to Units 4 & 5		
	Rail to ground to Units 4 & 5		Rail to ground to Units 4 & 5		
·	•				
8400	t/d to 1&2	8400	Vd to 1&2		
13,000	t/d to 4&5	13,000	Vd to 4&5		
16,000	t/d barge unloading old system	16,000	t/d barge unloading old system	n	
32,000	t/d barge unloading new system		t/d barge unloading new syste		
24,250	t/d train unloading		t/d train unloading		
	-		_		
	Coal (tons/yr)				

	Coal (tons/)	/r)				
Year	Unit	Unit	Unit	Unit		
	1	2	4	5	1&2	4&5
4	866,693	1,138,271	1,900,531	2,009,652	2,004,964	3,910,183
3	991,860	1,101,770	2,018,650	2,060,970	2,093,630	4,079,620
2	1,001,051	1,168,399	1,596,694	1,791,010	2,169,450	3,387,704
1	859,077	1,009,538	1,892,573	1,706,480	1,868,615	3,599,053
0	961,959	845,055	1,719,108	1,949,498	1,807,014	3,668,606
					2 169 450	4 079 620

9700 t/train 2.5 trains/day	222 000 Tana CBS coal inventory	G GGG btulbe - 271 t/b
9700 vitalii 2.5 italiis/qay	333,000 Tons CRS coal inventory	6,666 btu/hr ~ 271 t/h
16 000 t/harge 2 harges/day	540 000 Tons CRN coal inventory	

From Plant:	Current	New Configuration							
	mi/yr	mi/day	hr/yr	hr/d	mi/yr	mi/day	hr/yr	hr/d	mi/hr
Front end loader	21,900	60			43800	120	-	12	10
Scraper	4,200	200			7300	20		2	10
Dozer	3,650	10	724	2	3650	10	730	2	5
Water truck	2,738	8			7300	20		2	10

TABLE A-14
COAL YARD DROP OPERATIONS AND MODELED SOURCE EMISSIONS FOR THE FUTURE OPERATIONS OF THE CRYSTAL RIVER POWER PLANT

egment ID	Description Dr	гор	-													
arge to Units 1 & 2				Daily		Golder Source		Annual Ar	nual Da	ily Da					Daily	Daily
New	Barge to Units 1 & 2		Emissions Emissions Emissions E	Emissions		Source		Emissions Er		ilv Da hissions Em	iiv iissions		Annual A Emissions E		Emissions	
Source	Description	oos	TSP PM10 TSP TPY TPY LB/D	PM10 LB/D				TSP PI	M10 TS				TSP F	PM10	TSP	PM10
B-1	Clamshell to hopper	1 open	0.003332 0.001576 0	0	r	A	A		0.0019	0 18	0	UN1&2 A	0.004	TPY 0.002	LB/D 0.000	LB/D 0.000
B-2	Hopper to belt	2	0.000333 0.000158 0	0	f	A				-	-	barge A	0.073	0.034	0.000	0.000
B-3 TP1-1	Belt to C1 C1 to C2	3	0.000333 0.000158 0 0.000333 0.000158 0	0		A B	В	0.0003	0.0002	0	0	B R	0.000	0.000	0.000	0.000
TP3	C2 to C4A/B	5	0.000333 0.000158 0	o		C	č		0.0002	ŏ	ŏ	Č	0.000	0.003	0.000	0.000
C building C building	C4A/B to surge bin Surge bin to feeder	6	0.000333 0.000158 0	0		E	E	0.0042	0.0021	0	0	C	0.158	0.075	0.000	0.000
C building	Feeder to crusher					E						E E	0.004 0.077	0.002 0.038	0.000	0.000
C building	Crusher to C5 A/B	7 crusher	0.003899 0.001949 0	0	r	E						P12	0.001	0.001	0.000	0.000
Plant Plant	C5 to surge hopper Surge hopper to C7	8 9	0.000333 0.000158 0 0.000333 0.000158 0	0		P12 P12	P12	0.0013	0.0006	0	0	P12	0.024	0.011	0.000	0.000
Plant	C7 to C8	10	0.000333 0.000158 0	0		P12							0.348	0.167	0.000	0.000
Plant	C8 to Silo	11	0.000333 0.000158 0	0		P12										
around (SR) to U	Jnits 1 & 2											UN182 C	0.006	0.003	1.075	0.508
New ·	Barge to ground (SR) to Units 1 & 2					Access to the second						raal C	3.003	1.420	26.359	12.467
Source	Description.											E	1.467 0.077	0.730	0.000 9.475	0.000 4.708
B-1	Clamshell to hopper	1 open	0.063317 0.029947 0	0	f	A	A	0.0760	0.0359	0	0	F	0.006	0.003	1.075	0.508
B-2	Hopper to belt	2	0.006332 0.002995 0 0.006332 0.002995 0	0	f	A						F.	0.115	0.055	2.028	0.959
B-3 TP1-1	Belt to C1 C1 to C2	3 4	0.006332 0.002995 0 0.006332 0.002995 0	0		A B	В	0.0063	0.0030	0	0	M M	0.006 0.115	0.003	1.075 2.028	0.508
TP3	C2 to C3	5	0.006332 0.002995 0	ō		С	č		0.0779	ŏ	ŏ	P12	0.024	0.011	4.298	2.033
SR SR	C3 to SR1 SR1 to SR2	6	0.006332 0.002995 0 0.006332 0.002995 0	0		SR12 C						P12 RAIL	0.462	0.218	0.000 12.895	0.000 6.099
SR	SR1 to SR2 SR2 to coal pile	8 open	0.063317 0.029947 0	0		SR12 C SR12 C						RAIL	1,386	0.034	24,332	11,508
SR	Bucket wheel to SR2	9 open	0.063317 0.029947 0	ŏ		SR12 C										
SR SR	Belt to belt Belt to C3	10 11	0.006332 0.002995 0 0.006332 0.002995 0	0		SR12 C SR12 C							6.741	3.227	84.638	40.258
TP3	C3 to C4A/B	12	0.006332 0.002995 0	0		SR12 C										
C building	C4A/B to surge bin	13	0.006332 0.002995 0	ō		E	E	0.0804	0.0400	0	0	UN1&2 A	0.077	0.036	0.000	0.000
C building C building	Surge bin to feeder Feeder to crusher					E E						TOTAL B	0:006 3.167	0.003	0.000 27.434	0.000 12.975
C building	Crusher to C5 A/B	14 crusher	0.074074 0.037037 0	0	f	E						Ě	1.625	0.809	9.475	4,708
Plant	C5 to surge hopper	15	0.006332 0.002995 0	0		P12	P12	0.0253	0.0120	0	0	F	0.122	0.057	3.102	1.467
Plant Plant	Surge hopper to C7 C7 to C8	16 17	0.006332 0.002995 0 0.006332 0.002995 0	0		P12 P12						M P12	0.122	0.057	3.102 4.298	1,467 2,033
Plant	C8 to Silo	18	0.006332 0.002995 0	ő		P12						RAIL	1.459	0.690		17.607
Units 4 & 5													7.089	3 393	84.638	40.258
New	Barge to Units 4 & 5											CHECK	7.089	3.393		
Source	Description												-x-00000000000000000000000000000000000			
B-1	Clamshell to hopper	1 open	0.937374 0.443353 16.63047	7.865761	r	A	A	1.125	0.532	19.957	9.439					
B-2	Hopper to belt	2	0.093737 0.044335 1.663047		f	A						UN4&5				
B-3 TP1-1	Belt to C1 C1 to C2	3	0.093737 0.044335 1.663047 (0.093737 0.044335 1.663047 (A R	В	0.094	0.044	1.663	0.787	barge A	1.035 0.690	0.489 0.326	19.957 29.167	9.439 13.795
TP3	C2 to C29A	5	0.093737 0.044335 1.663047 (0.786576		Ċ	č	0.094	0.044	1.663	0.787	Ê	0.086	0.041	1.663	0.787
TP 24-1 TP25-1	C29A TO C30A C30A TO C31B	6	0.093737 0.044335 1.663047 (0.093737 0.044335 1.663047 (0.786576		F G	F G	0.094	0.044	1.663 1.663	0.787 0.787	В	0.057 0.086	0.027	2.431 1.663	1.150 0.787
TP25-1	C31B TO C33A	8	0.093737 0.044335 1,663047	0.786576		H	H	0.094	0.044	1,663	0.787	C	0.086	0.041	1.663 2.431	1.150
TP27-1	C33A TO C35A/B	9	0.093737 0.044335 1.663047	0.786576		1	1	0.094	0.044	1.663	0.787	C45	1.095	0.545	14.663	7.287
C building C building	C35A/B to surge bin Surge bin to c feeder	10	0.093737 0.044335 1.663047	0.786576		C45	C45	1.190	0.593	14.663	7.287	C45 F	0.730 0.086	0.363	0.000 1.663	0.000 0.787
C building	Feeder to crusher					C45						F	0.057	0.027	2.431	1.150
C building	Crusher to C36A/B	11 crusher	1.09663 0.548315 13	6.5	ſ	C45	P45	0.294	0.422	4.000	2 202	G	0.086	0.041	1.663	0.787
Plant Plant	C36A/B to C502 C502 to C504	12 13	0.093737 0.044335 1.663047 (0.093737 0.044335 1.663047 (P45 P45	P45	0.281	0.133	4.989	2.360	G H	0.057 0.086	0.027	2.431 1.663	1.150 0.787
Plant	C504 to silo	14	0.093737 0.044335 1.663047			P45						н	0.057	0.027	2.431	1.150
ro. New	Barge to ground (SR) to Units 4 & 5											1	0.086 0.115	0.041 0.054	1.663 2.431	0.787 1,150
Source	Description											JKL	1.437	0.680	31,598	14,945
в.	Classical to become		0.624916 0.295568 24.30606	11 10011				0.750	0.355	29.167	12 705	P45 P45	0.259	0.122	4.989	2.360
B-1 B-2	Clamshell to hopper Hopper to belt	1 open 2	0.624916 0.295568 24.30606 0.062492 0.029557 2.430606		f	Â	A	0.750	0.355	29.16/	13.795	P45	0.172	0.082	0.000	0,000
B-3	Belt to C1	3	0.062492 0.029557 2.430606	1.149611		À							6.338	3.043	124.936	59.443
TP1-1	C1 to C2	4	0.062492 0.029557 2.430606			В	В	0.062	0.030	2.431	1.150					
TP3 TP 24-1	C2 to C29A C29A TO C30A	5 6	0.062492 0.029557 2.430606 0.062492 0.029557 2.430606			C F	C F	0.062	0.030	2.431 2.431	1.150 1.150	UN485 C45	0.426	0.212	0.000	0.000
TP25-1	C30A TO C31B	7	0.062492 0.029557 2.430606	1,149611		G	G	0.062	0.030	2.431	1.150	rail C45	0.284	0.141	0.000	0.000
TP26-1	C31B TO C33A	8	0.062492 0.029557 2.430606	1.149611		н	н	0.062	0.030	2.431	1.150	E.	0.034	0.016	0.000	0.000
TP27-1 SR	C33A TO C34 C34 TO Hopper	9 10	0.062492 0.029557 2.430606 0.062492 0.029557 2.430606	1.149611		j JKL) JKL	0.125 1.562	0.059	2.431 31.598	1.150 14.945	. F	0.022	0.011	0.000	0.000
SR	Hopper to belt	11	0.062492 0.029557 2.430606	1.149611		JKL			230			G	0.022	0.011	0.000	0.000
SR	Belt to belt	12	0.062492 0.029557 2.430606			JKL						H	0.034	0.016	0.000	0.000
SR SR	Belt to coal pile Bucket wheel to belt	13 open 14 open	0.624916 0.295568 24.30606 0.624916 0.295568	11.49611		JKL						H	0.022 0.034	0.011	0.000	0.000
SR	Belt to belt	15	0.062492 0.029557			JKL						i	0.045	0.021	0,000	0.000
SR	Belt to C34	16	0.062492 0.029557			JKL						JKL	0.559	0.264	0.000	0.000
TP27-1 C building	C34 TO C35A/B C35A/B to surge bin	17 18	0.062492 0.029557 0.062492 0.029557			(C45	C45	0.794	0.395	0.000	0.000	M M	0.034	0.016	0.000	0.000
C building	Surge bin to c feeder	•				C45			3.000			P45	0.101	0.048	0.000	0.000
C building	Feeder to crusher	10 -	0.731007 0.365513			C45						P45	0.067	0.032	0.000	0.000
C building Plant	Crusher to C36A/B C36A/B to C502	19 crusher 20	0.731087 0.365543 0.062492 0.029557		,	C45 P45	P45	0.187	0.089	0,000	0.000	RAIL RAIL	0.402 0.268	0.190 0.127	0.000	0.000
	C502 to C504	21	0.062492 0.029557			P45										
Plant Plant	C504 to sile	22	0.062492 0.029557			P45							2,409	1,157	0.000	0.000

	Annual	Annual	Daily	Daily
	Emissions	Emissions	Emissions	Emission
	TSP	PM10	TSP	PM10
	TPY	TPY	LB/D	LB/D
A	1 955	0.925	49 124	23 234
В	0 163	0.077	4.094	1 936
c	3.455	1.634	31.528	14.912
Ē	1.693	0.843	9.475	4,708
F	0.344	0.163	7,196	3.40
G	0.217	0.103	4,094	1,93
H	0.217	0.103	4.094	1.93
1	0.304	0.144	4.094	1.93
JKL	2.170	1.026	31,598	14.94
M	0.187	0.089	3.102	1.46
P12	0.533	0.252	4.298	2.03
P45	0.651	0.308	4.989	2.36
C45	2.755	1.372	14,663	7,28
RAIL	2.249	1.064	37.227	17,60
	16 893	R 101	209 574	99 70

E Rail to Units	New Source	Rail to Units 1 & 2 Description												
	R unloader	Rail car to hooper	rops 1 open	0.063317	0.029947	10.74584 5	5.082491	ť	RAIL	RAIL	0.0760	0.0359	12.8950	6.0990
	R unloader R unloader	V feeder to C10 C10 to C11	2	0.006332	0.002995	1.074584 0	.508249	r	RAIL RAII					
	TP23	C11 to C13	4	0.006332	0.002995	1.074584 0	.508249		M	м	0.0063	0.0030	1.0746	0.5082
	TP24 TP3	C13 to C29B C29B to C4A/B	5 6	0.006332	0.002995	1.074584 0	0.508249 0.508249		F C	F C	0.0063 0.0063	0.0030	1.0746 1.0746	0.5082 0.5082
	C building	C4A/B to surge bin	7			1.074584 0			E	Ĕ	0.0804	0.0400	9.4746	4.7082
	C building C building	Surge bin to feeder Feeder to crusher							E E					
	C building	Crusher to C5 A/B	8 crusher	0.074074		8.4	4.2	r	E					
	Plant Plant	C5 to surge hopper Surge hopper to C7	9 10	0.006332	0.002995	1.074584 0).508249).508249		P12 P12	P12	0.0253	0.0120	4.2983	2.0330
	Plant	C7 to C8	11	0.006332	0.002995	1.074584 0	.508249		P12					
	Plant	C8 to Silo	12	0.006332	0.002995	1.074584 0	0.508249		P12					
-	New Source	Rail to ground (SR) to Units 1 & 2 Description												
Rail to ground														
	R unloader R unloader	Rail car to hooper V feeder to C10	1 open 2	1.203026 0.120303	0.568999	20.27638 9	9.590177	(RAIL RAII	RAIL	1.443631	0.682799	24.33165	11.50821
	Runloader	C10 to C11	3	0.120303	0.0569	2.027638 0	.959018	•	RAIL					
	TP23 TP24	C11 to C13 C13 to C29B	4 5	0.120303 0.120303		2.027638 0 2.027638 0			M F	M F	0.120303 0.120303	0.0569	2.027638 2.027638	0.959018
	TP3	C29B to C3	6	0.120303		2.027638 0			Ć	c			26.35929	
	SR SR	C3 to SR1 SR1 to SR2	7 8	0.120303 0.120303		2.027638 0 2.027638 0			SR12 C SR12 C					
	SR	SR2 to coal pile	9 open	1.203026	0.568999	20.27638 9	9.590177		SR12 C					
	SR SR	Bucket wheel to SR2 Belt to belt	10 open 11	1.203026 0.120303	0.568999				SR12 C SR12 C					
	SR	Belt to C3	12	0.120303	0.0569				SR12 C					
	TP3 C building	C3 to C4A/B C4 A/B to surge bin	13 14	0.120303 0.120303	0.0569				C E	E	1.527718	0.760607	0	0
	C building	Surge bin to feeder		0.120000	0.0000				E	-	1.527710	0.700007	٠	٠
	C building C building	Feeder to crusher Crusher to C5 A/B	15 crusher	1.407415	0 703707			f	E E					
	Plant	C5A/B to surge hooper	16	0.120303	0.0569			·	P12	P12	0.48121	0.2276	0	0
	Plant Plant	Surge hopper to C7 C7 to C8	17 18	0.120303 0.120303	0.0569				P12 P12					
	Plant	C8 to Silo	19	0.120303	0.0569				P12					
	New	Rail to Units 4 & 5												
G	Source	Description												
Rail to Units	R unloader R unloader	Rail car to hooper V feeder to C10	1 open 2	0.364534 0.036453		0	0	ſ	RAIL RAIL	RAIL	0.437	0.207	0.000	0.000
	R unloader	C10 to C11	3	0.036453	0.017241	ŏ	Ö		RAIL					
	TP23 TP24	C11 to C13 C13 to C30A	4 5	0.036453		0	0		M F	M F	0.036 0.036	0.017 0.017	0.000	0.000
	TP25-1	C30A TO C31B	6	0.036453	0.017241	ŏ	ō		G G	Ğ	0.036	0.017	0.000	0.000
	TP26-1 TP27-1	C31B TO C33A C33A TO C35A/B	7 8	0.036453 0.036453	0.017241	0	0		н	H	0.036 0.036	0.017 0.017	0.000	0.000
	C building	C35A/B to surge bin	9	0.036453		ŏ	ŏ		C45	C45	0.463	0.230	0.000	0.000
	C building C building	Surge bin to c feeder Feeder to crusher							C45 C45					
	C building	Crusher to C36A/B	10 crusher	0.426467		0	0	f	C45					
	Plant Plant	C36A/B to C502 C502 to C504	11 12	0.036453		0	0		P45 P45	P45	0.109	0.052	0.000	0.000
	Plant	C504 to silo	13	0.036453	0.017241	ō	ō		P45					
	New	Rail to ground (SR) to Units 4 & 5												
	Source	Description												
	Runloader	Rail car to hopper	1 open	0.243023		0	0	!	RAIL	RAIL	0.292	0.138	0.000	0.000
Rail to groun	R unloader R unloader	V feeder to C10 C10 to C11	2 3	0.024302 0.024302		0	0	ſ	RAIL RAIL					
	TP23	C11 to C13	4	0.024302	0.011494	ō	0		М	M	0.024	0.011	0.000	0.000
	TP24 TP25-1	C13 to C30A C30A TO C31B	5 6	0.024302 0.024302		0	0		F G	F G	0.024 0.024	0.011 0.011	0.000	0.000 0.000
	TP26-1	C31B TO C33A	7	0.024302	0.011494	. 0	0		н	н	0.024	0.011	0.000	0.000
	TP27-1 SR	C33A TO C34 C34 TO Hopper	8 9	0.024302 0.024302		0	0		JKL	i JKL	0.049 0.608	0.023 0.287	0.000	0.000
	SR	Hopper to belt	10	0.024302	0.011494	ō	ō		JKL					
	SR SR	Belt to belt Belt to coal pile	11 12 open	0.024302		0	0		JKL JKL					
	SR	Bucket wheel to belt	13 open	0.243023	0.114943	0	ō		JKL					
	SR SR	Belt to belt Belt to C34	14 15	0.024302 0.024302		0	0		JKL JKL					
	TP27-1	C34 TO C35A/B	16	0.024302	0.011494	0	0		1					
	C building C building	C35A/B to surge bin Surge bin to c feeder	17	0.024302	U.011494	0	0		C45 C45	C45	0.309	0.154	0.000	0.000
	C building	Feeder to crusher	10	0.284244	0 142155	•			C45					
	C building Plant	Crusher to C36A/B C36A/B to C502	18 crusher 19	0.284311 0.024302	0.142156	0	0	f	C45 P45	P45	0.073	0.034	0.000	0.000
	Plant Plant	C502 to C504 C504 to silo	20 21	0.024302 0.024302		0	0		P45 P45					
	r idfil		21	0.024302	U.U 1 1434	3	J		4.75					
				16.893	8.101	209.574	99.701				16,893	8.101	209.574	99.701

UN485	A	1,725	0.816	49,124	23.234
TOTAL	В	0.144	0.068	4,094	1,935
	c	0.144	0.068	4.094	1,936
	F	0.200	0.094	4.094	1.936
	G	0.200	0.094	4.094	1,936
	н	0.200	0.094	4,094	1.936
	1	0.279	0.132	4.094	1,936
	JKL	1.996	0.944	31,598	14,945
	M	0.056	0.026	0.000	0.000
	C45	2.535	1.262	14.663	7,287
	P45	0.599	0.283	4.989	2.360
	RAIL	0.671	0.317	0.000	0.000
		8.747	4,200	124.936	59.443
	CHECK	8.747	4.200	124.936	59.443

TabA-13toA-19 Coal Emissions rev4G.xls

Golder Associates

TABLE A-15
COAL YARD DROP OPERATIONS AND MODELED SOURCE EMISSIONS FOR THE ACTUAL OPERATIONS OF THE CRYSTAL RIVER POWER PLANT

New Source B-1 B-2 B-3	Baroe to Units 1 & 2 Description Or Clamshell to hopper Hopper to bett Belt to C1	ops 1 open 2	TSP TPY 0.01854 0	0.00088	PM10 LB/D 0 0 0 0	!	Golder Source A A		A	Emissions TSP	Emission: E PM10 T	mission: E SP P	laily missions M10 B/D 0	UN1&2 barge	Â	Emissions E TSP F TPY T 0.022 0.423	M10	missions I	Daily Emissions PM10 LB/D 0
TP1-1 TP3 C building C building C building	C1 to C2 C2 to C4A/B C4A/B to surge bin Surge bin to feeder Feeder to crusher	4 5 6	0.00185 0 0.00185 0	0.00088	0 0 0 0 0 0		A B C E E		B C E	0.0019 0.0019 0.0235	0.0009 0.0009 0.0117	0 0 0	0 0 0		B B C C E E	0.002 0.035 0.002 0.916 0.024 0.447	0.001 0.017 0.001 0.433 0.012 0.223	0 0 0	0 0 0 0
C building Plant Plant Plant Plant	Crusher to C5 A/B C5 to surge hooper Surge hooper to C7 C7 to C8 C8 to Silo	7 crusher 8 9 10 11	0.00185 0 0.00185 0 0.00185 0	0.00088 0.00088 0.00088	0 0 0 0 0 0 0 0	f	E P12 P12 P12 P12		P12	0.0074	0.0035	0	0		P12 P12	0.007 0.141 2.0193988	0.004 0.067 0.967	0	0
New Source	Barge to ground (SR) to Units 1 & 2 Description													UN1&2 rail	C C E	0.003 1.374 0.671	0.001 0.650 0.334	1.075 32.713 16.796	0.508 15.472 8.373
B-1 B-2 B-3	Clamshell to hooper Hopper to belt Belt to C1	1 open 2 3		0.01666	0 0 0 0 0 0	f f	A A		A	0.4228	0.2000	0	0		E F M	0.035 0.003 0.053 0.003	0.018 0.001 0.025 0.001	9.475 1.075 0.946 1.075	4.708 0.508 0.448 0.508
TP1-1 TP3 SR SR SR SR SR SR	C1 to C2 C2 to C3 C3 to SR1 SR1 to SR2 SR2 to coal pile Bucket wheel to SR2 Bett to belt	4 5 6 7 8 open 9 open	0.03523 0 0.03523 0 0.03523 0 0.03523 0 0.35234 0	0.01666 0.01666 0.01666 0.01666 0.16665	0 0 0 0 0 0 0 0 0 0 0 0		B C SR12 SR12 SR12 SR12	0000	B C	0.0352 0.9161	0.0167 0.4333	0	0		M P12 P12 RAIL RAIL	0.053 0.011 0.211 0.033 0.634	0.025 0.005 0.100 0.016 0.300	0.946 4.298 3.785 12.895 15.410	0.448 2.033 1.790 6.099 7.289
SR TP3 C building	Belt to C3 C3 to C4A/B C4A/B to surge bin	11 12 13	0.03523 0 0.03523 0	0.01666 0.01666	0 0		SR12 SR12 SR12 E	C C	E	0.4474	0.2228	0	0	UN182	A	3.085	0.210	0.000	48.183
C building C building C building Plant Plant Plant Plant	Surge bin to feeder Feeder to crusher Crusher to C5 A/B C5 to surge hooper Surge hooper C7 to C8 C8 to Silo	14 crusher 15 16 17	0.4122 0.03523 0 0.03523 0 0.03523 0	0.2061 0.01666 0.01666 0.01666	0 0 0 0 0 0	f	E E E P12 P12 P12 P12		P12	0.1409	0.0667	0	0	TOTAL	B C E F M P12 RAIL	0.037 2.295 1.177 0.056 0.056 0.371 0.668	0.018 1.085 0.586 0.026 0.026 0.175 0.316	0.000 33.787 26.271 2.021 2.021 8.083 28.305	0.000 15.980 13.081 0.956 0.956 3.823 13.388
New Source	Barge to Units 4 & 5 Description														CHECK	5.104 5.104		100.488 100.488	48.183 48.183
B-1 B-2 B-3 TP1-1 TP3 TP 24-1 TP25-1 TP26-1 TP27-1 C building C building C building Plant	Clamshell to hooper Hooper to belt Belt to C1 C1 to C2 C2 to C29A C29A TO C30A C30A TO C30B C31B C31B TO C33A C33A TO C35A/B C35A/B to sume bin Sume bin Sume bin Sume bin Scala TO C35A/B C35A/B to 50A/B C35A/B to 50A/B C35A/B to 50A/B C35A/B C35A/B C35A/B to 50A/B C35A/B C35	1 open 2 3 4 5 6 7 8 9 10	0.04673 0.04673 0.04673 0.04673 0.04673 0.04673 0.04673 0.04673	0.22101 16.630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630 0.0221 1.6630	5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658 5 0.78658	,	A A A B C F G H I C45 C45 C45 C45 P45		B C F G H I C45	0.561 0.047 0.047 0.047 0.047 0.047 0.0593	0.265 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	19.957 1.663 1.663 1.663 1.663 1.663 1.663 14.663	9.439 0.787 0.787 0.787 0.787 0.787 7.287	UN4&5 barge	A A B B C C C C C C F F G G	0.561 0.276 0.047 0.023 0.047 0.023 0.593 0.292 0.047 0.023 0.047	0.265 0.131 0.022 0.011 0.022 0.011 0.295 0.146 0.022 0.011	19.957 3.028 1.663 0.235 1.663 0.235 14.663 0.235 1.663 0.235	9.439 1.432 0.787 0.111 0.787 0.111 7.287 0.111 0.787 0.111
Plant New Source	C504 to silo Barge to ground (SR) to Units 4 & 5 Description	14		0.0221 1.6630			P45 P45								H H I JKL P45	0.047 0.023 0.047 0.046 0.575 0.140	0.022 0.011 0.022 0.022 0.272 0.066	1.663 0.235 1.663 0.469 6.290 4.989	0.787 0.111 0.787 0.222 2.975 2.360
B-1 B-2 B-3 TP1-1	Clamshell to hopper Hopper to belt Belt to C1 C1 to C2	1 open 2 3	0.02302 0 0.02302 0	0.10886 2.5585 0.01089 0.2345 0.01089 0.2345 0.01089 0.2345	3 0.11093 3 0.11093	;	A A B		A B	0.276	0.131	3.028 0.235	0.111		P45	0.069 2.949	0.033	0.704	0.333
TP3 TP 24-1 TP25-1 TP26-1 TP27-1 SR CD buildina C buildina	C2 to C29A C29A TO C39A C39A TO C39A C39A TO C31B C31B TO C31A C33A TO C34 C34 TO Hooper Hooper to belt Bett to belt Bett to belt Bett to belt Belt to belt C34 TO C35A C35A TO C35A C35A TO C35AB C35A TO C35AB C35A TO C35AB C35AB to surse bin Surse bin to c feeder	5 6 7 8 9 10 11 12 13 open 14 open 15 16 17 18	0.02302 0 0.02302 0 0.02302 0 0.02302 0 0.02302 0 0.02302 0 0.02302 0 0.02302 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0 0.02305 0	0.01089 0.2345 0.01089 0.2345	3 0.11093 3 0.11093 3 0.11093 3 0.11093 3 0.11093 3 0.11093 3 0.11093 3 1.21012 3 1.21012 3 1.21012 3 0.11093 3 0.11093 3 0.11093		C F G F \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		C F G H I JKL	0.023 0.023 0.023 0.023 0.046 0.575	0.011 0.011 0.011 0.011 0.011 0.022 0.272	0.235 0.235 0.235 0.235 0.235 0.469 6.290	0.111 0.111 0.111 0.111 0.111 0.222 2.975	UN4&5 rail	C45 C45 F G G H I I JKL M	0.890 0.438 0.070 0.035 0.070 0.035 0.070 0.035 0.070 0.069	0.443 0.218 0.033 0.016 0.033 0.016 0.033 0.033 0.408 0.033 0.016	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C building C building Plant Plant	Feeder to crusher Crusher to C36A/B C36A/B to C502 C502 to C504	19 crusher 20 21	0.02302 0 0.02302 0	0.01089 0.2345 0.01089 0.2345	3 0.11093	1	C45 C45 C45 P45 P45		P45	0.069	0.033	0.704	0.333		P45 P45 RAIL RAIL	0.210 0.104 0.841 0.414	0.099 0.049 0.398 0.196	0.000 0.000 0.000	0.000 0.000 0.000 0.000
Plant New	C504 to silo Rail to Units 1 & 2	22	0.02302 0	0.01089 0.2345	3 0.11093		P45									4.318	2.076	0.000	0.000

	SUMMAR	Y		
	Annual	Annual	Daily	Daily
	Emissions	Emissions	Emissions	Emission
	TSP	PM10	TSP	PM10
	TPY	TPY	LB/D	LB/D
A	1.282	0.606	22.984	10.871
В	0.107	0.051	1.898	0.898
С	2.365	1.118		16.878
E	1.177			13.081
F	0.230			1.853
G	0.174			0.898
н	0.174	0.082		0.898
1	0.232	0.110	2.132	1.008
JKL	1.438	0.680	6.290	2,975
M	0.160	0.076	2.021	0.956
P12	0.371	0.175	8.083	3.823
P45	0.523	0.247	5.693	2.693
C45	2.214	1.102	14.898	7.398
RAIL	1.923	0.910	28.305	13.388
	12.371	5.936	161.972	77.615
UN1&2	5.104	2.443	100.488	48.183
UN4&5	7.267	3.492	61,484	29.432
CHECK	12.371	5.936	161.972	77.615

0.837 0.396 22.984 10.871 0.070 0.033 1.898 0.898 0.070 0.033 1.898 0.658 0.174 0.082 1.898 0.898 0.174 0.082 1.898 0.898 0.174 0.082 1.898 0.898 0.174 0.082 1.898 0.898 0.174 0.082 1.898 0.898 0.183 0.890 6.290 2.975 0.105 0.049 0.000 0.000 2.214 1.102 14.898 7.398 0.523 0.247 5.693 2.693 1.255 0.594 0.000 0.000

7.267 3.492 61.484 29.432 7.267 3.492 61.484 29.432

Source	Description															UN4&5	A
Dalaadas	Rail car to hooper	Drops 1 open	0.02782 0.	01216	10 7450	E 00240	f		All		RAIL	0.0334	0.0450	12.8950	6.0990	TOTAL	B C
	V feeder to C10	2	0.02782 0.			0.50825	ŕ		AIL		POAIL	0.0334	0.0100	12.0950	0.0990		F
R unloader	C10 to C11	3	0.00278 0.	.00132	1.07458	0.50825			MIL								Ġ
TP23 TP24	C11 to C13	4				0.50825		M			м	0.0028	0.0013	1.0746	0.5082		н
TP3	C13 to C29B C29B to C4A/B	5 6	0.00278 0. 0.00278 0.			0.50825 0.50825		F			F C	0.0028 0.0028	0.0013	1.0746 1.0746	0.5082 0.5082		JKL I
C building	C4A/B to surge bin	7	0.00278 0.	.00132		0.50825		Ë	í		E	0.0028	0.0013	9.4746	4.7082		M
C building								E									C45
C building C building	Feeder to crusher Crusher to C5 A/B	8 crusher	0.03254 0.	04607	8.4	4.2		Ē									P45
Plant	C5 to surge hopper	9 Grusner	0.03234 0.			0.50825	f	E	: 212		P12	0.0111	0.0053	4.2983	2.0330		RAIL
Plant	Surge hopper to C7	10	0.00278 0.	.00132	1.07458	0.50825			12			0.0111	0.0033	4.2500	2.0330		
Plant	C7 to C8	11	0.00278 0.			0.50825			12								CHECK
Plant	C8 to Silo	12	0.00278 0.	.00132	1.07458	0.50825		Р	12								
New	Rail to ground (SR) to Units 1 & 2 Description																
Source	Description																
	Rail car to hopper	. 1 open	0.5285 0.	24997	13.5176	6.39345	f		AIL		RAIL	0.6342	0.29996	15.41	7.28853		
	V feeder to C10 C10 to C11	2				0.44754	f		RAIL RAIL								
TP23	C11 to C13	4			0.94623	0.44754		Ñ			м	0.05285	0.025	0.94623	0.44754		
TP24	C13 to C29B	5				0.44754		F			F	0.05285		0.94623			
TP3	C29B to C3	6				0.44754		c		_	С	1.37411	0.64992	32.7126	15.4722		
SR SR	C3 to SR1 SR1 to SR2	7 8		0.025	0.94623 0.94623	0.44754 0.44754			R12 R12	C							
SR	SR2 to coal pile	9 open			13.5176	6.39345			R12	Č							
SR	Bucket wheel to SR2	10 open				6.39345			R12	č							
SR	Belt to belt	11			0.94623	0.44754			R12	C							
SR TP3	Belt to C3 C3 to C4A/B	12 13		0.025		0.44754		S	R12	С							
C building	C4 A/B to surge bin	14			0.94623			Ě			E	0.67114	0.33414	16.7962	8.37254		
C building	Surge bin to feeder							Ē			-	•					
C building	Feeder to crusher							E									
C building Plant	Crusher to C5 A/B C5A/B to surge hooper	15 crusher 16		.30915 0.025	15.85 0.94623	7.925 0.44754	f	E	12		P12	0.2114	0.09999	3 78402	1 70017		
Plant	Surge hopper to C7	17			0.94623	0.44754			12		PIZ	0.2114	0.03333	3.76492	1.79017		
Plant	C7 to C8	18			0.94623	0.44754			212								
Plant	C8 to Silo	19	0.05285	0.025	0.94623	0.44754		P	12								
New	Rail to Units 4 & 5																
Source	Description																
	Rail car to hopper	1 open	0.70092 0.		0	0	f		AIL		RAIL	0.841	0.398	0.000	0.000		
	V feeder to C10	2		.03315	0	0	f		RAIL								
R unloader TP23	C10 to C11 C11 to C13	3 4	0.07009 0. 0.07009 0.	.03315 .03315	0	0			AIL A		м	0.070	0.033	0.000	0.000		
TP23	C11 to C13 C13 to C30A	5		.03315	0	0		N. F			M F	0.070	0.033	0.000	0.000		
TP25-1	C30A TO C31B	6		.03315	ō	ŏ		·			G	0.070	0.033	0.000	0.000		
TP26-1	C31B TO C33A	7	0.07009 0.	.03315	0	0					н	0.070	0.033	0.000	0.000		
TP27-1 C building	C33A TO C35A/B C35A/B to surge bin	8 9		.03315 .03315	0	0		ļ	245		1 C45	0.070 0.890	0.033	0.000	0.000		
C building	Surge bin to c feeder	•	0.07009 0.	.03313	U	U			A5 A5		C45	0.090	0.443	0.000	0.000		
C building	Feeder to crusher								245								
C building	Crusher to C36A/B	10 crusher	0.82	0.41	0	0	f		245								
Plant Plant	C36A/B to C502 C502 to C504	11 12	0.07009 0. 0.07009 0.	.03315	0	0			245 245		P45	0.210	0.099	0.000	0.000		
Plant	C504 to silo	13	0.07009 0.		ő	ŏ			45								
New	Rail to ground (SR) to Units 4 & 5																
Source	Description																
P upload-	Rail car to hooper	1 open	0.34523 0.	16320	0	0	,		RAIL		RAIL	0.414	0.196	0.000	0.000		
	V feeder to C10	1 open 2	0.34523 0.		0	0	f		RAIL		KAIL	0.414	0.196	0.000	0.000		
	C10 to C11	3		.01633	ō	o			RAIL								
TP23 TP24	C11 to C13	4 5	0.03452 0. 0.03452 0.	.01633	0	0		N F			M	0.035 0.035	0.016 0.016	0.000	0.000		
TP24 TP25-1	C13 to C30A C30A TO C31B	5 6	0.03452 0.		0	0		Ċ			F G	0.035	0.016	0.000	0.000		
TP26-1	C31B TO C33A	7	0.03452 0.		ō	ŏ		ì			н	0.035	0.016	0.000	0.000		
TP27-1	C33A TO C34	8	0.03452 0.	.01633	Ō	ō		1			1	0.069	0.033	0.000	0.000		
SR	C34 TO Hopper Hopper to belt	9 10	0.03452 0.	.01633	0	0			IKL IKI		JKL	0.863	0.408	0.000	0.000		
SR	Belt to belt	11		.01633	0	0			IKL								
SR	Belt to coal pile	12 open	0.34523 0.	.16328	ō	ŏ			IKL								
SR	Bucket wheel to belt	13 open	0.34523 0.	.16328	0	ō		J	IKL								
SR	Belt to belt	14		.01633	0	0			IKL								
SR TP27-1	Belt to C34 C34 TO C35A/B	15 16		.01633 .01633	0	0		1	IKL								
C building	C35A/B to surge bin	17	0.03452 0.	.01633	ő	ő		Ċ	245		C45	0.438	0.218	0.000	0.000		
C building	Surge bin to c feeder								245								
C building C building	Feeder to crusher Crusher to C36A/B	18 crusher	0.40388 0.	20104	0	0	f		245 245								
Plant	C36A/B to C502	19	0.03452 0.	.01633	ō	ō		F	245		P45	0.104	0.049	0.000	0.000		
Plant	C502 to C504	20	0.03452 0.	.01633	0	0		F	245								
Plant	C504 to silo	21	0.03452 0.	.01633	0	0		F	P45								
			12.371	5.936	161.972	77.615						12.371	5.936	161.972	77.615		

TABLE A-16 COAL YARD EMISSIONS - PAST ACTUAL AND FUTURE POTENTIAL FOR THE CRYSTAL RIVER POWER PLANT

				Past Actual							New	Configuratio	n - plant at	full load all y	/ear	
Segment		Annual	Daily*	Annual Coal Throughput (TPY)	Daily Coal Throughput (TPD)	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	Daily Emissions TSP (LB/Day)	Daily Emissions PM10 (LB/Day)	Annual Coal Throughput (TPY)	Daily Coal Throughpu (TPD)	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	Daily Emissions TSP (LB/Day)	Daily Emissions PM10 (LB/Day)	AP-42 Equations
A	Barge to Units 1 & 2			(17-1)	(IFD)	(11-17	(1171)	(сырау)	(LB/Day)	(171)	(170)	(121)	(121)	(LB/Day)	(LB/Day)	
	Drops inclosed	9	9	43,389	0	0.017	0.008	0.000	0.000	7,797	0	0.003	0.001	0.000	0.000	13.2.4 1/95
	Drops open	1	1	43,389	0	0.019	0.009	0.000	0.000	7,797	Ō	0.003	0.002	0.000	0.000	13.2.4 1/95
	Crusher			43,389	0	0.022	0.011	0.000	0.000	7,797	0	0.004	0.002	0.000	0.000	
В	Barge to ground to Uni	ts 1& 2														
	Drops inclosed	14	6	824,391	0	0.493	0.233	0.000	0.000	148,149	0	0.089	0.042	0.000	0.000	13.2.4 1/95
	Drops open	3	2	824,391	0	1.057	0.500	0.000	0.000	148,149	0	0.190	0.090	0.000	0.000	13.2.4 1/95
	Crusher			824,391	0	0.412	0.206	0.000	0.000	148,149	0	0.074	0.037	0.000	0.000	
С	Barge to Units 4 & 5															
	Drops inclosed	12	12	1,093,338	13,000	0.561	0.265	19.957	9.439	2,193,260	13,000	1.125	0.532	19.957	9.439	13.2.4 1/95
	Drops open	1	1	1,093,338	13,000	0.467	0.221	16.630	7.866	2,193,260	13,000	0.937	0.443	16.630	7.866	13.2.4 1/95
	Crusher			1,093,338	13,000	0.547	0.273	13.000	6.500	2,193,260	13,000	1.097	0.548	13.000	6.500	
D	Barge to ground to Uni															
	Drops inclosed	18	11	538,510	3,000	0.414	0.196	4.222	1.997	1,462,173	19,000	1.125	0.532	26.737		13.2.4 1/95
	Drops open Crusher	3	2	538,510 538,510	3,000 0	0.690 0.269	0.327 0.135	7.676 0.000	3.630 0.000	1,462,173 1,462,173	19,000 0	1.875 0.731	0.887 0.366	48.612 0.000	22.992 0.000	13.2.4 1/95
E	Rail to Units 1 & 2															
_	Drops inclosed	10	10	65,084	8,400	0.028	0.013	10.746	5.082	148,149	8,400	0.063	0.030	10.746	5.082	13.2.4 1/95
	Drops open	1	1	65,084	8,400	0.028	0.013	10.746	5.082	148,149	8,400	0.063	0.030	10.746	5.082	13.2.4 1/95
	Crusher			65,084	8,400	0.033	0.016	8.400	4.200	148,149	8,400	0.074	0.037	8.400	4.200	
F	Rail to ground to Units	1& 2														
	Drops inclosed	15	7	1,236,587	15,850	0.793	0.375	14.193	6.713	2,814,830	15,850	1.805	0.853	14.193	6.713	13.2.4 1/95
	Drops open	3	2	1,236,587	15,850	1.586	0.750	40.553	19.180	2,814,830	15,850	3.609	1.707	40.553		13.2.4 1/95
	Crusher			1,236,587	15,850	0.618	0.309	15.850	7.925	2,814,830	0	1.407	0.704	0.000	0.000	
G	Rail to Units 4 & 5															
	Drops inclosed	11	11	1,640,007	0	0.771	0.365	0.000	0.000	852,934	0	0.401	0.190	0.000	0.000	13.2.4 1/95
	Drops open	1	1	1,640,007	0	0.701	0.332	0.000	0.000	852,934	0	0.365	0.172	0.000	0.000	13.2.4 1/95
	Crusher			1,640,007	0	0.820	0.410	0.000	0.000	852,934	0	0.426	0.213	0.000	0.000	
н	Rail to ground to Units															
	Drops inclosed	17	10	807,765	0	0.587	0.278	0.000	0.000	568,623	0	0.413	0.195	0.000	0.000	13.2.4 1/95
	Drops open	3	2	807,765	0	1.036	0.490	0.000	0.000	568,623	0	0.729	0.345	0.000	0.000	13.2.4 1/95
	Crusher			807,765	0	0.404	0.202	0.000	0.000	568,623	0	0.284	0.142	0.000	0.000	
1	Pyrites															
	Drops inclosed	10	10	2,600	65	0.001	0.001	0.083	0.039	2,600	120	0.001	0.001	0.154		13.2.4 1/95
	Drops open	1	1	2,600	65	0.001	0.001	0.083	0.039	2,600	120	0.001	0.001	0.154	0.073	13.2.4 1/95
	Crusher			2,600	65	0.001	0.001	0.065	0.033	2,600	120	0.001	0.001	0,120	0.060	
	Total					12.375	5.937	162.203	77.726			16.896	8.102	210.001	99.906	

Note: AP-42 13.2.4: lb/ton = k(0.0035) x {[(U/5)^1.3] / [(M/2)^1.4]} where: k = 0.35 for PM10 and 0.74 for TSP, M = 7% Moisture, U = 8.8 MPH for Annual Average and 12 MPH for Daily Average
* The daily value is less because the coal is conveyed to ground.

TABLE A-17
UNPAVED ROAD EMISSIONS FOR THE COAL YARD

					Past Actua	al Emissio	ns					Fı	uture Potent	ial Emissio	ns			
		Vehicle	Vehicle	Hours	Hours				_	Vehicle	Vehicle	Hours	Hours		_			
		Miles	Miles	Per	Per					Miles	Miles	Per	Per					
Original	Original	Traveled	Traveled	Year	Day	Anr	าบอไ	Da	ily	Traveled	Traveled	Year	Day	Ann	ual	Da	aily	
Source	Description	Annual	Daily	Annual	Daily	TSP	PM10	TSP	PM10	Annual	Daily	Annual	Daily	TSP	PM10	TSP	PM10	AP-42
		VMT/YR	VMT/DAY	HR/YR	HR/DAY	TPY	TPY	LB/D	LB/D	VMT/YR	VMT/DAY	HR/YR	HR/DAY	TPY	TPY	LB/D	LB/D	
MR-4	FEL Traffic	5,475	15			1.931	0.448	10.583	2.455	21,900	60			7.726	1.792	42.332	9.821	13.2.2 12/03
		5,475	15			1.178	0.273	6.455	1.498	21,900	60			4.712	1.093	25.821	5.990	13.2.2 12/03
CP-3	Front end loader	5,475	15			1.931	0.448	10.583	2.455					0.000	0.000	0.000	0.000	13.2.2 12/03
		5,475	15			1.178	0.273	6.455	1.498					0.000	0.000	0.000	0.000	13.2.2 12/03
CP-4	Scraper	4,200	200			0.265	0.119	25.250	11.358	7,300	20			0.627	0.475	3.437	2.605	
CP-5	Buildozer			724	2	1.690	0.344	9.339	1.902			730	2	1.704	0.347	9.339	1.902	11.9 10/98
	Water Truck	2,738	8			1.153	0.267	6.315	1.465	7,300	20			3.073	0.713	16.841	3.907	_ 13.2.2 12/03
	,																	•
	Total					9.327	2.174	74.980	22.630					17.843	4.421	97.769	24.225	

New & Old	Equation						
Partical	Partical						
Size	Size				Max		
Multiplier	Multiplier	Sil	Vehicle	Days of	ıys	Control	
TSP	PM10	onto	Weight	Precip	-ec	Efficiency	
		%	TONS	DAYS/YF	RYS	%	
4.9	1.5	3	27	107	0	80	
4.9	1.5	3	9	107	0	80	
4.9	1.5	3	27	107	0	80	
4.9	1.5	3	9	107	0	80	
		3	40	107	0	80	
1	0.75	3			0	80	
4.9	1.5	3	40	107	0	80	

August 2006 053-9555

TABLE A-18
PM10 EMISSIONS MODELED FOR THE FUTURE COAL YARD OPERATIONS FOR THE CRYSTAL RIVER POWER PLANT

	Past Actua	al			New Configura	tion			Past Actua	al	New Configurat	tion
Model	Annual	Annual	Daily	Daily	Annual	Annual	Daily	Daily	Annual	Daily	Annual	Daily
Source		Emissions				s Emissions				Emissions		Emissions
	TSP	PM10	TSP	PM10	TSP	PM10	TSP	PM10	PM10	PM10	PM10	PM 10
	TPY	TPY	LB/D	LB/D	TPY	TPY	LB/D	LB/D	g/s	g/s	g/s	g/s
COAL YARD- PAS	ST ACT & N	EW CONF										
ALL												
Α	1.282		22.984	10.871	1.955				0.017		0.027	
В	0.107		1.898	0.898	0.163		4.094		0.001		0.002	
C	2.365		35.685	16.878	3.455				0.032		0.047	
E F	1.177 0.230		26.271 3.918	13.081 1.853	1.693				0.017 0.003		0.024 0.005	
G G	0.230			0.898	0.344 0.217				0.003		0.003	
Н	0.174			0.898	0.217				0.002		0.003	
<u>'</u> '	0.232		2.132	1.008	0.304		4.094	1.936	0.002		0.003	
JKL	1.438		6.290	2.975	2.170		31.598		0.020		0.030	
M	0.160		2.021	0.956	0.187		3.102		0.002		0.003	
P12	0.371	0.175	8.083	3.823	0.533				0.005		0.007	
P45	0.523		5.693	2.693	0.651		4.989		0.007		0.009	
C45	2.214		14.898	7.398	2.755				0.032		0.039	
RAIL	1.923		28.305	13.388	2.249		37.227	17.607	0.026		0.031	
COAL YARD TOTA	Al 12.371	5.936	161.972	77.615	16.893	8.101	209.574	99.701	0.171	0.407	0.233	0.523
PILE TRAFFIC	9.327	2.174	74.980	22.630	17.843	4.421	97.769	24.225	0.063	0.119	0.127	0.127
TOTAL	21.698	8.109	236.952	100.246	34.736	12.522	307.343	123.926	0.233	0.526	0.360	0.651
COAL YARD FRO	M:											
CR 1 & 2	0.445	0.210	0.000	0.000	0.077	0.036	0.000	0.000	0.006	0.000	0.001	0.000
A	0.445	0.210	0.000	0.000	0.006		0.000	0.000	0.001	0.000	0.001	
B C	2.295	1.085	33.787	15.980	3.167		27.434	12.975	0.001	0.000	0.000	
E	1.177	0.586	26.271	13.981	1.625		9.475	4.708	0.031	0.069	0.043	
F	0.056	0.026	2.021	0.956	0.122		3.102		0.001	0.005	0.023	
M	0.056	0.026	2.021	0.956	0.122		3.102		0.001	0.005	0.002	
P12	0.371	0.020	8.083	3.823	0.122		4.298		0.001		0.002	
RAIL	0.668	0.316	28.305	13.388	1.459		37.227	17.607	0.009		0.020	
Total	5.104	2.443	100.488	48.183	7.089	3.393	84.638	40.258	0.070	0,253	0.098	0.211
CD 4 9 5												
CR 4 & 5 A	0.837	0.396	22.984	10.871	1.725	0.816	49.124	23.234	0.011	0.057	0.023	0.122
В	0.037	0.033	1.898	0.898	0.144		49.124	1.936	0.011	0.057	0.023	
C	0.070	0.033	1.898	0.898	0.144		4.094	1.936	0.001		0.002	
F	0.070	0.033	1.898	0.898	0.144		4.094	1.936	0.001		0.002	
G	0.174	0.082	1.898	0.898	0.200		4.094	1.936	0.002		0.003	
Н	0.174	0.082	1.898	0.898	0.200		4.094	1.936	0.002	-	0.003	
1	0.232	0.110	2.132	1.008	0.279		4.094	1.936	0.002		0.004	
JKL	1.438	0.680	6.290	2.975	1.996		31.598	14.945	0.001		0.027	
M	0.105	0.049	0.000	0.000	0.056		0.000	0.000	0.020		0.001	0.000
C45	2.214	1.102	14.898	7.398	2.535		14.663	7.287	0.032		0.036	
P45	0.523	0.247	5.693	2.693	0.599		4.989	2.360	0.007	0.014	800.0	
RAIL	1.255	0.594	0.000	0.000	0.671		0.000	0.000	0.017		0.009	
	7.267	3,492	61.484	29.432	8.747	4.200	124.936	59,443	0.100	0.155	0.121	0.312

August 2006 053-9555

TABLE A-19
COMPARISON OF PAST ACTUAL PM EMISSIONS TO FUTURE PM EMISSIONS FOR THE COAL YARD FOR THE CRYSTAL RIVER POWER PLANT

	Past Actua	I			New Config	guration - p	lant at full l	oad all yea	r
	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	TSP	Dally Emissions PM10 (LB/Day)	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	TSP	Daily Emissions PM10 (LB/Day)	
Barge to Units 1 & 2	0.0569	0.0275	0.0000	0.0000	0.0102	0.0049	0.0000	0.0000	
Barge to ground to Units	1& 2 1.9625	0.9393	0.0000	0.0000	0.3527	0.1688	0.0000	0.0000	
Barge to Units 4 & 5	1.5747	0.7596	49.5870	23.8047	3.1589	1.5237	49.5870	23.8047	
Barge to ground to Units	4 & 5 1.3740	0.6571	11.8972	5.6270	3.7307	1.7843	75.3488	35.6379	
Rail to Units 1 & 2	0.0882	0.0426	29.8917	14.3650	0.2007	0.0969	29.8917	14.3650	
Rail to ground to Units 1	& 2 2.9966	1.4340	70.5962	33.8185	6.8210	3.2642	54.7462	25.8935	
Rail to Units 4 & 5	2.2919	1.1062	0.0000	0.0000	1.1920	0.5753	0.0000	0.0000	
Rail to ground to Units 4	& 5 2.0265	0.9694	0.0000	0.0000	1.4265	0.6824	0.0000	0.0000	
Pyrites	0.0035	0.0017	0.2313	0.1112	0.0035	0.0017	0.4270	0.2052	
Total	12.4	5.9	162.2	77.7	16.9	8.1	210.0	99.9	•
from Coal Yard workshee	12.4	5.9	162.2	77.7	16.9	8.1	210.0	99.9	SEE COAL YARD-PAST ACT & NEW CONF
PILE TRAFFIC FEL Traffic	1.931 1.178	0.448 0.273	10.583 6.455	2.455 1.498	7.726 4.712	1.792 1.093	42.332 25.821	9.821 5.990	
Front end loader	1.931 1.178	0.448 0.273	10.583 6.455	2.455 1.498	0.000 0.000	0.000	0.000	0.000	
Scraper	0.265	0.119	25.250	11.358	0.627	0.475	3.437	2.605	
Bulldozer	1.690	0.344	9.339	1.902	1.704	0.347	9.339	1.902	
Water Truck	1.153	0.267	6.315	1.465	3.073	0.713	16.841	3.907	
	9.327	2.174	74.980	22.630	17.843	4.421	97.769	24.225	

TABLE A-20 ESTIMATION OF DAILY PM EMISSION FACTORS AND RATES FOR VEHICLE TRAFFIC ON PAVED ROADS

							R	oad Segment ar	d Truck Traff	ic Type							GYPSUM/ WALLBOARD
				ENTRY ROAD				INT	ERIOR (ENT	RY)			INTERIO	OR (NEAR CO	ALPILE)		ENTRY
General Data		Fly Ash from Units 4 & 5 UNLD/LD	Limestone from Units 4 5 UNLD/LD	& Landfill Ash Mining UNLD/LD	Gypsum/ Wallboard UNLD/LD	TOTAL	FA/ Units 4 & 5 UNLD/LD	LS/ Units 4 & 5 UNLD/LD	Landfill Ash Mining UNLD/LD	Gyp/ Wallb UNLD/LD	TOTAL	5	LS/ Units 4 & 5 UNLD/LD	& Landfill Ash Mining UNLD/LD	Gyp/ Wallb UNLD/LD	TOTAL	Gyp/ Wallb UNLD/LD
Throughput Data Operation days (N)	Annual	36	5 3	65 36	55 36	365	365	5 36	5 36	55 36	5 365	365	i 36	5 36	5 365	i 365	36
Vehicle Data																	
Vehicle weight (W), ton	Loaded Unloaded Average	3 13.2 26.12	:5		36 44 11 1 .5 25.:	ı	39 13.25 26.125	5 1	l ·	36 4 11 1 .5 25.	I	39 13.25 26.125	i I	1 1	1 11		4 1 25.
Number of vehicles/year Number of vehicles/day	Annual Daily	23,40 9			00 54,75 30 15	330	23,400 90			00 54,75 30 15	0 330	90				330	54,75 15
Distance (miles) travelled/ vehicle/ route ^c VMT (no. vehicles x miles travelled)	Per trip Daily Annual					6.21 2,050.0 630,841					0.50 165.0 50,775					1.44 475.0 146,170	0.2 30. 10,99
General/ Site Characteristics Days of precipitation greater than or equal to 0.254 mm (P)	Annual					103					103					103	10
Silt Loading (sL), g/m ² Particle size multiplier, PM (k) PM ₁₀ (k)						1.0 0.082 0.016					1.0 0.082 0.016					1.0 0.082 0.016	0.00 0.00
Emission Factor Fleet Exhaust (C), lb/VMT						0.00047					0.00047					0.00047	0.0004
Emission Control Data Emission control method Emission control removal efficiency, %						Watering 80					Watering 80					Watering 80	Waterii 8
Emission Factor (EF) Equation (Equations 1 & Uncontrolled EF (UEF) Equation - PM PM ₁₀ Controlled (Final) EF (CEF) Equation	UEF(Ib/VM UEF(Ib/VM	-42, Section 13.2.1.3 T) = $[k \times \{(s \cup 2)^{0.65}x \}$ T) = $[k \times \{(s \cup 2)^{0.65}x \}$ T) = UEF $(b \lor MT)$	(W(ton, ave)/3) (W(ton, ave)/3)	^{1.5} }-C] (1-P/4N)													
Calculated PM Emission Factor (EF) Uncontrolled EF, lb/VMT	Daily					1.18					1.18					1.18	1.
Controlled (Final) EF, lb/VMT	Daily					0.24					0.24					0.24	0.3
Calculated PM ₁₀ Emission Factor (EF) Uncontrolled EF, lb/VMT Controlled (Final) EF, lb/VMT	Daily					0.229 0.046					0.229 0.046					0.229 0.046	0.23
Estimated Emission Rate (ER)	Daily	Contribution					Contribution					Contribution					Contribution
PM Emission Rate (lb/hr) PM ₁₀ Emission Rate (lb/hr)	Daily Daily	4.0			.5 10. .3 2.		0. 0.).1 0.).0 0.							0.0
PM Emission Rate (TPY) PM ₁₀ Emission Rate (TPY)	Annual Annual	20	.3 1	3.5 6	.8 47. .3 9.	5 88.1	1. 0.	6 1	.1 ().5 3.).1 0.	8 7.1	4.1	7 3.	.1 1.	.6 11.0	20.4	1
Source: USEPA, 2003 (AP-42, Section 13.2.1, Pa	ved Roads)									_					_		
MODEL	NO. VOLUM	1E SOURCES				243					10					27	
	TOTAL PMI	0 DAILY EMISSIO	NS, G/S			0.493					0.040					0.114	0.00
	PM10/SOUR	CES, G/S				0.00203					0.0039719					0.00423	0.0009

TABLE A-21
SUMMARY OF PM EMISSIONS FROM TRUCK TRAFFIC USED IN THE MODELING

Pollutant		Bottom Ash from Units 1 & 2 Current	Fly Ash from Units 1 & 2 Current	Bottom Ash from Units 4 & 5 Current		Landfill Ash Mining Current	Limestone from Units 4 & 5 New	Gypsum/ Wallboard New		Current	Summary New	, Total
PM Emission Rate (lb/hr) PM10 Emission Rate (lb/hr)		0.133 0.026	2.36 0.46	0.067 0.013		2.03 0.39	4.05 0.79	14.52 2.83		10.66 2.08	18.58 3.62	
PM Emission Rate (TPY) PM10 Emission Rate (TPY)		0.584 0.114	10.34 2.01	0.291 0.057		8.87	17.75	63.62		46.71 9.10	81.36 15.85	128.08
MODELED SOURCES			From Table A	\-19				CALCULA	TED INDIVI	DUALLY		
	MODEL TOTAL			INTERIOR (ENTRY)	COALPILE	GYPSUM/ WALLBOAR D ENTRY		INCLUDED Bottom Ash from Units 1 & 2				AAQS INCLUDED ENTRY Fly Ash from Units 1 & 2
PM Emission Rate (lb/hr)	26.7		20.1	1.6	4.7	0.3						
PM10 Emission Rate (lb/hr)	5.2		3.9	0.3	0.9	0.1						
PM Emission Rate (TPY)	116.9		88.1	7.1	20.4	1.3		0.133	0.067	0.200		2.36
PM10 Emission Rate (TPY)	22.8		17.2	1.4	4.0	0.3		0.026 0.584	0.013 0.291	0.039 0.876		0.46 10.34
No. sources			243	10	27	8		0.114	0.057	0.171		2.01
PM10 Emission Rate (g/s) PM10 Emission Rate (g/s)	TOTAL PER SOURCE		0.493 0.00203	0.0397 0.003972								
Bottom Ash 1,2 & 4,5 to Interior PM10 Emission Rate (lb/hr) PM10 Emission Rate (g/s) PM10 Emission Rate (q/s)		0.039 0.00491			0.00018							
Added to INTERIOR ROAD	FER SOUNCE				0.00010							
PM10 Emission Rate (g/s)	PER SOURCE				0.00442							
Flyash Units 1 & 2 PM10 Emission Rate (lb/hr) PM10 Emission Rate (g/s) PM10 Emission Rate (g/s)	PER SOURCE	0.46 0.05794		0.00023								
Added to INTERIOR ROAD PM10 Emission Rate (q/s)	PER SOURCE		0.00226	0.004201								

Parameter	Limestone Truck Unloading L-01	Limestone Truck Unloading L-02	Limestone Truck Unloading L-03	Limestone Truck Unloading L-04	Limestone Day Silos L-08/L-09 *	Limestone Day Silos L-10/L-11 *	Limestone Day Silos L-12/L-13/L-14
Stack Parameters							
Height, ft (m)	45 (13.7)	45 (13.7)	45 (13.7)	45 (13.7)	137 (41.8)	137 (41.8)	130 (39.6)
Exit Diameter, ft (m)	1.0 (0.30)	1.0 (0.30)	1.0 (0.30)	1.0 (0.30)	0.83 (0.25)	0.83 (0.25)	1.17 (0.36)
Vent Orientation	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical
Operating Parameters							
Gas Flow Rate, acfm	2,500	2,500	2,500	2,500	1,200	1,200	3,200
Gas Exit Temperature, °F (K)	77 (298)	77 (298)	77 (298)	77 (298)	77 (298)	77 (298)	77 (298)
Gas Exit Velocity, ft/sec (m/s)	53.1 (16.2)	53.1 (16.2)	53.1 (16.2)	53.1 (16.2)	36.7 (11.2)	36.7 (11.2)	49.9 (15.2)
Operating Schedule, hr/day	24	24	24	24	4	4	2
day/week	5	5	5	5	7	7	7
Emission Rates							
PM Emission Rate, gr/dscf	0.022	0.022	0.022	0.022	0.022	0.022	0.022
PM Emissions, lb/hr (g/s)	0.47 (0.06)	0.47 (0.06)	0.47 (0.06)	0.47 (0.06)	0.23 (0.03)	0.23 (0.03)	0.60 (0.08)
PM10 Emissions, lb/hr (g/s) b	0.47 (0.06)	0.47 (0.06)	0.47 (0.06)	0.47 (0.06)	0.23 (0.03)	0.23 (0.03)	0.60 (0.08)
PM Emissions, TPY	1.47	1.47	1.47	1.47	0.16	0.16	0.22
PM10 Emissions, TPY	1,47	1.47	1.47	1.47	0.16	0.16	0.22

^a Only one train of equipment shoul be operaring at a time.

^b Assumed equal to the PM emission rate

TABLE A-23 PHYSICAL, PERFORMANCE, AND EMISSIONS DATA FOR THE MECHANICAL DRAFT PORTABLE COOLING TOWERS

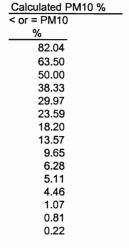
Parameter	Values for Aggreko		
Physical Data	Modeled		
Number of Cells- Total	67]	
Individual Number	27	23	17
Individual Type	TTMT	TTEF	TTXE
Deck Dimensions, ft			
Length	31	30	30
Width	12	12	12
Height(Tower Height)	19	19	19
Stack Dimensions			
Height, ft	19	19	19
Stack Top Effective Inner Diameter, per cell, ft	22	21	21
Performance Data (per cell)			
Discharge Velocity, ft/min	67	69	69
Circulating Water Flow Rate (CWFR), gal/min	180,000	180,000	180,000
Design hot water temperature, °F	140	140	140
Design Air Flow Rate per cell, acfm, (estimated)	25,000	25,000	25,000
Hours of operation	3,000	3,000	3,000
Emission Data			
Drift Rate a (DR), percent	0.0015		
Total Dissolved Solids (TDS) Concentration b, average ppm	25,307.0		
Solution Drift c (SD), lb/hr	1,388.3		
PM Drift d, lb/hr	35.13		
tons/year	52.70		
PM ₁₀ Drift ^e	v		
PM ₁₀ Emissions, lb/hr	2.13		
tons/year	3.19		

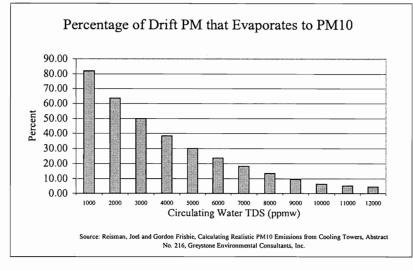
^a Drift rate is the percent of circulating water.

Source: Progress Energy, 2006; Golder, 2006.

^b A TDS of 25,307 Average Value from Historical Data (Ron Johnson email 12/13/05)

^c Includes water and based on circulating water flow rate and drift rate (CWFR x DR x 8.57 lb/gal x 60 min/hr).


^d PM calculated based on total dissolved solids and solution drift (TDS x SD).


^e PM₁₀ based on Cooling Tower PM₁₀ emissions study (

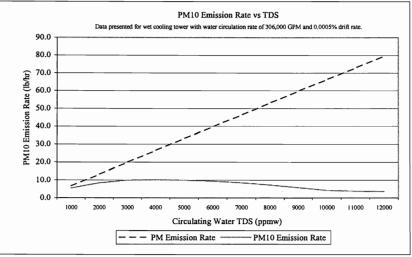


TABLE A-24
PM10 EMISSIONS FOR THE COOLING TOWER FOR UNITS 4 AND 5

		Percent of				
	PM Emission	Emissions	PM10		Tower	Drift
TDS	Rate	< or $=$ PM10	Emissions		Circulation Rate	Rate
(ppmw)	(lb/hr)	%	(lb/hr)		(GPM)	%
1000	6.63	82.04	5.435		331,000	0.004
2000	13.25	63.50	8.414		***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3000	19.88	50.00	9.938		Salt water	
4000	26.50	38.33	10.158		density	
5000	33.13	29.97	9.928		(lb/gal)	
6000	39.75	23.59	9.377	swd	8.34	
7000	46.38	18.20	8.441			
8000	53.00	13.57	7.192			
9000	59.63	9.65	5.754			
10000	66.25	6.28	4.161			
11000	72.88	5.11	3.724			
12000	79.50	4.46	3.546			
25307	167.67	1.07	1.794			
29100	192.80	0.81	1.562			
89600	593.63	0.22	1.306			

Reisman, Joel and Gordon Frisbie, Calculating Realistic PM10 Emissions from Cooling Towers, Abstract No. 216, Greystone Environmental Consultants, Inc.

TABLE A-25 STACK, OPERATING AND PM_{10} EMISSION DATA FOR THE FLY ASH AND BOTTOM ASH HANDLING SYSTEMS

Parameter	Fly Ash Transfer Unit 1	Fly Ash Silo for Units 1 and 2	Fly Ash Transfer Unit 2a	Fly Ash Transfer Unit 2b	Bottom Ash Silo Units 1 and 2
Emission Rates ^a			_		
PM Emissions, lb/hr (g/s)	3.5 (0.44)	0.6 (0.08)	2.2 (0.28)	2.2 (0.28)	13.0 (1.64)
PM10 Emissions, lb/hr (g/s) b	3.5 (0.44)	0.6 (0.08)	2.2 (0.28)	2.2 (0.28)	13.0 (1.64)
Stack Parameters c					
Height, ft (m)	8 (2.4)	93 (28.4)	8 (2.4)	8 (2.4)	5 (1.5)
Exit Diameter, ft (m)	0.80 (0.24)	1.50 (0.46)	0.833 (0.25)	0.833 (0.25)	0.80 (0.24)
Height, ft (m)	30 (9.1)	75 (22.9)	30 (9.1)	30 (9.1)	15 (4.6) 78 (23.8)
Direction	Horizontal	Horizontal	Horizontal	Horizontal	Down
Operating Parameters					
Gas Flow Rate, acfm	1,820	2,546	2,200	2,800	2,200
Gas Exit Temperature, °F (K)	77 (298)	77 (298)	77 (298)	77 (298)	77 (298)
Gas Exit Velocity, ft/sec (m/s)	60.3 (18.4)	24.0 (7.3)	67.3 (20.5)	85.6 (26.1)	72.9 (22.2)
Modeled velocity, ft/sec (m/s)	0.33 (0.1)	0.33 (0.1)	0.33 (0.1)	0.33 (0.1)	0.33 (0.1)

^a Maximum allowable PM emissions from the Title V operating permit (0170004-009-AV).

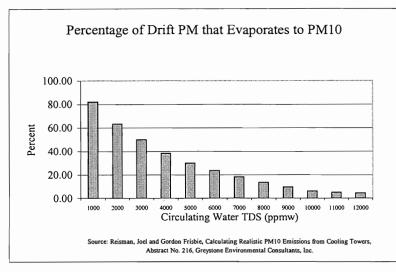
^b Assumed equal to the PM emission rate

^b Stack and operating parameters from the Title V permit application.

August 2006 053-9555

Table A-26
Estimation of PM Emission Factors and Rates For Wind Erosion from Active Storage Piles (Existing)
Project: PGN Crystal River

		Operations			
	•	Coal handling	Coal handling		
Parameters		Coal Pile 4 & 5	Coal Pile 1 & 2		
Emission Point/Area					
Storage Pile Data					
Material Type		Coal	Coal		
Pile Description (shape)		Rectangular	Rectangular		
Average Storage (ton)					
Average Pile Height (ft)		40	40		
Average Pile Length (ft)		1117.1	930.6		
Average Pile Width (ft)		1117.1	930.6		
Size, ft ²	380,480	1,247,974	866,051		
Size, acres	,	28.69	19.91		
General/ Site Characteristics					
Days of precipitation greater than or	Short term	0	0		
equal to 0.01 inch (p)	Annual	103	103		
1					
Time (%) that unobstructed wind speed	Short term	60	60		
exceeds 5.4 m/s at mean pile height (f)	Annual	10	10		
Silt content (s), %		3	3		
Particle size multiplier, PM (k)		1.00	1.00		
Particle size multiplier, PM10 (k)		0.50	0.50		
Emission Control Data					
Emission control method		Watering	Watering		
Emission control removal efficiency, %		80	80		
Emission Factor (EF) Equation					
Uncontrolled BF (UBF) Equation	UEF (lb/day/acr	e) = $k \times 1.7 \times (s/1.5) \times ((365 - p)/s)$	/365) x (f/15)		
Controlled (Final) EF (CEF) Equation	CEF (lb/day/acr	e) = UEF (lb/day/acre) x (100 - R	temoval efficiency (%))		
Calculated PM Emission Factor (EF)					
Uncontrolled EF, lb/day/acre	Short term	13.60	13.60		
	Annual	1.63	1.63		
Controlled EF, lb/day/acre	Short term	2,72	2.72		
	Annual	0.33	0.33		
Calculated PM10 Emission Factor (EF)					
Uncontrolled BF, lb/day/acre	Short term	6.80	6.80		
	Annual	0.81	0.81		
Controlled EF, lb/day/acre	Short term	1.36	1.36		
	Annual	0.16	0.16		
Estimated Emission Rate (ER)					
PMER lb/hr (daily basis)		3.25	2.26		
TPY		1.70	1.18		
PM10 ER lb/hr (daily basis)		1.63	1.13		
TPY		0.85	0.59		


Source: USEPA, 1992 (Fugitive Dust Background and Technical Information Document for Best Available Control Measures, Section 2.3.1.3.3, Wind Emissions from Continuously Active Piles)

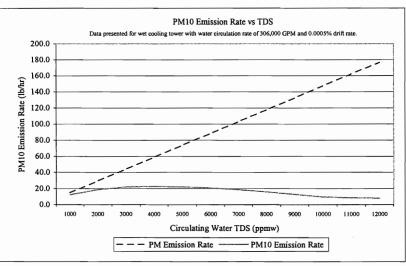


TABLE A-27
PM10 EMISSIONS FOR THE HELPER COOLING TOWERS

		Percent of			
	PM Emission	Emissions	PM10	Tower Drift	Calculated PM10 %
TDS	Rate	< or = PM10	Emissions	Circulation Rate Rate	< or = PM10
(ppmw)	(lb/hr)	%	(lb/hr)	(GPM) %	<u>%</u>
1000	14.71	82.04	12.070	735,000 0.004	82.04
2000	29.42	63.50	18.684		63.50
3000	44.14	50.00	22.068	Salt water	50.00
4000	58.85	38.33	22.556	density	38.33
5000	73.56	29.97	22.046	(lb/gal)	29.97
6000	88.27	23.59	20.823	swd 8.34	23.59
7000	102.98	18.20	18.743		18.20
8000	117.69	13.57	15.971		13.57
9000	132.41	9.65	12.777		9.65
10000	147.12	6.28	9.239		6.28
11000	161.83	5.11	8.269		5.11
12000	176.54	4.46	7.874		4.46
25307	372.31	1.07	3.984		1.07
29100	428.11	0.81	3.468		0.81
89600	1318.17	0.22	2.900		0.22

Reisman, Joel and Gordon Frisbie, Calculating Realistic PM10 Emissions from Cooling Towers, Abstract No. 216, Greystone Environmental Consultants, Inc.

APPENDIX A-1

SULFURIC ACID MIST TEST REPORT

Sulfuric Acid Mist Engineering Study Test Report

Progress Energy Crystal River, Unit 4 Crystal River, Florida

C.E.M. Solutions Project No. 2648

Testing Completed: June 2006

Client Purchase Order Number: TBD C.E.M. Solutions, Inc Report Number: 20-2648-04-001

C.E.M. Solutions, Inc. 7990 W. Gulf to Lake Hwy. Crystal River, Florida 34429 Phone: 352-564-0441

Statement of Validity

I hereby certify the information and data provided in this emissions test report for tests performed at Progress Energy's Crystal River facility, Unit 4, conducted on June 20, 2006 are complete and accurate to the best of my knowledge.

Jeremy A. Johnson

President, C.E.M. Solutions, Inc.

Project Background

Name of Source Owner: Progress Energy

Address of Owner: One Power Plaza

263 13th Avenue South St. Petersburg, Fl 33701

Source Identification: Oris Code: 628

Facility ID: 0170004 Emissions Unit: 004

Location of Source: Citrus County, Florida

Type of Operation: SIC Code: 4911

Tests Performed: Method 1 – Traverse Points

Method 3A - Determination of Oxygen and Carbon Dioxide Method 8 - Determination of Sulfuric Acid and Sulfur Dioxide

Test Supervisor: Mr. Jeremy Johnson

Date Tests Conducted: June 20, 2006

Site Test Coordinator: Mr. James T. Long

C.E.M. Solutions, Inc Test Personnel

Project Field Manager: Mr. Jeremy A. Johnson

Test Engineer: Mr. Joseph Conti

Test Technician: Mr. Charles Horton

Table of Contents

1.0	Introduction	1
2.0 2.1	Facility Description Process Equipment	2
3.0	Test Program/Operating Conditions	3
4.3 4.4 4.5 4 4.5 4	.2.1 Method 2 Quality Assurance/Quality Control Procedures Determining Sample Gas Dry Molecular Weight .3.1 Method 3A Quality Assurance/Quality Control Procedures Moisture Content Determination .4.1 Method 4 Quality Assurance/Quality Control Procedures	4 5 5 6 6 6 7 9 0
5.0	H ₂ SO ₄ Test Results	1
Table Table Table	of Tables 1: Summary of EPA Test Methods 2: Method 8 Isokinetics Summary 3: Method 8 Results Summary 1	9
List	of Figures	
Figur	e 1: Method 8 Sample Train Diagram	8

Appendices

Appendix A: Facility Operating Data

Appendix B: USEPA Test Method Data Summaries and Supporting Field Data

Appendix C: Reference Method Quality Assurance/Quality Control Calibrations

Appendix D: Mathematical Equations

1.0 Introduction

Progress Energy, Florida (PEF) retained C.E.M. Solutions, Inc. to perform source emissions testing on Unit 4's boiler exhaust stack located at its facility in Crystal River, Florida.

The test program was conducted in order to compile air emissions data for engineering purposes.

Target pollutants include:

Sulfuric Acid Mist (H₂SO₄), including SO₃

James T. Long of Progress Energy's Environmental Services Section coordinated plant operations throughout the test program.

All testing was conducted in accordance with test methods promulgated by the USEPA.

Sulfuric acid emissions, for the three test runs, averaged 18.7 pounds per hour (lb/hr).

The test program and results are presented and discussed in this report.

C.E.M. Solutions, Inc. Report Number: 20-2648-04-001

2.0 Facility Description

Crystal River, Unit 4 is a fossil fuel steam generator consisting of a dry bottom wall-fired boiler, rated at 760 MW, 6665 mmBtu/hr. Primary fuel is bituminous coal or a bituminous coal and bituminous coal briquette mixture. Number 2 fuel oil and natural gas may be burned as a startup fuel and for low load flame stabilization.

2.1 Process Equipment

Fossil Fuel Steam Generator, Unit 4 is a pulverized coal, dry bottom, wall-fired boiler. Emissions are controlled from the unit with a high efficiency electrostatic precipitator, manufactured by Combustion Engineering.

Emissions are exhausted through a brick and mortar 600 ft. stack.

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

3.0 Test Program/Operating Conditions

Emissions tests were completed on Unit 4, at Crystal River, on June 20, 2006.

Sulfuric Acid Mist Testing (H₂SO₄) was conducted utilizing USEPA Test Method 8 of Title 40 of the Code of Federal Regulations, Part 60 (40CFR60), Appendix A.

Plant operating data was collected and provided by facility personnel during the entire test program. Data provided include, but was not limited to:

• Fuel flow rate (Klbs/hr)

Fuel analysis was completed by Progress Energy.

During the test program, Unit 4's heat input averaged 6,845 mmBtu/hr while operating on 100 percent solid fuel, which correlates to 103 percent of the maximum heat input (6,665 mmBtu/hr).

Unit 4 fuel flow and fuel analysis reports are located in Appendix A.

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

4.0 Test Methods

All testing was performed in accordance with methods approved by the USEPA and FDEP. The following discusses the methods, as well as quality assurance and sample handling procedures.

Result summaries of each EPA test and completed forms are located in Appendix B.

Completed QA/QC procedures for each test method are located in Appendix C.

Table 1 summarizes the EPA test methods utilized:

Table 1: Summary of EPA Test Methods
Progress Energy
Crystal River Plant
Unit 4

USEPA Method	Description
1	Sample and Velocity Traverses for Stationary Sources
2	Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot)
3A	Gas Analysis for Determining Dry Molecular Weight
	(O ₂ /CO ₂ gas analysis) Instrumental Method
4	Moisture Content in Stack Gases
8	Sulfur Acid (including sulfuric acid mist and SO ₃)

4.1 Sample and Velocity Traverses

Sample and velocity traverse points used during the test program were determined utilizing EPA Method 1.

The stack diameter of Unit 4's exhaust stack is 28.29' (339.5"). The sample location for the stack is 10.7 diameters (302.75') downstream from the nearest disturbance and 6.9 diameters upstream (195.25') from the stack exit. 4 ports located 90 degrees from each other were used at the sample location.

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

4.2 Stack Gas Velocity and Volumetric Flow Rate

Method 2 was used to determine the volumetric flow rate of the stack effluent gas.

Stack differential pressure and temperature readings were taken with an S type pitot tube and Type K temperature sensor at each sample traverse point.

Method 2 data was recorded on the Method 8 isokinetic field data sheets.

4.2.1 Method 2 Quality Assurance/Quality Control Procedures

The S type pitot tube was inspected visually and measured to meet the design specifications of EPA Method 2, for a pitot coefficient of 0.84.

The inclined manometer and each leg of the pitot tube was leak checked before and immediately after each test run.

Thermocouple sensors were calibrated prior to the test program and a post test check was performed after testing was completed.

The inclined manometer was leveled and zeroed before each test run.

4.3 Determining Sample Gas Dry Molecular Weight

Stack gas dry molecular weight was determined utilizing Method 3A.

Gas samples were taken continuously at a sample point located at least 1 meter from the inner wall.

All reference method analyzers used meet or exceed applicable performance specifications detailed in the appropriate method.

Gas samples were continuously extracted from the stack by a gas sample probe. Samples were then transported to a gas sample conditioner via a heated sample line operating at 250°F or above. The gas sample conditioner lowers the dew point of the sample gas to approximately 5°C through minimum interference heat exchangers. The dry, cool sample is then sent to the gas analyzers, located in the environmentally controlled test trailer for analysis by the reference method analyzers.

Instrument outputs were recorded continuously with a Windows compatible personal computer, compiled into 15 second averages, and stored in a database for future reference.

Instrument ranges and calibration gases were chosen in accordance with the EPA method and are located in Appendix C with the QA/QC procedures.

4.3.1 Method 3A Quality Assurance/Quality Control Procedures

All sampling, analytical, and Quality Assurance/Quality Control (QA/QC) procedures outlined in the EPA method were followed.

All test equipment was calibrated before or during use in the field.

Interference checks and response time checks were performed on each instrumental analyzer, as applicable, before field use.

In the field, each analyzer and the entire instrument measurement system was checked for system bias before and following each test run using the calibration gases listed in the EPA method.

4.4 Moisture Content Determination

Moisture content of the stack gas was determined by Method 4.

Stack gas was sampled at each traverse point, passed through pre-weighed impingers and then through a calibrated dry gas meter. Moisture is removed from the sample gas in the pre-weighed impingers, which are submerged in an ice bath, and later analyzed for moisture weight gain. Moisture is determined based upon the amount of moisture weight gain and sample gas collected.

4.4.1 Method 4 Quality Assurance/Quality Control Procedures

The moisture sampling train was leak checked prior to each test run at approximately 15" Hg and immediately after each run at a vacuum higher than the highest vacuum recorded during the respective test run. Results are recorded on the moisture field data sheets.

Weighing to determine moisture content was conducted with a balance having an accuracy of 0.1 grams.

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

Gas temperature at the exit of the impingers was maintained at less than 68 degrees Fahrenheit.

4.5 Determination of Sulfur Acid Mist

Sulfur Acid Mist content of the stack gas was determined by USEPA Method 8.

The stack gas was extracted isokinetically from the stack at each traverse point. The gas is pulled from the stack through a glass tapered nozzle and glass lined sample probe, heated to approximately 250 °F, and then sent through an impinger train iced down and maintained for a train exit gas temperature of ≤68 °F. Sample gas was measured by a dry gas metering system.

The impinger train is comprised of four Greenburg-Smith impingers. The first and third impingers have the standard tip, while the second and fourth are modified by replacing the standard tip with a $\frac{1}{2}$ " ID glass tube located approximately $\frac{1}{2}$ " from the bottom of the impinger.

The first impinger is loaded with 100 ml of 80 percent ACS grade isopropanol. A glass filter and filter housing is located between the first and third impinger. The second and third impingers contain 100 ml each of 3% H₂O₂ (hydrogen peroxide). A known, pre-weighed amount of indicating silica gel is contained in the fourth impinger.

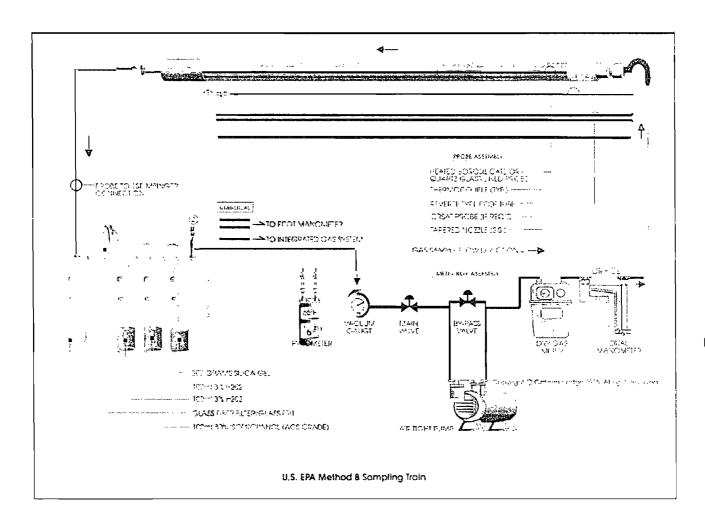

Sulfuric Acid is trapped in the first impinger and on the filter and housing between the first and second impinger. Sulfur dioxide is captured in the third and fourth impinger (not applicable for this test since the target component was sulfuric acid). The sulfuric acid and sulfur dioxide fractions are, in most cases, measured separately by the barium-thorin titration method, but for this engineering study the samples were measured by an Ion Chromatograph to increase analytical detection limits.

Figure 1 contains a diagram of the Method 8 sampling train.

C.E.M. Solutions, Inc. Report Number: 20-2648-04-001

Figure 1: Method 8 Sample Train Diagram
Progress Energy
Crystal River Plant
Unit 4

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

4.5.1 Sampling Train Operation/Test Run Durations

During each sampling run, isokinetic sampling was maintained between 90 and 110 percent isokinetic as summarized in Table 2. The temperature of the sample probe was maintained to 248 °F \pm 25 °F. The sampling rate did not exceed 1.0 cfm.

Table 2: Method 8 Isokinetics Summary
Progress Energy
Crystal River Plant
Unit 4

			VIII. I				
	% Isokinetic						
Unit	Run 1	Run 2	Run 3		Tolerance		
4	98.2	100.9	102.9	100.7	90-110		

Dry gas meter volume, velocity head, DGM orifice pressure and various temperature readings were taken at each traverse point for each test run.

A total of three sixty-minute test runs were completed.

Immediately following each test run a leak check of the sampling train was performed.

After draining the impinger ice bath, with the probe disconnected, the impinger train was purged by drawing clean ambient air through the system for 15 minutes at the average flow rate used for sampling.

4.5.2 Sample recovery

The contents of the first impinger were transferred to a clean 250ml graduated cylinder. The probe, first impinger, all connecting glassware before the filter, and front half of the filter holder were rinsed with 80 percent isopropanol. The rinses were added to the graduated cylinder and diluted to 225 ml with 80 % isopropanol and transferred to a one liter, leak free polyethylene storage bottle. The graduated cylinder was rinsed with 25 ml of 80 % isopropanol and transferred to the storage bottle. The filter was added to the storage bottle and mixed.

A portion of the 80 % isopropanol was transferred to a storage container for blank analysis.

C.E.M. Solutions, Inc. Report Number: 20-2648-04-001

Since sulfur dioxide was not measured, the rest of the train contained DI water and was not recovered.

The sample container for each test run and the blanks were packed and shipped to the laboratory for analysis.

4.5.3 Sample Analysis

Laboratory analysis was completed by Resolution Analytics, Inc. located in Sanford, NC.

The analytical report can be viewed in Appendix B.

4.5.4 Method 8 Quality Assurance/Quality Control Procedures

The probe nozzles were inspected and measured across three different diameters to determine the appropriate nozzle diameter.

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i .

C.E.M. Solutions, Inc. Report Number: 20-2648-04-001

5.0 H₂SO₄ Test Results

The test program results are presented below. Supporting fuel analysis reports, field data, and equations are presented in Appendix A, B and C, respectively.

Summaries of the test results are presented in Table 3.

The three-run average sulfuric acid emissions during the test program was 18.7 pounds per hour (lb/hr).

C.E.M. Solutions, Inc. Report

Number: 20-2648-04-001

Table 3: Method 8 Results Summary Progress Energy Crystal River Plant Unit 4

METHOD 8 - DETERMINATION OF SULFURIC ACID MIST EMISSIONS - RESULTS

Plant Name Progress Energy, Crystal River Plant	Date 06/20/06
Sampling Location Unit 4 Stack	Project # 2648
Operator J. Conti	Stack Type Circular

		listorical Da		(1)**O155544	AND MARKS BOX	in chestic
Run Number		M8-1	M8-2	M8-3	Average	
Run Start Time		13:17	15:56	17:56	THE PROPERTY OF STREET	hh.mm
Run Stop Time	15 A 16 17 E	14:17	16:56	18:56		hh:mm
Meter Calibration Factor	(Y)	1.011	1.011	1,011		· ·
Pitot Tube Coefficient	(C _p)	0.840	0.840	0.840		. :
Actual Nozzle Diameter	(D _m)	0.192	0.192	0.192		in
	\$	tack Test Da	alta ·			
Initial Meter Volume	* (V _{nu}); *	511.477	566.324	618.078		ft ³
Final Meter Volume		551.915	608.215	660.325		. H.
Total Meter Volume	$\leqslant_{\mathbb{T}}(V_m)$	40.438	41.891	42.247	41.525	ft³
Total Sampling Time	(Θ)	60.0	60.0	60.0	60.0	z ⊕ zmin
Average Meter Temperature	((₁₇) ₈₁₉	102.5	105.0	105.8	104.4	%F
Average Stack Temperature	(t _e) _{evg}	300.6	302.0	301.2	301.3	`⊬.°F
Barometric Pressure	(Pa)	29.65	29.65	29.59	29.63	in Hg
Stack Static Pressure	(Petato)	0.00	-0.75	-0.75	-0.50	in H₂O
Absolute Stack Pressure	(P ₁)	29.65	29.59	29.53	29.59	in Hg
Average Orifice Pressure Drop	(ΔH) _{avg}	1.46	1.56	1.54	1.52	in H₂O
Absolute Meter Pressure	4 (P _n) ::	29.76	29.76	29.70	29.74	in Hg
Avg Square Root Pitot Pressure	(7b ₁₁) ⁸⁴³	1.26	1.29	1.29	1.28	(in H ₂ O) ^{1/2}
5.600 (10.64.50) (2.64.60)	/ Mols	ture Conten	t Data			
Impingers 1-3 Water Volume Gain	. (V _n)	36.6	67.1	67.1	56.9	, ml
Impinger 4 Silica Gel Weight Gain	= - (W _n)	29.1	23.0	38.0	30.0	g
Total Water Volume Collected	# (V _{ic}) =	65.8	90.1	105.2	87.0	ml
Standard Water Vapor Volume	(V _w) _{sld}	3.095	4.243	4.950	4.096	scf
Standard Meter Volume	2 (V _n) _{su}	38.167	39.372	39.567	39.035	dscf
Calculated Stack Moisture	(B _{res(outc)}):	7.5	9.7	11.1	9.4	%
Saturated Stack Moisture	(B _{AS(WP)})	100.00	100.0	100.0	100.0	%
Reported Stack Moisture Content	(B _{vs})	7.5	9.7	11.1	9.4	%
	, Ga	s Analysis D	Data .			
Carbon Dioxide Percentage	∘ (%೦೦-ುೖ್	12.7	12.9	12.7	12.8	%
Oxygen Percentage	√ (%O ₂) ∴	6.6	6.5	6.6	6.6	%
Carbon Monoxide Percentage	(%CO) ×	0.0	0.0	0.0	0.0	%
Nitrogen Percentage	(%N₂)	80.7	80.6	80.7	80.7	. %
Dry Gas Molecular Weight	(Ma)	30.30	30.32	30.30	30.31	lb/lb-mole
Wet Stack Gas Molecular Weight	- (M _s)	29.37	29.13	28.93	29.14	lb/lb-mole
Calculated Fuel Factor	⊕ (F₀) 🖑	1.126	1.116	1.126	1.123	TASIMA.
Fuel F-Factor	(F _a)	0	0	0	0	dscf/mmBtu
Percent Excess Air	The second second	0.4	0.4	0.4	0.4	%
	and the first of the second section of				00.00	
Average Stack Gas Velocity	. (V₃)	84.40	87.16	87.28	86.28	ft/sec
Stack Cross-Sectional Area	(A ₄)***a	628.65	628.65	628.65	005 (005	River 1971
Actual Stack Flow Rate	· (Q,,,)	3183549	3287524	3291914	3254329	acim
Wet Standard Stack Flow Rate	(Q _{ev})	131405	135193	135247	133948	wkscfh
Dry Standard Stack Flow Rate	(Q, _d)	2025814	2034019	2003459	2021097	dscfm
Dry Standard Stack Flow Rate	(Q ₆₀).≝	121548855	122041118	120207512	121265828	dscfh
Percent of Isokinetic Rate	(1)	98.2	100.9	102.9	100.7	%
	AND DESCRIPTION OF THE PERSON	ission Rate	VIII AND THE REAL PROPERTY.	2.00	2.72	
Mass of H2SO4 in Catch		2.38	2.75	3.06	2.73	mg.
H2SO4 Emission Rate	of the same of the	0.00000014 16.7	18.8	20.5	0.00000015 18.7	lb/dscf lbs/hr
(Pt 75 App F Sect 52:1) Heat Input	(E) (HI)	6877	6842	6816	6845	mmBtu/Hr
and the state of the state of the state of the party of the state of t	Personal Property		0072	00.0		

PEF Crystal River, Unit 4 Sulfuric Acid Mist Test June 2006 Page 12 of 12

C.E.M. Solutions, Inc. Report Number: 20-2648-04-001 Last Updated: 7/13/2006

APPENDIX A-2

SUB-BITUMINOUS TEST BURN REPORT

PROGRESS ENERGY SUB-BITUMINOUS BLEND TRIAL TEST REPORT CRYSTAL RIVER UNIT 5

Submitted to:

Mr. Jeff Koerner
FDEP
North Permitting Section
Division of Air Resource Management
2600 Blair Stone Road MS 5500

Submitted by:

Progress Energy Corporation
Environmental Services Section
100 Central Avenue CX1B
St Petersburg, Fl. 33701

Distribution:

2 Copies Department of Environmental Protection

2 Copies Progress Energy Florida1 Copy Golder Associates Inc.

July 2006

Table of Contents

- 1. Actual schedule and overall description of the trial burn;
- 2. Summary of sub-bituminous blends evaluated (amounts delivered; blend ratio; and proximate/ultimate analyses);
- 3. Discussion of operational issues of sub-bituminous blends including: coal unloading, handling, storage and firing; fugitive dust; soot blowing; ESP performance and adjustments; and ash handling and storage;
- 4. Comparison of baseline operations versus operation with the sub-bituminous coal blend;
- 5. Evaluation of current equipment compatibility with the sub-bituminous coal blend;
- 6. Summary of continuous emissions monitoring data;
- 7. Summary of boiler operating data;
- 8. Summary of emissions test results, actual test schedule, and procedures used;
- 9. Comparison of baseline emissions with emissions from firing the sub-bituminous coal blend (short-term and long-term); and,
- 10. Discussion of emissions changes as described in Appendix C of 40 CFR 60.

Appendix

- 1. Proximate and ultimate analyses
- 2. Baseline (6/5/06) and Blend (5/22/06) Particulate and CO Test Report
- 3. Baseline (4/19/06) CO Test Report
- 4. Determination of Emission Rate Change Data Sheets

1. Actual schedule and overall description of the trial burn

Actual Schedule

- 04/19/06 Baseline CO testing on Unit 5 by CEMS Solutions
- 05/21/06 Start Sub-bituminous blend burn at Crystal River Unit 5
- 05/22/06 Sub-bituminous blend burn Particulate, CO, Resistivity, ESP Performance and Coal testing on Unit 5
- 05/23/06 Sub-bituminous blend burn Ash Resistivity
- 05/23/06 Completion of Sub-bituminous blend test burn Unit 5
- 06/05/06 Baseline CO, Resistivity and Coal testing on unit 5 by Koogler & Associates
- 06/06/06 Baseline Ash Resistivity
- 07/08/06 Baseline ESP Performance

Overall description of the trial burn

In an effort to continue expanding fuel diversity and ultimately enhancing market options through supplier flexibility at the Crystal River facility, a test burn of a blended bituminous product and a sub-bituminous product was conducted on Crystal River Unit 5 (referenced as CR5). This test burn was conducted following approval of a modified air permit by the Florida Department of Environmental Protection (FDEP) allowing testing of a sub-bituminous blended product.

The test consisted of one barge (15,900 tons) of the preblended product made up of 18% subbituminous coal & 82% bituminous coal. The barge arrived on site Saturday 5/20/06 and was burned Sunday 5/21/06 – Tuesday 5/23/06 on Unit 5. The sub-bituminous blend was coaled up directly to the unit from the barge without going to the ground allowing for better control and monitoring of the blended product. CR4 was coaled-up separately from the stockpile to prevent any opportunity for co-mingling of the sub-bituminous blend with the standard coal in CR4.

Blending of the coal product was conducted at the International Marine Terminal (IMT) in New Orleans prior to delivery.

There were no substantial issues raised during this trial. Full load was achieved and LOI (loss on ignition) was as good as or better than the base line coal performance measurements. Major emissions constituents, such as NOx, SO2, and opacity, were equivalent to or better than the same constituents utilizing the base line coal.

In addition to the major emissions constituents discussed above, detailed stack testing of CO, PM and ash resistivity testing were required to meet the Florida Department of Environmental Protection (FDEP) requirements. Particulate Matter was basically unaffected by the PRB blend as compared to baseline. CO, which is not currently regulated, was reportedly low during the baseline tests. CO readings did register while burning the PRB blend.

- 2. Summary of sub-bituminous blends evaluated (amounts delivered; blend ratio; and proximate/ultimate analyses)
 - Amount Delivered 15,900 Tons in one single continuous burn in Unit 5 from 5/21/6 to 5/23/6
 - Blend Ratio 18 % Sub-bituminous and 82 % Bituminous
 - Proximate/ultimate analysis (See Appendix)

3. Discussion of operational issues of the sub-bituminous coal blend including: coal unloading, handling, storage and firing; fugitive dust; soot blowing; ESP performance and adjustments; and ash handling and storage;

Discussion of Operational Issues:

- Coal Unloading: The blend was observed unloading from barge and along conveyors. The large percentage of bituminous coal (82%) did an excellent job of controlling dust and in fact, little if any dusting at all was noticed.
- Handling: No problems were encountered with coal handling. Performed similar to current Crystal River coal.
- Storage and firing: The sub-bituminous blend was taken directly from the barge to Unit 5 and not put to the ground, therefore unable to evaluate storage on-site. Firing was adequate to achieve full load in the unit.
- Fugitive Dust: Coal blend was not dusty and fugitive dusting was not an issue.
- Sootblowing: Routine sootblowing operations were continued during trial. A small ash
 accumulation was observed in an area where sootblowers were non-operational. Accumulation
 was removed with air lance and did not reform during trial. Therefore, the accumulation may
 have been formed prior to the sub-bituminous blend.
- ESP Performance and Adjustments: No problems with ESP performance or opacity during the sub-bituminous blend burn.
- Ash handling and storage: Ash quality and LOI were well within acceptable limits to be able
 to utilitize ash product. In fact, LOI was better than normal at 3.4 4%.

4. Comparison of baseline operations versus operation with the sub-bituminous coal blend

Baseline Compared to PRB Blend burn:

Crystal River 5 PRB Blend Trial & Baseline							
Test Type Start Time End Time Ran By	Property and	Stack Test - Baseline 06/05/2006 10:00:00 06/05/2006 14:00:00	PRB Blend Test 05/22/2006 07:30:00 05/22/2006 19:30:00	The state of the s			
Measured Test Data (Average)	The second of the second secon	A CONTRACTOR OF THE PROPERTY O		Delta	% change		
Gross Load	MW	711.29	711.31	0.02	0.00%		
Auxiliary Load	MW	32.01	32.10	0.10	0.30%		
Net Load	MW	679.29	679.21	-0.08	-0.01%		
Main Steam Temp	DEGF	1003.33	1003.31	-0.02	0.00%		
Main Steam Press	PSI	2392.81	2404.18	11.37	0.48%		
Hot Reheat Temp	DEGF	998.77	998.20	-0.56	-0.06%		
Main Steam Flow	KPPH	4899.27	4882.48		-0.34%		
U5 COAL FDRS TOTAL COAL FLOW	KLB/HR	534.48	540.02	5.55	-		
Heat Input Rate	MMBTU/HR	6257.43			-0.96%		
CEMS data & LOI		The second second	Comment of grant and the	The Stage Short	<u> </u>		
Opacity	%	5.40	5.39	-0.02	-0.33%		
NOx	LB/MBTU	0.50	0.44				
SO2	LB/MBTU	1.06					
LOI (from PMI) - below 6% is good	%	5.30	3.40	-1.90	-35.85%		

5. Evaluation of current equipment compatibility with the sub-bituminous coal blend

Evaluation of Current Equipment Compatibility with the Sub-bituminous Blend:

There were no shortcomings in existing equipment during the sub-bituminous blend use. U5 was able to make full load without issues. More long term use of the product, or a similar product, would likely require some expenditures to complete repairs to existing equipment and provide additional safety measures needed for long-term use of a higher volatility product.

6. Summary of continuous emissions monitoring data

Crystal River 5 PRB Blend Trial & Baseline							
Test Type Start Time End Time Ran By	CATEGORY OF THE STREET, STREET	Stack Test - Baseline 06/05/2006 10:00:00 06/05/2006 14:00:00	PRB Blend Test 05/22/2006 07:30:00 05/22/2006 19:30:00				
Measured Test Data (Average)	es i 19 m il Pot Albania	har the of all the section of	and the state of the same of t	Delta	% change		
Gross Load	MW	711.29	711.31	0.02	0.00%		
Auxiliary Load	MW	32.01	32.10	0.10	0.30%		
Net Load	MW	679.29	679.21	-0.08	-0.01%		
Main Steam Temp	DEGF	1003.33	1003.31	-0.02	0.00%		
Main Steam Press	PSI	2392.81	2404.18	11.37	0.48%		
Hot Reheat Temp	DEGF	998.77	998.20	-0.56	-0.06%		
Main Steam Flow	KPPH	4899.27	4882.48	-16.79	-0.34%		
U5 COAL FDRS TOTAL COAL FLOW	KLB/HR	534.48	540.02	5.55	1.04%		
Heat Input Rate	MMBTU/HR	6257.43	6197.09	-60.34	-0.96%		
CEMS data & LOI							
Opacity	%	5.40	5.39	-0.02	-0.33%		
NOx	LB/MBTU	0.50	0.44	-0.05	-10.69%		
SO2	LB/MBTU	1.06	1.05	-0.02	-1.69%		
LOI (from PMI) - below 6% is good	%	5.30	3.40	-1.90	-35.85%		

The continuous emission monitors recorded Opacity, NOx, and SO2 emissions. Referencing the above table:

- Opacity During the baseline testing the opacity readings averaged 5.40. The sub-bituminous blend test value averaged 5.39. The percent change is an improvement of 0.33 percent with the blended coal.
- NOx During the baseline testing the NOx readings averaged 0.50. The sub-bituminous blend test value averaged 0.44. The percent change is an improvement of 10.7 percent with the blended coal.
- SO2 During the baseline testing the SO2 readings averaged 1.06. The sub-bituminous blend test value averaged 1.05. The percent change is an improvement of 1.7 percent with the blended coal.

7. Summary of boiler operating data

Furnace Exit Gas Temperature (FEGT)

FEGT's were taken before and during the sub-bituminous blend trial at full load on 11th floor of CR5. The table below summarizes the main results of FEGT tests. Note that the Ash Fusion Softening Temperture (AFT) of the sub-bituminous coal blend used in the trial was 2170-2200 degrees F (from lab analyses) and ash fusion cannot be blended away. (Also, red O₂% indicates a reducing atmosphere present.)

CR Unit 5
Benchmark HVT Data

4/19/2006

West Face of Boiler 11th Floor, Elev 224

Note: CO at 1000 ppm indicates offscale high

Insertion	North	Port, Near	Wall	Ce	nter Port, Mic	ddle	Sout	Port, Near	Wall
Length, ft	02, %	CO, ppm	Temp, F	02, %	CO, ppm	Temp, F	02,%	CO, ppm	Temp, F
2	1.55	608	1678	1.0	1000+	2416	4.40	530	1874
4	2.00	610	1742	ŀ			3.20	410	2018
6	1.85	634	1858			I	1.20	20	2109
8	1.30	702	1909				0.00	1000	2175
10	1.00	739	1945	1			0.00	1000	2190
12	1.10	720	2119				0.00	1000	2287
14							0.00	1000	
16							0.00	1000	2300

CR Unit 5

PRB Blend HVT Data 5/23/2006

West Face of Boiler 11th Floor, Elev 224

Insertion	North	Port, Near	Wall	Cer	nter Port, Mi	ddle	Sout	h Port, Near	Wall
Length, ft	02, %	CO, ppm	Temp, F	02, %	CO, ppm	Temp, F	02, %	CO, ppm	Temp, F
2	1.90	392	1660	2.1	527	2245	0.00	1000	1960
4	1.90	400	1775	1.7	565	2240	0.00	1000	2120
6	1.20	340	1855	1.8	575	2320	0.00	1000	2195
8	0.90	425	1960				0.00	1000	2245
10	0.45	500	2065				0.10	1000	2295
12	0.40	770	2145						
14	1.00	865	2165						
16									

Comparing the above tables, the temperatures appear to be about the same between the two tests, with the exception of the center readings, which dropped about 200 degrees F from the baseline to the sub-bituminous blend. This could be due to the high moisture content of PRB (28% moisture). It also appears that CO levels were in the same ballpark, if not slightly lower, with the sub-bituminous blend.

- 8. Summary of emissions test results, actual test schedule, and procedures used Actual Schedule
 - 04/19/06 Baseline CO testing on Unit _ by CEMS Solutions
 - 05/22/06 Sub-bituminous blend burn Particulate, CO, Ash Resistivity, ESP Performance and Coal testing on Unit 5
 - 05/23/06 Sub-bituminous blend burn Ash Resistivity
 - 06/05/06 Baseline CO, Ash Resistivity and Coal testing on unit 5 by Koogler & Associates
 - 06/06/06 Baseline Ash Resistivity
 - 07/08/06 Baseline ESP Performance

Summary of emissions test results

CO & PM

CO & PM measurements were taken by Koogler & Associates both during the sub-bituminous blend and later on typical plant bituminous coal (baseline). Koogler performed (6) 1-hour tests on the sub-bituminous blend day (5/22) and (3) 1-hour tests on the baseline coal (6/5). CEMS Solutions performed (9) 20 minute CO tests on the baseline coal (4/19). Results are indicated below:

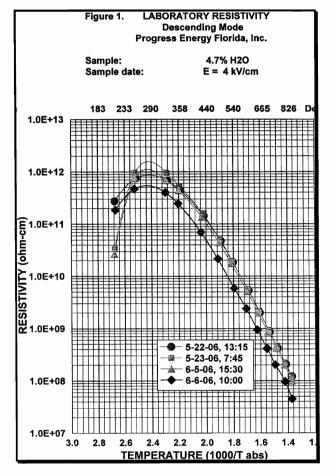
	CR5 Stack Testing Resu	ults Summ	ary (lb/m	ımbtu)	
	Baseline Tests	0.5	0.=	ASSOCIATION AND ASSOCIATION ASSOCI	id Tesis
Test Run	4/19	6/5	6/5	5/22	5/22
#	СО	СО	PM	СО	PM
1	0.007	<.001*	0.003	0.031	0.004
2	0.005	<.001	0.004	0.058	0.004
3	0.006	<.001	0.004	0.033	0.004
4	0.006			0.03	0.003
5	0.006			0.024	0.003
6	0.004			0.019	0.002
7	0.004				
8	0.004				
9	0.006				
Avg	0.006	<.001	0.004	0.033	0.003
Min	0.004		0.003	0.019	0.002
Max	0.007		0.004	0.058	0.004

^{*} non-detectable (< 1ppm)

Particulate Matter was basically unaffected by the sub-bituminous blend as compared to baseline. CO, which is not currently regulated, was reportedly low during the baseline tests. CO readings did register while burning the sub-bituminous blend. However, in comparing the CO levels of the two coals in the HVT tests (Section 7), the two coals seem very similar in CO levels. This leads us to question how the CO levels could be similar within the boiler yet differ at the stack.

ESP Voltages/Performance

We monitored ESP secondary voltage and secondary current and the total ESP secondary power input. The statistical results are summarized below:


	Baselin	e Run - 7/8/06	(710 MW)	PRS Blend - 5/22/06 (710 MW)			
ESP T/R Set	Baseline Secondary Current (mA)	Baseline	Baseline Secondary Power Input (KW)	PRB Blend - Secondary Current (mA)	PRB Blend Secondary Voltage (kV)	PRB Blend Secondary Power Input (KW)	
			Descriptive Statisti	cs			
Mean Median	412.66 387.00				50.124 50.00	1 5	
Mode Standard Deviation	474.00 181.74	50.00	9.90	162.0	50.0	8.8	
Range Minimum	753 94.0	14.00	36.90	653	. 11	. 34	
Maximum	847.0		40.4				
Count	77	77	77	79	79	79	

Ash Resistivity

Fly ash samples were pulled from ESP hoppers on CR5 at full load. Two samples were taken during the sub-bituminous blend burn and two more taken during normal coal burning operations. Samples were sent to APCO Services laboratories in Hopkinsville, KY. All (4) samples were tested simultaneously in a declining temperature batch resistivity test at 4.7% moisture to simulate conditions at the ESP inlet.

Sample Date	Coal Type	Full Load (Mw)
5/22/06	PRB blend	710
5/23/06	PRB blend	760
6/5/06	Typical CAPP	710
6/6/06	Typical CAPP	760

Fig. 1 is APCO's resistivity curve results. Typical ESP inlet temperature is 300 degrees F.

Upon evaluating APCO Services' Fig. 1, it appears that the sub-bituminous blend had, for the most part, slightly higher resistivity, yet still in the manageable range of the Electrostatic Precipitator. If we consider that the normal full load ESP inlet temperature is 300°F, the 5/22/06 sub-bituminous blend resistivity was actually lower than the 6/5/06 typical bituminous coal. Conclusion: the sub-bituminous blend ash resistivity is within normal parameters.

Test Procedures

Test Parameter	Test Method
PM	EPA Method 17
Stack Gas Velocity	EPA Method 2
Stack Moisture	EPA Method 4
Dry Molecular Weight	EPA Method 3
Carbon Monoxide	EPA Method 10
Opacity	EPA Method 9
Ash Resistivity Measurements	IEEE Standard 58-1984
Proximate Analysis	ASTM D-3172
Ultimate Analysis	ASTM D-3176
Heating Value	ASTM D-5865
Sulfur Percent	ASTM D-4239

9. Comparison of baseline emissions with emissions from firing the subbituminous coal blend (short-term and long-term)

NOx – Baseline testing of NOx emissions was conducted on June 05, 2006. The blend testing was conducted on May 22, 2006. The results of the testing are as follows:

NOx Test Results

Run Number	Baseline Rate (lb/mmbtu)	Blend Rate (lb/mmbtu)
1	0.501	.443
2	0.504	.436
3	0.502	.455
4	0.513	.455
5	0.512	.447
6		.439
7		.446 .
8		.453
9		.456
10		.457
11		.456
12		.452
13		.485
Average	.506	.452

SO2 - Baseline testing of SO2 emissions was conducted on June 05, 2006. The blend testing was conducted on May 22, 2006. The results of the testing are as follows:

Run Number	Baseline Rate (lb/mmbtu)	Blend Rate (lb/mmbtu)
1	1.071	1.056
2	1.077	1.061
3	1.077	1.064
4	1.082	1.056
5	1.072	1.063
6		1.059
7		1.063
8		1.068
9		1.07
10		1.059
11		1.037
12		1.021
13		1.016
Average	1.076	1.053

PM - Baseline testing of PM emissions was conducted on June 05, 2006. The blend testing was conducted on May 22, 2006. The results of the testing are as follows:

Run Number	Baseline Rate (lb/mmbtu)	Blend Rate (lb/mmbtu)
1	.003	.004
2	.004	.004
3	.004	.004
4		.003
5		.003
6	,	.002
Average	004	.003

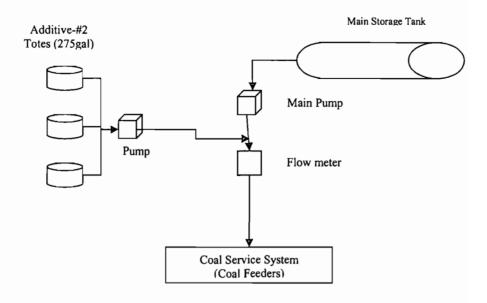
CO - Baseline testing of CO emissions was conducted on April 19, 2006 and June 05, 2006. The blend testing was conducted on May 22, 2006. The results of the testing are as follows:

	Baseline Rate (lb/mmbtu)	Baseline Rate (lb/mmbtu)	Blend Rate (lb/mmbtu)
Run Number	4/19/2006	6/5/2006	5/22/2006
1	.007	<.001	.031
2	.005	<.001	.058
3	.006	<.001	.033
4	.006		.03
5	.006		.024
6	.004		.019
7	.004		
8	.004		
9	.006		
Average	.006	<.001	.033

10. Discussion of emissions changes as described in Appendix C of 40 CFR 60.

The measured emissions outlined in section 9 were evaluated using the statistical methodology found in 40 CFR 60 Appendix C. The methodology used is the student's t test. Please see the results in Appendix 4.

NOx, SOx, and PM all showed that the emission rate change was insignificant. The only pollutant measured that showed a significant rate increase was CO. The CO significant rate increase determination, however, is based on a relatively small number of tests — with only a single set of tests with the sub-bituminous blend.


APPENDIX A-3

FUEL ADDITIVE SPECIFICATIONS

- 1. EES will bring a tankwagon of EES®Energy Plus with 3 totes of EES®Energy Plus concentrate at varying levels to allow for inline changes in dosage without altering spray patterns.
- 2. The objective is to measure changes caused by varying a fuel treatment process documenting changes in:
 - a. Heat rate.
 - Energy Plus will increase the BTU output of coal in the furnace.
 - b. Boiler efficiency.
 - EES expects reductions in fuel consumption and an increase in feed water flow.
 - c. Emissions reductions.
 - We expect to see reductions as follows: CO 30%, PM 30%, NOx 20%, Opacity 10%.
- 3. Initially run a stable *coal only* baseline test at a repeatable coal feed rate (full load). Crystal River will use typical fuel and we will examine long term CEMS records for variations and compare average values. The fuel quality will most likely fluctuate but we will agree on the typical statistical data collected to establish baseline parameter.
- 4. Then running with EES@Energy Plus for several days to document changes at different concentrations. EES will deliver 500ppm 1000ppm of active concentrate onto the coal. The concentration will be determined by dilution with a less concentrated product (denoted as additive #2 in the diagram below). The additive mixture is fed at a rate of 3 to 30 gallons per hour (total to all feeders.)
- 5. Excess air levels will be reduced by Crystal River for each dosage condition. EES will run three dosage conditions to bracket performance for later optimization. The amount of air reduced will be limited by CO limits and/or opacity limits. Our objective will be to increase efficiency and reduce NOx while keeping CO within limits. We will discuss and agree on an exact protocol for reducing excess air when the trial date is fixed. Crystal River operations will be responsible for moving excess air levels according to the protocol we all agree upon. Varying the dosage is used to optimize chemical consumption while maximizing performance results.
- 6. It may take several hours to days to initiate the changes expected in point #2, depending on the boilers response to the additive. No undesirable effects are expected. If the novel technology does not work according to plan, nothing will happen. Risks remain "normal" as with any boiler operations.

Test Protocol for Crystal River Coal Treatment Test

- 7. The EES®Energy Plus concentrate will be mixed with a diluted product stream and water in varying proportions from 275 gallon totes to achieve the desired dosages of 500 1000ppm. Our pumping system will be controlled by the gravimetric feeders. The main pump will have an on/off switch (a 4-20ma signal from feeder(s) will need to be provided by Crystal River I&C) and will deliver the correct flow to maintain a header pressure of 100psi. We will control dosage manually for the trial. A sketch of the proposed fuel treatment system is attached.
- 8. The following parameters should be measured for the test:
 - a. Feed water rate and temperature to the boiler economizer
 - b. Steam flow, temperature and pressure from boiler
 - c. Electrical output from generator
 - d. Coal feed rate
 - e. Heat rate
 - f. Flue gas oxygen
 - g. NOx (from CEMs)
 - h. Sox (from CEMs)
 - i. CO (portable analyzer provided by EES)
 - j. PM (EES Impaction Plate test with is much less complicated than method 5, at no cost to Crystal River).
 - k. Opacity (from COMs)

The main storage tank will be 3 totes in series.

Environmental Energy Services, Inc.

Combustion Enhancer System

Material Safety Data Sheet

Environmental Energy Services, Inc.

8 West Kenosia Ave Danbury, CT 06810 **Emergency Phone:**

CHEMTREC: 800-424-9300

EES[®]: 203-798-7428

Business Phone: 203-798-7428

PART I: What is the material and what do I need to know in an emergency?

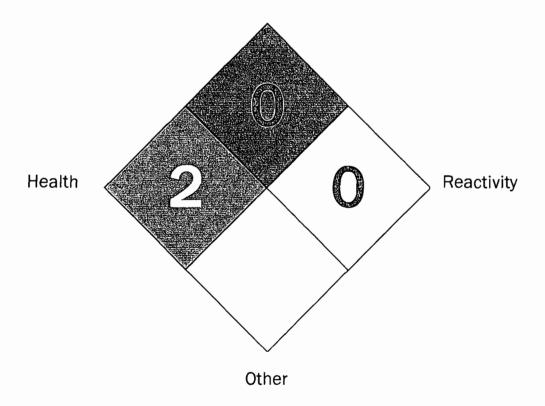
Section 1: PRODUCT IDENTIFICATION								
Trade Name (as labeled):				EES® - Energy Plus™				
Chemical Name/Class:			Inorga	Inorganic Nitrate Solution				
Technical Bulletins:			II	EES® – Energy Plus™ (Liquid Calcium Nitrate Tetrahydrate)				
Product Use:			Variety	Variety of Industrial Applications				
SDS Preparatio	n Date:		Februa	February 6, 2004				
Health (Blue):			2	2				
Flammability (Red):			0	0				
Reactivity (Yellow	·):		0					
Protective Equipn	nent:		D	D				
Respiratory:			See Se	See Section 8				
		See Section	n 16 for det	finition of ra	atings.			
Sectio	n 2: COMPO	OSITION	AND IN	ORMAT	ION ON	INGRED	IENTS	
				Exposure Limits in Air				
			ACGIH		os	НА		
			TLV	STEL	PEL	STEL	IDLH	Other
Chemical Name	CAS#	% v/v	Mg/m ³	Mg/m ³	Mg/m ³	Mg/m ³	Mg/m ³	
Calcium Nitrate Tetrahydrate	13477-34-4	> 50%	NE	NE	NE	NE	NE	NE
Water	7732-18-5	Balance	NE	NE	NE	NE	NE	NE

NE = Not Established

C = Ceiling

e Section 16 for definition of terms used.

NOTE: ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1993 format.


Section 3: HAZARD INFORMATION				
Emergency Overview:	This product is a colorless, odorless solution. This primary health hazard associated with this product is the potential for moderate irritation of the eyes, skin, and other contaminated tissue. This product is not flammable or reactive. In its dry form, this product may act as an oxidizer to initiate and sustain the combustion of flammable materials. Emergency responders must wear the personal protective equipment suitable for the situation to which they are responding.			
Symptoms of Overexposure by Route of Exposure:	I ha primary routes of overcyposure for the solution are via inhalation and contact with			
Inhalation:	If vapors, mists or sprays of this product are inhaled, they may irritate the nose, throat and lungs. Symptoms may include the following: sneezing, coughing, and difficulty breathing. Severe overexposure can result in damage to the respiratory system tissues. Most symptoms are generally alleviated when the overexposure ends.			
Contact with Skin or Eyes:	Depending on the duration of overexposure, contact with the eyes will cause irritation, pain, and reddening. Severe eye exposure can cause conjunctivitis. Severe, prolonged exposures may cause tissue damage, which could lead to blindness. Depending on the duration of skin contact, skin overexposures will cause reddening, discomfort, moderate irritation and tissue damage. Dermatitis may result from prolonged or repeated skin contact.			
Skin	Skin absorption is not a significant route of overexposure for the components of this			
bsorption:	product.			
Ingestion:	Is this product is swallowed, irritation and burns of the mouth, throat, esophagus, and other tissues of the digestive system will occur immediately upon contact. Symptoms of such overexposure can include nausea, abdominal pain, vomiting and diarrhea. Severe ingestion overexposures can result in convulsions and collapse. The nitrate component of Calcium Nitrate, Tetrahydrate (a component of this product) may damage the oxygen transport system to the blood. Severe ingestion exposures can be fatal. Repeated ingestion of small amounts of this product (as may occur in the event of poor hygiene practices) may cause weakness, depression, headaches, and mental impairment.			
Injection:	Accidental injection of this product, via laceration or puncture by a contaminated object,			
	may cause pain and irritation in addition to the wound.			
	Effects or Risks from Overexposure: An explanation in Lay Terms.			
In th	ne event of overexposure, the following symptoms may be observed:			
Acute:	The primary hazard associated with this product is the potential for moderate irritation of the skin, eyes, and other contaminated tissues. Prolonged contact can result in tissue damage. Ingestion of this product can be harmful or fatal.			
Chronic:	Dermatitis (inflammation and redness of the skin) may result from prolonged or repeated skin contact. Repeated ingestion of small amounts of this product may cause weakness, depression, headaches, neurological effects, and mental impairment. See Section 11: Toxicology Information for additional information.			
Target Organs:	Skin, eyes, nervous system.			

PART II: What should I do if a hazardous situation occurs?

Section 4: FIRST-AID MEASURES		
Skin Exposure:	If this product contaminates the skin, begin decontaminated with running water. The minimum flushing is for 15 minutes. Remove exposed or contaminated clothing, taking care not to contaminate eyes. Victim must seek medical attention if any adverse effects occur.	
Eye Exposure:	If this product's liquid or vapors enter the eyes, open contaminated individual's eyes while under gently running water. Use sufficient force to open eyelids. Have contaminated individual "roll" eyes. Minimum flushing is for 15 minutes. Contaminated individual must seek immediate medical attention.	
Inhalation:	If vapors, mists, or sprays of this product are inhaled, remove contaminated individual to fresh air. If necessary, use artificial respiration to support vital functions. Remove or cover gross contamination to avoid exposure to rescuers.	
Ingestion:	If this product is swallowed, CALL PHYSICIAN OR POISON CONTROL CENTER FOR MOST CURRENT INFORMATION. If professional advice is not available, DO NOT INDUCE VOMITING. Contaminated individual should drink milk, egg whites, or large quantities of water. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or unable to swallow.	
	ed individuals must be taken for medical attention if any adverse reaction occurs. Rescuers be taken for medical attention, if necessary. Take a copy of the label and мsps to health professional with contaminated individual.	
Section 5: FIRE-FIGHTING MEASURES		

NFPA Rating

Flammability

See Section 16 for definition of ratings.

	Se	ction 5: FIRE-FIGI	HTING MEASURES (Continued)		
Flash Point:			Not flammable		
Autoignition Temperature:		ture:	Not flammable		
		air by volume %)	Lower (LEL): Not applicable		
<u> </u>	•	<u> </u>	Upper (LEL): Not applicable		
		Fire Exti	tinguishing Materials:		
Water Spray:			Yes		
Foam:			Yes		
Halon:			Yes		
Carbon Dioxid	e:		Yes		
Dry Chemical:			Yes		
Other:			Any "ABC" Class		
Unusual Fire and Explosion Hazards: firefighters. When involution acrid vapors, calcium to be a significant haz a solution, it is important.		firefighters. When invacrid vapors, calcium to be a significant has a solution, it is import oxidizer, which can acmaterials.	derate irritant and presents a potential contact hazard to volved in a fire, this material may decompose and produce in compounds, and oxides of nitrogen. Though not anticipated azard associated with this product, due to that fact that this i rtant to note that in its dry form, Calcium Nitrate is an act to initiate and sustain the combustion of flammable		
plosion Sen	sitivity 1	to Static Discharge:	Not sensitive		
Special Fire-Fighting Procedures: wear Self-Contained B Chemical resistant clothey have not been expersonnel. If this prodiprevent possible envir		wear Self-Contained I Chemical resistant clo they have not been ex personnel. If this prod prevent possible envi	ders should wear eye protection. Structural fire fighters must Breathing Apparatus and full protective equipment. In this shows the street and full protective equipment. In this shows the street and if it can be done without risk to expose to heat and if it can be done without risk to educt is involved in a fire, fire run-off should be contained to vironmental damage. Rinse all contaminated equipment or before returning to service.		
		Section 6: ACCIDI	ENTAL RELEASE MEASURES		
Spill and Leak Response:	proced the af gallon Person gloves purifyi Conta mists	dures. Proper protective fected area, and protective release in which excess all Protective Equipments over latex gloves), cheight grespirator with a high ined Breathing Apparation be generated, or the	Id be responded to be trained personnel using pre-planned ve equipment should be used. In case of a large spill, clear ect people. In the event of a non-incidental release (e.g., 55-essive splashes or sprays can be generated), minimum ent should be Level C: triple-gloves (rubber gloves and nitrile nemically resistant suit and boots, hard-hat and an airigh-efficiency particulate filter. Level B, which includes Selfatus, must be worn in situations in which excessive sprays or the oxygen level is less than 19.5% or unknown. Absorb pads, or other suitable absorbent materials. Decontaminate		

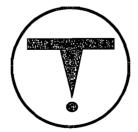
the area thoroughly. Place all spill residue in a suitable container and seal. Dispose of in

accordance with U.S. federal, state, and local waste disposal regulations, or the applicable Canadian standards (see Section 13: Disposal Considerations).

PART III: How can I prevent hazardous situations from occurring?

	Section 7: HANDLING AND STORAGE
Work and Hygiene Practices:	As with all chemicals, avoid getting this product on YOU or IN YOU. Wash hands after handling this product. Do not eat, drink, smoke, or apply cosmetics while handling this product. All work practices should minimize the generation of splashes and aerosols. Remove contaminated clothing immediately.
Storage and Handling Practices:	All employees who handle this material should be trained to handle it safely. Avoid breathing vapors or mists generated by this product. Use in a well-ventilated location. Open containers slowly, on a stable surface. Containers of this product must be properly labeled. Empty containers may contain residual liquid or vapors; therefore, empty containers should be handled with care. Store containers in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Store away from incompatible materials (see Section 10: Stability and Reactivity). Material should be stored in secondary containers or in a diked area, as appropriate. Keep container closed tightly when not in use. Inspect all incoming containers before storage, to ensure containers are properly labeled and not damaged.
Protective Practices During Maintenance of Contaminated Equipment:	Follow practices indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely, if necessary. Collect all rinsates and dispose of according to applicable U.S. federal, state, or local procedures, or the appropriate Canadian Standards.
Section	8: EXPOSURE CONTROLS - PERSONAL PROTECTION
Ventilation and Engineering Controls:	Exhaust directly to the outside. Use local exhaust ventilation, and process enclosure if necessary, to control mist formation. Supply sufficient replacement air to make up for air removed by system. Ensure eyewash/safety shower stations are available near areas where this product is used.
Respiratory Protection:	Maintain airborne containment concentrations below exposure limits listed in Section 2 (Composition and information on Ingredients). If respiratory protection is (e.g., air-purifying respirator with dust/mist/fume cartridge), use only protection authorized in 29 CFR 1910.134, or applicable U.S. state regulations (or the appropriate standards of Canada and its provinces). Use supplied air respiration protection during response procedures to non-incidental releases and if oxygen levels are below 19.5% or unknown.
Eye Protection:	Splash goggles or safety glasses. Face shields recommended when using quantities of this product in excess of one (1) gallon.
Hand Protection:	Wear Neoprene or rubber gloves for routine industrial use. Use triple gloves for spill response, as stated in Section 6 (Accidental Release Measures) of this MSDS.
Body Protection:	Use body protection appropriate for task. An apron, or other impermeable body protection is suggested. Full-body chemical protective clothing is recommended for emergency response procedures.

Section 9: PH	YSICAL AND	CHEMICAL PROPERTIES	
Vapor Density:		Not applicable	
Specific Gravity @ 15°C (59°F):		1.465-1.475	
lubility in Water:		Completely	
Vapor Pressure:		Not applicable	
Odor Threshold:		Not applicable	
Log Water/Oil Distribution Coeffici	ient:	Not available	
Appearance and Color:		This product is a colorless, odorless solution	
How to detect this substance (Warning		There are no distinguishing characteristics of this	
Properties):		product	
Evaporation Rate (n-BuAc - 1):		Similar to water	
Freezing Point or Range:		-35°C (-31°F)	
Boiling Point:		>100°C (>212°F)	
pH @ 15°C (59°F):		6.5-8.0	
Section	10: STABIL	ITY AND REACTIVITY	
Stability:	Stable		
Decomposition Products:	Calcium compounds, nitrogen oxides		
Materials with which Substance	Flammable and combustible materials, strong reducing agents,		
is Incompatible:	finely powdered metals.		
Hazardous Polymerization:	Will not occur		
Conditions to Avoid:	Extreme heat and contact with incompatible chemicals		


PART IV: Is there any other useful information about this material?

	Sect	ion 11: TOXICOLO	GICAL INFORMATION		
Toxicity Data:	_	•	components of this product specifically listed in ion on Ingredients), and for a related compound, are		
effects; Eye effe	cts – rabbit, ac	US hours, mild irritation Iult 500 mg/24 hours, at LD ₅₀ , 3900 mg/kg	CALCIUM NITRATE: Oral – rat LD ₅₀ , 302 mg/kg		
Suspected Can	cer Agent:		The components of this product are not found on the following lists: U.S. Federal OSHA, NTP, IARC, and CAL/OSHA and therefore are not considered to be, nor suspected to be, cancer causing agents by these agencies.		
Irritancy of Prod	duct:	This product is moderately irritating to contaminated tissue			
Sensitization of	Sensitization of Product:		This product contains no known sensitizers with repeated or prolonged use.		
Reproductive T Information:	oxicity		ation concerning the effects of this product and its uman reproductive system:		
Mutagenici Embryotoxi Teratogenia	city:	This product is not reported to produce mutagenic effects in humans This product is not reported to produce embryotoxic effects in humans This product is not reported to cause teratogenic effects in humans			
Teratogenic	city:	This product is not reported to cause teratogenic effects in humans			

Section 11:	TOVICO		AL INFORMATION (continued)		
			AL INFORMATION (continued) reported to cause reproductive toxicity effects in humans		
•	•		ent changes to genetic material (DNA) such that the		
			es. An embryotoxin is a chemical that causes damage		
			ht weeks of pregnancy in humans), but the damage		
			A teratogen is a chemical that causes damage to a		
			es not propagate across generational lines.		
		_	terferes in any way with the reproductive process.		
		Pre-exist	ing dermatitis, or other skin disorders, and conditions		
Medical Conditions Aggravated	by	involving	the other Target Organs (see Section 3, Hazard		
Exposure:			ation) may be aggravated by over-exposure to this		
		product.			
December of detions to Dhysician	I	_	mptoms and eliminate over-exposure. Be observant for		
Recommendations to Physician		_	pulmonary edema in the event of severe inhalation over-		
		exposure			
ACGIH Biological Exposure Indi	- Lac-		y, there are no ACGIH Biological Exposure Indices (BEI's) ed with components of this product.		
0.04					
			OGICAL INFORMATION		
ALL WORK PRACTICES MUST BE AIMED AT ELIMINATING ENVIRONMENTAL CONTAMINATION					
Environmental Stability:			mponents of this product are relatively stable under		
			nbient, environmental conditions. is product may be harmful to terrestrial plant or animal life,		
Effect of Materials on Plants or			specially if released in large quantities. Refer to Section 11 for		
Animals:			data on the effects of this product's components on test		
Ammaio			animals.		
This n		This pr	oduct may be harmful to aquatic plant or animal life,		
Errect of Chemical on Aquatic L	.ne:	especia	ally if released in large quantities.		
Section			SAL CONSIDERATIONS		
Duran andre (114)		•	nust be in accordance with appropriate U.S. federal,		
Preparing Wastes for			d local regulations, or appropriate Canadian standards. This		
Disposal:		t, if unaltered, may be disposed of by treatment at a permitted			
EDA Mosto Number			as advised by your local hazardous waste authority.		
EPA Waste Number:					
			ORTATION INFORMATION		
	S DEFINE	D BY 49 C	FR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION		
Proper Shipping Name:			Not applicable		
Hazardous Class Number and I	Descript	ion:	Not applicable		
UN Identification Number:			Not applicable		
Packing Group:			Not applicable		
DOT Label(s) Required:			Not applicable		
North American Emergency Res	sponse		Not applicable		
Number:			Not applicable		
			This product does not contain any components which		
Marine Pollutant:			are designated by the Department of Transportation		
			(DOT) to be Marine Pollutants (per 49 CFR 172.101		
Tropoport Conside Transactivity	f		Appendix B)		
Transport Canada Transportation			THIS MATERIAL IS NOT CONSIDERED AS DANGEROUS GOODS.		
Dangerous Goods Regulations:	_				

Section	15: REGULA	TORY INFOR	RMATIO	N	
ADDITIONAL UNITED STATES REG			1111/1110	111	
U.S. SARA Reporting Require	ements:	The componen reporting requi of Title III of the Reauthorizatio	rements o Superfu	of Sections 30 nd Amendme	02, 304, and 313 nts and
Chemical Name		302 , Appendix A)	(40 C	RA 304 FR Table 02.4)	SARA 313 (40 CFR 372.65)
Energy Plus (as Nitrate Compounds, Water Dissociable)	N	0		NO	YES
U.S. SARA Threshold Planning Qua	ntity:	Not applicable			
U.S. CERCLA Reportable Quantity (RQ):		Calcium Nitrate		•	rate of anhydrous inventory.
U.S. TSCA Inventory Status:		Not applicable			
Other U.S. Federal Regulations:		Not applicable			
U.S. Regulatory Information:	The components of this product are covered under the following specific state regulations:			e following	
Alaska – Designated Toxic and Hazardous Substance:				No	
ornia – Permissible Exposure L	_imits for Chen	nical Contamin	ates:	No	
Florida - Substance List:				No	
Illinois - Toxic Substance List:				No	
Kansas – Section 302/313 List:				No	
Massachusetts – Substance List:	L			No	
Michigan - Critical Materials Regis				No No	
Minnesota – List of Hazardous Sub		a Liete		No	
Missouri – Employer Information/T New Jersey – Right to Know Hazard				No Calcium Nit	rata
North Dakota – List of Hazardous (ities	No	Iare
Pennsylvania – Hazardous Substar		ortable Qualit	11103.	No	
Rhode Island - Hazardous Substance List:				No	
Texas - Hazardous Substance List:				No	
West Virginia – Hazardous Substan				No	
Wisconsin – Toxic and Hazardous S				No	
California Safe Drinking Water and Toxic Enforcement Act (Proposition 65):		of this product i	s on the (position 65 lists

	Section 15: RE	GULATORY INFORMATION (Continued)		
ANSI Labeling (per Z129.1, provided to summarize occupational safety hazards):		WARNING! CAUSES SKIN OR EYE IRRITATION. MAY BE HARMFUL OR FATA L IF SWALLOWED. Keep away from flammable or combustible materials. Do not taste or swallow. Do not get on skin, in eyes, or on clothing. Avoid breathing vapors or mists. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Wear gloves, goggles, face-shield, and suitable body protection. FIRST AID: In case of contact, immediately flush skin or eyes with plenty of water for at least 15 minutes while removing contaminated clothing or shoes. If inhaled, remove to fresh air. If ingested, do not induce vomiting. Get medical attention. IN CASE OF FIRE: Use water fog, dry chemical, CO ₂ , or "alcohol" foam. IN CASE OF SPILL: Absorb spill with inert material. Place residue in suitable container. Consult MSDS for additional information.		
rrent Labeling (Precautionary Statements):		WARNING! INGESTION: Temporary intestinal upset. SKIN CONTACT: Mild irritant. SKIN ABSORPTION: Mild irritant. EYE CONTACT: Mild irritant. FIRST-AID: INGESTION: Flush system with water. Take milk of magnesia. SKIN: Wash with plenty of soap and water. EYE: Flush with running water for a minimum of 15 minutes. INHALATION: Get patient to fresh air; blow nose to remove dust. IN CASE OF FIRE: Aqueous solution is non-flammable, but dry solids will support combustion of flammable materials. Anhydrous nitrates are powerful oxidizing agents. Exposure to heat or flame can emit toxic oxides of nitrogen. IN CASE OF SPILL: Clean up at once. Do not allow dried-out spill to remain near flammable material. See MSDS for further information.		
	ADD	ITIONAL CANADIAN REGULATIONS:		
Canadian DSL Inventory:	Calcium Nitrate, Teti DSL/NDSL inventory	rahydrate is a hydrate of anhydrous Calcium Nitrate, which is on the		
Canadian WHMIS Symbols:	Class D2B: Materials Causing other Toxic Effects			

Section 16: OTHER INFORMATION

DEFINITIONS OF TERMS

A LARGE NUMBER OF ABBREVIATIONS AND ACRONYMS APPEAR ON AN MSDS. SOME OF THESE WHICH ARE COMMONLY USED INCLUDE THE FOLLOWING:

CAS #:

This is the Chemical Abstract Service Number that uniquely identifies each constituent. It is used for computer related searching.

EXPOSURE LIMITS IN AIR:

ACGIH - American Conference of Governmental Industrial Hygienists, a professional association that establishes exposure limits. TLV - Threshold Limit Value; an airborne concentration of a substance that represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour Time Weighted Average (TWA), the 15-minute Short Term Exposure Limit, and the instantaneous Ceiling Level (C). Skin absorption effects must also be considered. OSHA - U.S. Occupational Safety and Health Administration. PEL - Permissible Exposure Limit. This exposure value means exactly the same thing as a TLV, except that it is enforcible by OSHA. The OSHA Permissible Exposure Limits are based on the 1969 PELS and the June, 1993 Air Contaminates Rule (Federal Register: 58:35338-35351 and 58:40191). Both the current PELS and the vacated PELs are indicated. The phrase, "Vacated 1989 PEL" is placed next to the PEL THAT was cated by Court Order. IDLH – Immediately Dangerous to Life and Health. This level represents a concentration from which one can escape within 30 minutes without suffering, preventing escape or permanent injury. The DFG-MAK is the Republic of Germany's Maximum Exposure Level, similar to the U.S. PEL. NIOSH is the national institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Association (OSHA). NIOSH issues exposure guidelines called Recommended Exposure Levels (RELS) when no exposure guidelines are established, an entry of NE is made for reference.

HAZARD RATINGS:

HAZARD MATERIALS IDENTIFICATION SYSTEM:

Health Hazard: 0 (minimal acute or chronic exposure hazard); 1 (slight acute or chronic exposure hazard); 2 (moderate acute or significant chronic exposure hazard); 3 (severe acute exposure hazard; one-time overexposure can result in permanent injury and may be fatal); 4 (extreme acute exposure hazard; one-time overexposure can be fatal)

Flammability Hazard: 0 (minimal hazard); 1 (materials that require substantial pre-heating before burning); 2 (combustible liquid or solids; liquids with a flash point of 38-93°C [100-200°F]); 3 (Class 1B and 1C flammable liquids with flash points below 23°C [73°F] and boiling points below 38°C (100°F)

Reactivity Hazard: O (normally stable); 1 (material that can become unstable at elevated temperatures or which can react slightly with water); 2 (materials that are unstable but do not detonate or which can react violently with water); 3 (materials that can detonate when initiated or which can react explosively with water); 4 (materials that can detonate at normal temperatures or pressures)

Section 16: OTHER INFORMATION (continued)

NATIONAL FIRE PROTECTION ASSOCIATION:

Health Hazard: 0 (material that, on exposure under fire conditions, would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can, on short exposure, cause serious, temporary, or residual injury); 4 (materials that under very short exposure causes death or major residual injury)

Flammability Hazards and Reactivity Hazard:

Refer to definitions for "Hazardous Materials Identification System"

FLAMMABILITY LIMITS ON AIR:

Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA).

Flash Point: minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. **Autoignition Temperatures:** the minimum temperature required to initiate combustion in air with no other source of ignition. **LEL:** the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. **UEI:** the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Possible health hazards as derived from human data, animal studies, or from the results of studies with plant compounds are presented. Definitions of some terms used in this section are: LD50 - Lethal Dose lids and liquids) which kills 50% of the exposed animals; LC50 - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm - concentration expressed in weight of substance per volume of air; mg/m³ - concentration expressed in weight of substance per volume of air; mg/kg - quantity of material, by weight, administered to a test subject, based on their body weight in kg. Data from several sources are used to evaluate the cancer-causing potential of the material. The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program; RTECS - the Registry of Toxic Effects of Chemical Substances; OSHA and CAL/OSHA. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1-4. Subrankings (2A, 2B, etc) are also used. Other measures of toxicity include TDLO, the lowest dose to cause a symptom; TDO, LDLO, and LDO, or TC, TCO, LCLO, and LCO, the lowest dose (or concentration) to cause lethal or toxic effects. BEI - Biological Exposure Indices, represent the level of determinants, which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV. EC - Ecological Information is the effect concentration in water.

REGULATORY INFORMATION:

This section explains the impact of various laws and regulations on the material. *EPA* is the U.S. Environmental Protection Agency. *WHMIS* is the Canadian Workplace Hazardous Materials Information System. *DOT* and *TC* are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA or SUPERFUND); and various state regulations.

APPENDIX A-4

CBO MERCURY EMISSIONS DATA

The Fate of Ammonia and Mercury in the Carbon Burn-Out (CBO™) Process

Vincent M Giampa

Progress Materials, Inc., One Progress Plaza, St. Petersburg, Florida 33701

KEYWORDS: mercury, ammonia, carbon burn-out, fly ash

INTRODUCTION

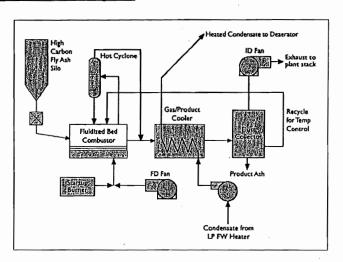
Carbon Burn-Out (CBO™) has long been known as a very robust system for carbon removal for various types of ash feed stocks. Ash feed stocks with carbon contents ranging from 7% to 90% have been successfully processed. To date, over one million tons of coal fly ash have been processed using CBO™.

CBO™ processed coal fly ash exhibits excellent pozzolanic activity, consistent air entrainment, consistent LOI at 2.5% or less, and has gained excellent market acceptance.

Recently, there has been much discussion in the fly ash industry about the fate of ammonia and mercury on fly ash. These two parameters are present in coal fly ash via different mechanisms. Mercury is inherent to the coal while ammonia originates from post-combustion NOx reduction techniques using ammonia.

Arnmonia on fly ash is primarily a result of recent pollution abatement techniques. Coal fired power generation facilities are under increasing pressure for NOx emission reductions. Recent United States EPA rule changes will require many coal fired utilities to meet NOx emissions limitations of 0.15 lbs./MBTU or less. In order to meet these requirements, many utilities will use a combination of combustion management and post-combustion processes. Combustion management techniques include low NOx burners, over-fire air systems, gas reburning technology and flue gas re-circulation. These methods can contribute to higher residual carbon levels in fly ash, especially when operating for maximum NOx removal.

Post-combustion processes include Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR). Use of either of these treatment technologies will result in fly ash contaminated with ammonia slip, which may then be un-marketable, depending on the concentration.


Mercury on the other hand is inherent or naturally occurs in coal. The average value for fly ash from Bituminous coal combustion is .41 ppm¹.

Given the industry's concerns, Progress Materials recently conducted investigations as to the fate of ammonia and mercury in the Carbon Burn-Out process. This paper presents recent findings concerning ammonia and mercury in the Carbon Burn-Out process.

THE CARBON BURN-OUT PROCESS

The Carbon Burn-Out process is a thermal process specifically designed for the reduction of carbon in fly ash.

FIGURE 1: CBO™ Process Diagram

Referring to Figure 1, the CBO™ process flow may be easily summarized:

- High-carbon ash is pneumatically transported to the high carbon fly ash silo
- FD fan provides fluidization and combustion air to CBO™ fluid bed combustor.
- Start-Up Burner is used only during start up to heat bed to ignition temperature.
- High Carbon feed ash is metered into the combustor.
- Carbon combusts in the FBC on a continuous basis.
- Hot cyclones remove most elutriated particles from FBC flue gas.
- Low carbon fly ash exits FBC via level control weirs.
- Flue gas pneumatically conveys low carbon fly ash, both at about 1300° F through the Gas/Product Cooler.
- In the Gas/Product cooler, heat transfer occurs from hot product ash and hot flue gas to the condensate from the power plant.
- Product ash and flue gas exit at < 300° F.
- Heated condensate returns to power plant's feedwater heater system.

- Product ash is separated from flue gas via cyclone and baghouse.
- ID fan maintains entire CBO™ system at a slight negative pressure, transports product ash through the heat exchanger, and transports cooled, particulate-free flue gas to power plant stack.
- Product ash is pneumatically conveyed to storage for subsequent load out
- Product ash is also recycled for FBC temperature control.

AMMONIA AND THE CARBON BURN-OUT PROCESS

Progress Materials' ammonia removal investigation approach was developed to accomplish two primary goals. The first goal was to determine Carbon Burn-Out's efficiency in removing ammonia from fly ash. Data would be generated to determine fly ash ammonia concentrations after Carbon Burn-Out processing. The second goal was to determine the fate of the ammonia in the Carbon Burn-Out process. This investigation step involved measuring gas phase ammonia concentrations thereby providing information as to whether the ammonia is exhausted or thermally decomposed within the CBO™ system.

This work on the fate of ammonia in the CBO™ builds on the work previously reported by PMI ².

Ammonia Testing Procedures and Results

In order to determine the effectiveness of ammonia removal by Carbon Burn-Out, several fly ash feed stocks of differing ammonia contents were processed. Processing was accomplished using Progress Materials' one ton per hour pilot facility located in Tampa, Florida.

Ammonia containing fly ash samples from several Eastern United States utilities were selected for processing. Fly ash ammonia concentrations ranged between 50 and 750 ppmw. Ammoniated fly ash used in this study was generated in both SCR and SNCR systems. Ammonia or Urea was used as the process reagent.

Carbon Burn-Out's fluid bed technology provides heat and residence time dictated by conditions for optimal combustion of carbon found in fly ash. Fly ash residence times of forty-five minutes and temperatures in the 1300°F range are characteristic of the CBO™ process. Kinetic theory suggest that CBO™ conditions should be ideal for ammonia removal and decomposition.

Both feed and product samples were analyzed for ammonia content.

Ammoniated fly ash was tested by several different methods. Testing methodology for ammonia in fly ash is not well defined. However, well-defined methods have been used for solid matrices in environmental testing. EPA

methods 350.2, 350.3 and a rapid field technique developed by Boral Materials Technologies Inc. were selected for use in our testing program.

Table 1 illustrates results of four different, as-received fly ashes tested using the three methods. EPA methods 350.2 and 350.3 produced similar results. EPA 350.2 uses an aggressive acid distillation step while method 350.3 uses only distilled water for the dissolution of ammonia. The similarity of results between the two methods indicates that the ammonia is water-soluble. The Boral method, which is a simpler-to-run field test, also produced reasonably similar results.

Table1: Arnmonia Method Cornparison

735

Sample 1	300	306	320
Sample 2	351	300	250
Sample 3	534	660	525

EPA 350.2 (PPM) EPA 350.3 (PPM) Boral Procedure (PPM)

610

720

Table 2 illustrates ammoniated fly ash samples before and after processing by Carbon Burn-Out. Ammonia content of the feed and product, type of NOx control device used and NOx reagent are shown.

Table 2: Ammonia in Fly Ash Feed

Sample 4

Feed Ash (PPM)	Product Ash (PPM)*	Control Device	Reagent
60	< 5	SCR	Ammonia
230	< 5	SNCR	Ammonia
300	< 5	SNCR	Ammonia
500	< 5	SNCR	_Ammonia
650	< 5	SNCR	Ammonia
700	< 5	SNCR	Urea
735	< 5	SNCR	Urea

^{* &}lt; Indicates detection limit of the method

Results indicate that under normal Carbon Burn-Out operating conditions essentially all ammonia was removed from the fly ash feed material.

The second goal of the study involved the determination of the fate of released ammonia in the flue gas. To quantify the extent of thermal decomposition of ammonia, flue gas ammonia concentrations were measured at the fluid bed exhaust and the exhaust stack.

The test method selected for ammonia concentration in flue gas was EPA CTM 027, "Procedure for Collection and Analysis of Ammonia in Stationary Sources."

Sampling was conducted after the CBO™ system achieved steady state operation and recycle ash was used for FBC cooling. Such conditions closely simulate large scale CBO™ operation in the pilot facility.

Results of testing indicate that between 94% and 98% of the ammonia introduced into the system is being thermally decomposed. That is, the mass of ammonia in the FBC flue gas was between 4% and 8% of that in the feed ash. Both sampling points produced similar concentrations and decomposition efficiency.

MERCURY AND THE CARBON BURN-OUT PROCESS

Mercury as a trace element in coal is now coming under increasing investigation, particularly as a contaminant in flue gas from coal-fired power plants. Technology is being developed to capture mercury (Hg) contained in this flue gas.

Processes that absorb mercury from the flue gas by injecting carbon (typically activated carbon) into the gas ducting show significant promise. In these processes, the mercury containing carbon may be captured with the fly ash by existing particulate control devices. These processes report capture rates of up to 90% of the total Hg contained in the coal. The relatively small amount of carbon used in mercury capture is co-mingled with normally occurring fly ash.

Addition of even very small amounts of activated carbon to fly ash can reduce the value of the fly ash as a pozzolan used in concrete manufacturing. Activated carbon has been found to interfere greatly with the air entrainment reagents used in concrete mix designs³.

While most of the regulatory effort has been on removing mercury from flue gas, the presence of mercury on either fly ash or on mixtures of fly ash and activated carbon slated for disposal is of significant concern. This scenario has the potential to change once marketable fly ash into a solid waste.

It was clear that the CBO™ process would combust the small amounts of activated carbon, along with the carbon in the co-mingled ash, and that the mercury would be vaporized at the FBC temperature. What was not clear was what the final fate of that mercury would be. One possibility was that it could simply remain in the vapor state and exit the CBO process in the flue gas. However, since the flue gas is cooled in the G/P Cooler, another possibility was that some fraction of the mercury would condense on the product fly ash and become sequestered when the fly ash was bound in the concrete matrix.

Mercury Testing Procedures and Results

A testing program was designed to determine the fate of mercury in the CBO™ process. A commercial scale CBO™ system was used for this testing program. Fly ash processed in this study was from a utility boiler without activated carbon mercury control equipment so the mercury represents only that captured by the fly ash. Various studies indicate that this can represent 30% to 100% of the total mercury from the coal. ^{4,5}

Table 3 illustrates sampling points used in this program, sample matrix and the sample type

Table 3: Mercury Sampling Locations

Sampling Point	Matrix	Sample Type
Fly Ash Feed	Solid	Grab
Fly ash product	Solid	Grab
Fluid Bed	Solid	Grab
Hot cyclone Inlet	Gas, Solid	Ontario Hydro
Hot Cyclone Outlet	Gas, Solid	Ontario Hydro
Baghouse Inlet	Gas, Solid	Ontario Hydro
Baghouse Exhaust	Gas, Solid	Ontario Hydro

A mercury balance of the CBO™ process was constructed by examining the mercury concentration of the high carbon feed, low carbon CBO™ product and the exhaust gas of the CBO™ system.

Table 4 illustrates the results of this approach. Three separate runs were used to determine the CBO™ system mass balance for mercury. The data shows excellent mass balance recovery ranging from a low of 94% to a high value of 109% with the average being 101%.

As the data indicates, virtually all of the mercury entering the CBO™ system on the high carbon fly ash feed is found on the low carbon fly ash product. Only .02% of the total mercury entering the CBO™ process is found in the exhaust gas of the system. The remaining 99.98% of the mercury entering the CBO™ process on the high carbon fly ash exits the system with the low carbon CBO™ fly ash product.

Table 4: Mercury Mass Balance for CBO™ Process

Run	Hg-Feed Mg/hr	Hg-Product Mg/hr	Hg-BHO Mg/hr	Prod+BHO Mg/hr	Material Balance %
1	13159	12395	12	12407	94
2	9899	9778	19	9797	99
3	11193	12119	37	12156	109
Average					101

Considering the operational temperatures of the CBO™ process, normally in the 1300° F range, one would assume that mercury would volatize and might exit the CBO™ process in the vapor phase. Indeed, fly ash samples taken from the fluid bed contain essentially no mercury. However, the mass balance information presented in table 4 does not support the assumption that mercury exits the CBO™ system along with the flue gas since virtually all the mercury introduced into the process exits "particulate bound" with the low carbon CBO™ product material.

Mass balance information in table 4 suggests that mercury volatization and a subsequent absorption/adsorption process is taking place within the CBO™ process. In order to develop an understanding of this mechanism speciation data was examined from several Carbon Burn-Out sampling points.

Table 5: Mercury Particulate/Gas Data

				Vapo	r Phase
Sampling Point	Matrix	Sample Type	Particulate	Oxidized	Elemental
Fly Ash Feed	Solid	Grab	100%	,	
Fluid Bed	Solid	Grab			06%
Hot Cyclone Inlet	Gas, Solid	Ontario Hydro			0696 11 - 17
Hot Cyclone Outlet	Gas, Solid	Ontario Hydro) 	6%
Baghouse Inlet	Gas, Solid	Ontario Hydro	99.7%	1296	1112:11%
Fly Ash Product	Solid	Grab	100%		

Combining the results presented in Table 5 with the CBO™ process diagram (figure 1) the fate of mercury in the Carbon Burn-Out Process becomes clear. Mercury enters the CBO™ process in the high carbon feed material. Mercury contained with the feed is on the particles of the fly ash.

The fly ash is then metered into the fluid bed combustor and subject to temperatures in the 1300°F range and residence times approaching 45 minutes. In the fluid bed combustor, the mercury is volatized and exits the fluid bed in the vapor state, existing as either the oxidized or elemental form.

The mercury free, low carbon fly ash product exiting the fluid bed is combined with 1200°F to 1300°F flue gas from the hot cyclone. At this point in the process, the hot cyclone exhaust gas contains essentially all of the mercury.

The combined stream of mercury laden flue gas from the hot cyclone discharge and mercury free fly ash exiting the fluid bed enter the gas/product cooler. The combined stream is then cooled from 1100°F to 300°F and subsequently collected by the cold cyclone and baghouse for storage or shipment.

The speciation data shows that fly ash efficiently captures the mercury as the hot fly ash and gas stream pass through the gas product cooler and cold cyclone. By the time the gas stream enters the baghouse, the final particle collection device of the CBO™ process, mercury is particulate bound.

Fly ash enters the gas/product cooler virtually mercury free and by the time it exits the low temperature cyclone, the mercury that was entrained in the flue gas is efficiently transferred to the fly ash. The conditions associated with the G/P cooler and cold cyclone are ideal for the capture of mercury.

The conditions associated with the G/P cooler and cold cyclone are as follows:

G/P Cooler Inlet

Table 6: G/P Cooler & Cold Cyclone Conditions

Fly Ash Carbon Content	2%	2%
Fly Ash Mass Flow	60 TPH	60 TPH
Flow Rate	13,500 DSCFM	13,500 DSCFM
Temperature	1050°F	300°F
Residence Time	1 sec	3-4 sec

Cold Cyclone Discharge

CONCLUSIONS

Mercury and ammonia are two environmental parameters of interest for the fly ash industry. Progress Materials has undertaken in-depth studies to determine the fate of ammonia and mercury in the Carbon Burn-Out system.

Results indicate that, under normal Carbon Burn-Out operating conditions, essentially all ammonia is eliminated from the fly ash feed material and

decomposed. Fly ash having ammonia concentrations between 300 and 750 ppm were processed and in all cases the Carbon Burn-Out process successfully reduced ammonia concentrations below detectable levels. The Carbon Burn-Out process with operational temperatures at 1300°F and 45-minute solid residence times decomposes the ammonia associated with the fly ash. Thus ammonia air emissions tests found that all but 4% to 8% of the total ammonia from the feed ash was decomposed.

Mercury is inherent to coal combustion and, even without activated carbon injection for mercury capture, a substantial portion of mercury found in the coal remains with the high carbon fly ash used as feed for the Carbon Burn-Out system. Operating conditions of the Carbon Burn-Out process results in mercury being volatized and subsequently absorbed/adsorbed on the fly ash product. Process efficiency for the absorption/adsorption process approaches 100%. Therefore, essentially all of the mercury entering the CBOTM process exits the process attached to the product ash. The product ash is used in concrete so the mercury becomes sequestered in the concrete product.

Testing conditions presented in this paper were conducted on Carbon Burn-Out systems functioning in their normal operational modes. No additional equipment modifications or process changes were made.

REFERENCES

- 1. Gluskoter, H.J., Ruch, R.R., Miller, W.G., "Trace Elements in Coal: Occurrence and Distribution" Illinois State Geological Survey, Circular 499, 1977.
- 2. Giampa, V. "Ammonia Removal from Fly Ash by Carbon Burn-Out", Proceedings NETL, DOE Conference on Unburned Carbon, 2000.
- Gasiorowski, S, Bittner, J, Mackay, B, Whitlock, D., "Application of Carbon Concentrates Derived From Fly Ash", Proceedings: 15th International American Coal Ash Association Symposium on Management & Use of Coal Combustion Products (CCPs) January 27 to 30, 2003.
- 4. Hassett, D. J. and Eylands, K. E. 1999. "Mercury Capture on Coal Combustion Fly Ash", Fuel 78: 243-248
- 5. Schager, P., Hall, B. and Lindqvist, O. 1994. "The Retention of Gaseous Mercury on Flyashes". Mercury Pollution: Integration and Synthesis: 621-628.

APPENDIX B BEST AVAILABLE CONTROL TECHNOLOGY

APPENDIX B-1

SULFURIC ACID MIST BACT

June 26, 2006 063-7548

TABLE B-1
CALCULATION OF SULFURIC ACID MIST (SAM) EMISSIONS FOR THE
CRYSTAL RIVER UNIT 4 AND 5 AQCS PROJECT

Category	Units	NH ₄ Injection	Wet-ESP
Coal Sulfur Content	%	3.1(3	3.13
Coal Heat Content	Btu/lb	11,375	11,375
Uncontrolled SO ₂ Emissions ^a	lb/MMBtu	5.50	5.50
Combustion Factor ^b		0.011	0.011
SAM from Combustion	lb/MMBtu	0.093	0.093
SCR Factor ^c		0.005	0.005
SAM produced by SCR	lb/MMBtu	0.042	0.042
SAM Leaving SCR ^d	lb/MMBtu	0.134	0.134
Air Heater Factor ^e		0.850	0.850
SAM Leaving Air Heater	lb/MMBtu	0.114	0.114
ESP (Ammonia Injection and ash) ^f		0.150	0.770~
SAM Leaving ESP	lb/MMBtu	0.017	- 0.088
FGD System Factor ^g		0.700	0.700
SAM Leaving FGD	lb/MMBtu	0.0120	0.062
Wet-ESP Removal		NA	0.100
SAM Leaving Wet-ESP	lb/MMBtu	NA	0.006
Heat Input	MMBtu/hr	7,200	7,200
Capacity Factor		100%	100%
Input SAM	lb/MMBtu	0.114	0.062-
SAM Emissions	lb/MMBtu	0.012	0.006
Difference	lb/MMBtu	0.102	0.055
Reduction	tons/yr/unit	3,222	1,746

^a Assumes 100% of sulfur converted to SO₂ for the purpose of calculating the amount of SAM produced; actual SO₂ emissions are typically 95 percent of the sulfur from combustion ^b Table 5-1; 0.011 for high sulfur eastern bituminous coal (Southern Company, 2005).

^c Section 4; 0.5 percent SO₃ produced from SO₂ oxidation. (WorleyParsons, 2006).

^d Section 4; 0.75 ppm ammonia slip scavenging SAM. (Southern Company, 2005).

^e Table 4-1; 0.85 for high/medium sulfur eastern bituminous (Southern Company, 2005).

^f 0.15 for 85% removal with Ammonia injection (WorleyParsons, 2006). 0.77 for 23% removal for high sulfur fuel (Southern Company, 2005).

⁸ 0.7 representative of 30 percent removal in FDG system.

^h 0.1 for 90% removal with wet-ESP to net-out of PSD review.

8/25/2006 0437600/4.4/P\$Otbis/BACT_tbis.xls

TABLE B-2 COST EFFECTIVENESS OF AMMONIA INJECTION FOR SAM CONTROL ON CRYSTAL RIVER UNITS 4 AND 5

DIRECT CAPITAL COSTS (DCC): Purchased Equipment and Materials Instruments and Controls Freight Included in Equipment and Materials Instruments and Controls Freight Included in Equipment and Materials Included	Cost Items	Cost Factors*	Cost 2005 (\$)
Puchased Equipment Cost (PEC) Equipment and Materials Instruments and Controls Preight budgeting Equipment and Materials Instruments and Controls Preight budgeting Equipment and Materials Included in Equipment	DIRECT CARITAL COSTS (DCC).		
Equipment and Materials Instruments and Controls Instruments and Controls Included in Equipment and Materials include Traces Not required for Pollution Control Equipment Cont			
Instruments and Controls Included in Equipment and Materials include Taxes Total PEC: Direct Installation Costs Foundation and Structure Support Included in Equipment and Materials Include Included		Worldy Persons 2006	1 272 00/
Freight Taxes Total PEC: Direct Installation Costs Foundation and Structure Support Handling & Erection Betterical Bette			
Taxes Total PEC: Direct Installation Costs Foundation and Structure Support Handling & Erection Electrical Electrical Electrical Included in Equipment and Materials included			
Total PEC: Direct Insullation Costs Foundation and Structure Support Handling & Erection Electrical Electrical Electrical Included in Equipment and Materials Electrical Electrical Electrical Electrical Included in Equipment and Materials Include			
Direct Installation Costs Foundation and Structure Support Handling & Erection Electrical Handling & Erection Electrical Electrical Included in Equipment and Materials Includ		Not requirted for Pollution Control Equipment	
Foundation and Structure Support Handling & Erection Handling & Erection Electrical Electrical Included in Equipment and Materials Include	Total PEC:		1,373,000
Handling & Erection Electrical Betwering Betwe			
Electrical Included in Equipment and Materials included Included in Equipment and Materials Included Included in Equipment and Materials Included Included in Equipment and Materials Included	• • • • • • • • • • • • • • • • • • • •		
Piping Included in Equipment and Materials include Painting Painting Included in Equipment and Materials include Included in Equipment and Materials Included in Equipment Included in Equipment and Materials Included in Equipment Included in Equipment and Materials Included in Equipment Included in Equipment and Administration Included in Equipment and Materials Included in Equipment and Materials Included in Equipment and Administration Included in Equipment and Materials Included in Equipment and Administration Included in Equipment and Included in Equipment	Handling & Erection	Included in Equipment and Materials	included
Insulation for ductwork Painting Included in Equipment and Materials Include Included in Equipment and Materials Include Included in Equipment and Materials Include Included Incl	Electrical	Included in Equipment and Materials	included
Painting Included in Equipment and Materials Included in Equipment and Materials Included Total Direct Installation Costs 1,373,00	Piping	Included in Equipment and Materials	included
Total Direct Installation Costs Total DCC: 1,373,00 NDIRECT CAPITAL COSTS (ICC): Engineering 10% of PEC; OAQPS Cost Control Manual 137,30 Startup and Performance tests 3% of PEC; OAQPS Cost Control Manual 137,30 Startup and Performance tests 3% of PEC; OAQPS Cost Control Manual 141,195 Contingencies 3% of PEC; OAQPS Cost Control Manual 41,195 Total ICC: 356,881 OTAL CAPITAL INVESTMENT (TCt): DCC + ICC 1,729,981 DIRECT OPERATING COSTS (DOC): Operating Labor Operator 1/4 additional operator @ 65,000/year 16,256 Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,195 Reagent Costs 228 lb/m/unit; 3565/ton; 100% C.F., WorleyParsons, 2006 1,123,77 Reagent Costs 278 kW/unit; 100% C.F., WorleyParsons, 2006 1,123,77 Total DOC: 1,357,78 NDIRECT OPERATING COSTS (IOC): Overhead 60% of oper labor & maintenance 4 actival and 17,300 Administration 2% of total capital investment 17,300 Administration 2% of total capital investment 17,300 Total IOC: CRF of 0.0944 tines TC1 (20 yrs @ 7%) 163,314 APITAL RECOVERY COSTS (CRC): CRF of 0.0944 tines TC1 (20 yrs @ 7%) 163,314 AMEMISSIONS UNCONTROLLED (TPY): 0.114 lb/mMBu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AMEMISSIONS CONTROLLED (TPY): 0.114 lb/mMBu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AMEMISSIONS (CONTROLLED (TPY): 0.012 lb/mMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5	Insulation for ductwork	Included in Equipment and Materials	included
Total Direct Installation Costs Total DCC: 1,373,00 NDIRECT CAPITAL COSTS (ICC): Engineering 10% of PEC; OAQPS Cost Control Manual 137,30 Startup and Performance tests 3% of PEC; OAQPS Cost Control Manual 137,30 Startup and Performance tests 3% of PEC; OAQPS Cost Control Manual 141,195 Contingencies 3% of PEC; OAQPS Cost Control Manual 41,195 Total ICC: 356,88 OTAL CAPITAL INVESTMENT (TCt): DCC + ICC 1,729,98 DIRECT OPERATING COSTS (DOC): Operating Labor Operator 1/4 additional operator @ 65,000/year 16,256 Supervisor 20% of operating labor cost 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of Eaglial, WorleyParsons, 2006 41,198 Maintenance Labor 66,7% of Maintenance Materials 27,474 Reagent Costs 228 lib/ar/anit; 3565/ton; 100% C.F., WorleyParsons, 2006 1,123,77 Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006. 330/MWhr 145,87 Total DOC: 1,357,78 NDIRECT OPERATING COSTS (IOC): 0,000 Overhead 0,000 for Jabor & maintenance 0,0	Painting	Included in Equipment and Materials	included
NDIRECT CAPITAL COSTS (ICC): Englucering	Total Direct Installation Costs		
Engineering 10% of PEC; OAQPS Cost Control Manual 137,30 1	Total DCC:		1,373,000
Engineering Contractor Fees 10% of PEC; OAQPS Cost Control Manual 137,30 Contractor Fees 10% of PEC; OAQPS Cost Control Manual 137,30 Startup and Performance tests 3% of PEC; OAQPS Cost Control Manual 41,190 Contingencies 3% of PEC; OAQPS Cost Control Manual 41,190 Total ICC: 356,881 OTAL CAPITAL INVESTMENT (TCt): DCC + ICC 1,729,982 Other Contingencies 10,729,982 Other Coperator 1/4 additional operator @ 65,000/year 16,250 Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190 Maintenance Labor 66,7% of Maintenance Materials 27,474 Reagent Costs 228 lb/hr/mit; 5565/on; 100% C.F., WorleyParsons, 2006 1,123,75 Auxiliary Power Cost 278 k.W.unit; 100% C.F., WorleyParsons, 2006 1,123,75 Total DOC: 13,357,78 NDIRECT OPERATING COSTS (IOC): Overhead 60% of oper. labor & maintenance 36,414 Property Taxes 19% of total capital investment 17,300 Administration 2% of total capital investment 17,300 Total IOC: CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 (ANUALIZED COSTS (CRC): DOC + IOC + CRC 1,626,71 (ANUALIZED COSTS (CRC): DOC + IOC + CRC 1,626,71 (ANUALIZED COSTS (CRC): 0.104 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 (AMEMISSIONS CONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,560 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,560 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 (AMEMISSIONS C	NDIRECT CAPITAL COSTS (ICC):		
Contractor Fees 10% of PEC; OAQPS Cost Control Manual 137,30		10% of PEC: OAOPS Cost Control Manual	137,300
Startup and Performance tests	0 0		
Contingencies 3% of PEC; OAQPS Cost Control Manual 41,190			
Total ICC: 356,98 OTAL CAPITAL INVESTMENT (TCI): DCC + ICC 1,729,98 DIRECT OPERATING COSTS (DOC): Operator 1/4 additional operator @ 65,000/year 16,250 Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190 Maintenance Labor 66,7% of Maintenance Materials 274,44 Reagent Costs 228 lb/hr/unit; \$556/ton; 100% C.F., WorleyParsons, 2006 1,123,77 Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006 330/MWhr 145,87 Total DOC: 1,357,78 NDIRECT OPERATING COSTS (IOC): 0verhead 60% of oper. labor & maintenance 36,414 Property Taxes 19% of total capital investment 17,300 Insurance 19% of total capital investment 17,300 Administration 29% of total capital investment 17,300 Total IOC: 105,61 APITAL RECOVERY COSTS (CRC): CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 NNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,600 EDUCTION IN SAM EMISSIONS (TPY): 6,444			
DIRECT OPERATING COSTS (DOC): Operating Labor	•	376 Of FEC, OAQFS Cost Conduit Manual	356,980
Operating Labor 1/4 additional operator @ 65,000/year 16,255 Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190 66,7% of Maintenance Materials 27,474 Reagent Costs 228 lb/hr/unit; 5565/ton; 100% C.F., WorleyParsons, 2006 1,123,73 Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006 330/MWhr 145,87. Total DOC: 1,357,78 Total D	OTAL CAPITAL INVESTMENT (TCI):	DCC + ICC	1,729,98
Operating Labor 1/4 additional operator @ 65,000/year 16,255 Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190 66,7% of Maintenance Materials 27,474 Reagent Costs 228 lb/hr/unit; 5565/ton; 100% C.F., WorleyParsons, 2006 1,123,73 Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006 330/MWhr 145,87. Total DOC: 1,357,78 Total D			
1/4 additional operator @ 65,000/year 16,25C Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering labor cost 41,190 Maintenance Labor 66.7% of Maintenance Materials 27,474 Reagent Costs 228 lb/hr/anit; \$565/ton; 100% C.F., WorleyParsons, 2006 1,123,73 Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006 330/MWhr 145,875 Total DOC: 1,357,78	· · · · · · · · · · · · · · · · · · ·		
Supervisor 20% of operating labor cost 3,250 Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190 41			
Maintenance Materials Engineering Estimate; 3% of capital, WorleyParsons, 2006 41,190			
Maintenance Labor 66.7% of Maintenance Materials 27,474 Reagent Costs 228 lb/hr/unit; \$565/ton; 100% C.F., WorleyParsons, 2006 1,123,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,223,73 1,23	Supervisor	20% of operating labor cost	3,250
Reagent Costs 228 lb/hr/unit; \$565/ton; 100% C.F., WorleyParsons, 2006 1,123,75	Maintenance Materials	Engineering Estimate; 3% of capital, WorleyParsons, 2006	41,190
Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006. \$30/MWhr 145,87. Total DOC: 1,357,78 NDIRECT OPERATING COSTS (IOC):	Maintenance Labor	66.7% of Maintenance Materials	27,474
Auxiliary Power Cost 278 kW/unit; 100% C.F., WorleyParsons, 2006. \$30/MWhr 145,87. Total DOC: 1,357,78 NDIRECT OPERATING COSTS (IOC):	Reagent Costs	228 lb/hr/unit; \$565/ton; 100% C.F., WorleyParsons, 2006	1,123,75
NDIRECT OPERATING COSTS (IOC): Overhead			145,875
Overhead 60% of oper. labor & maintenance 36,414 Property Taxes 1% of total capital investment 17,300 Insurance 1% of total capital investment 17,300 Administration 2% of total capital investment 17,300 Total IOC: 105,611 CAPITAL RECOVERY COSTS (CRC): CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 INNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY): 6,444	Total DOC:		1,357,78
Overhead 60% of oper. labor & maintenance 36,414 Property Taxes 1% of total capital investment 17,300 Insurance 1% of total capital investment 17,300 Administration 2% of total capital investment 17,300 Total IOC: 105,611 CAPITAL RECOVERY COSTS (CRC): CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 INNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY): 6,444			
Property Taxes 1% of total capital investment 17,300 Insurance 1% of total capital investment 17,300 Administration 2% of total capital investment 34,600 Total IOC: CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 INNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY): 6,444 C.		(O)	
Insurance	-		
Administration Total IOC: 2% of total capital investment 34,600 105,612 CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,314 INNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY):	Property Taxes		17,300
Total IOC: CAPITAL RECOVERY COSTS (CRC): CRF of 0.0944 times TC1 (20 yrs @ 7%) LOS, 51. CRF of 0.0944 times TC1 (20 yrs @ 7%) LOS, 51. CRF of 0.0944 times TC1 (20 yrs @ 7%) LOS, 51. LOS, 51. LOS, 51. LOS, 61. LOS, 6	Insurance	1% of total capital investment	17,300
CRF of 0.0944 times TC1 (20 yrs @ 7%) 163,316 INNUALIZED COSTS (AC): DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.5 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY):	Administration	2% of total capital investment	34,600
DOC + IOC + CRC 1,626,71 AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/mmBtu, 7,200 mmBtu/hr, 8,760 hr/yr; 100% CF 7,199.9 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/mmBtu, 7,200mmBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY): 6,444	Total IOC:		105,613
AM EMISSIONS UNCONTROLLED (TPY): 0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF 7,199.9 AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 6,444	APITAL RECOVERY COSTS (CRC):	CRF of 0.0944 times TC! (20 yrs @ 7%)	163,310
AM EMISSIONS CONTROLLED (TPY): 0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF 756.0 EDUCTION IN SAM EMISSIONS (TPY): 6,444	NNUALIZED COSTS (AC):	DOC + IOC + CRC	1,626,71
EDUCTION IN SAM EMISSIONS (TPY): 6,444	AM EMISSIONS UNCONTROLLED (TPY) :	0.114 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 100% CF	7,199.9
	AM EMISSIONS CONTROLLED (TPY) :	0.012 lb/MMBtu, 7,200MMBtu/hr, 8,760 hr/yr; 100% CF	756.0
A COLLEGE COLL	EDUCTION IN SAM EMISSIONS (TPY):		6,444
	OST EFFECTIVENESS:	\$ per ton of SAM Removed	252

^{*} Unless otherwise specified, factors and cost estimates reflect OAQPS Cost Manual, Section 3, Sixth edition.

8/25/2006 0437600/4.4/PSDtbis/BACT_tbis.xls

TABLE B-3
COST EFFECTIVENESS OF WET ELECTROSTATIC PRECIPITATOR FOR SAM CONTROL ON CRYSTAL RIVER UNITS 1 AND 2

Cost Items	Cost Factors	Cost 2005 (\$)
DIRECT CAPITAL COSTS (DCC):		
Purchased Equipment Cost (PEC)		
Wet ESP. Equipment and Materials	Project Cost Ferimete	80 000 00
• •	Project Cost Estimate	80,000,00
Pumps, piping and valves, external to ESP	Included in Equipment and Materials	included
Water handling/treatment facilities	Included in Equipment and Materials	included
(Design and equipment cost: containment, skimming,		
sludge removal, clarification, pH adj, recirculation)		
Ductwork to ESP inlet and outlet	Included in Equipment and Materials	included
Electrical switchgear, motor control centers	Included in Equipment and Materials	included
Instruments and Controls	Included in Equipment and Materials	included
Freight	Included in Equipment and Materials	included
Taxes	Not required for Pollution Control Equipment	included
Total PEC:		80,000,00
Direct Installation Costs	Project Cost Estimate	lu aludad
Direct Installation Costs	Project Cost Estimate	Included
Foundation and Structure Support	Included in Equipment and Materials	included
Handling & Erection	Included in Equipment and Materials	included
Electrical	Included in Equipment and Materials	included
Piping	Included in Equipment and Materials	included
Insulation for ductwork	Included in Equipment and Materials	included
Painting	Included in Equipment and Materials	included
Total Direct Installation Costs		0
Total DCC:		80,000,00
NDIRECT CAPITAL COSTS (ICC):		
Engineering	10% of PEC; OAQPS Cost Control Manual	8,000,000
Contractor Fees		
	10% of PEC; OAQPS Cost Control Manual	8,000,000
	3% of PEC; OAQPS Cost Control Manual	2,400,000
Contingencies Total ICC:	3% of PEC; OAQPS Cost Control Manual	2,400,000 20,800,00
OTAL CAPITAL INVESTMENT (TCI):	DCC + ICC	100,800,00
	2007100	100,000,00
VIRECT OPERATING COSTS (DOC):		
Operating Labor		
Operator	1/2 additional operator @ 65,000/year	33,000
	20% of operating labor cost	6,600
	Engineering Estimate; 3% of capital, WorleyParsons, 2006	2,400,000
Maintenance Labor	66.7% of Maintenance Materials	100,000
Water/Treatment	1000 GPM for 8760 hr/yr; \$0.4/1000gal; 100% CF	420,480
Auxiliary Power Cost	952 kW/unit, WorleyParsons, 2006. 2" pressure drop \$30/MWhr	806,400
Total DOC:		3,766,480
W		
NDIRECT OPERATING COSTS (IOC):	600/ of ones labor & mail town	1 4/3 5/4
	60% of oper. labor & maintenance	1,463,760
Property Taxes	1% of total capital investment	1,008,000
Insurance	1% of total capital investment	1,008,000
	2% of total capital investment	2,016,000
Administration		
		5,495,760
Administration Total IOC:	CRF of 0.0944 times TCI (20 yrs @ 7%)	
Administration Total IOC: APITAL RECOVERY COSTS (CRC):	CRF of 0.0944 times TCI (20 yrs @ 7%) DOC + IOC + CRC	9,515,520
Administration Total IOC: APITAL RECOVERY COSTS (CRC): NNUALIZED COSTS (AC):		9,515,520
Administration Total IOC: APITAL RECOVERY COSTS (CRC): NNUALIZED COSTS (AC): AM EMISSIONS Inlet to WET ESP (TPY):	DOC + IOC + CRC 0.062 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 1000% CF	9,515,520 18,777,76 3,880.7
Administration Total IOC: APITAL RECOVERY COSTS (CRC): NNUALIZED COSTS (AC): AM EMISSIONS Inlet to WET ESP (TPY): AM EMISSIONS (TPY):	DOC + IOC + CRC	9,515,520 18,777,76 3,880.7 388.1
Administration Total IOC: APITAL RECOVERY COSTS (CRC): NNUALIZED COSTS (AC): AM EMISSIONS Inlet to WET ESP (TPY): AM EMISSIONS (TPY): EDUCTION IN SAM EMISSIONS (TPY):	DOC + IOC + CRC 0.062 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 1000% CF	9,515,520 18,777,76 3,880.7 388.1 3492.7
Administration Total IOC: APITAL RECOVERY COSTS (CRC): NNUALIZED COSTS (AC): AM EMISSIONS Inlet to WET ESP (TPY): AM EMISSIONS (TPY): EDUCTION IN SAM EMISSIONS (TPY): ICREMENTAL REDUCTION IN SAM EMISSIONS (TPY)	DOC + IOC + CRC 0.062 lb/MMBtu, 7,200 MMBtu/hr, 8,760 hr/yr; 1000% CF	388.1

^a Unless otherwise specified, factors and cost estimates reflect OAQPS Cost Manual, Section 3, Sixth edition.

APPENDIX B-2

LNB SPECIFICATIONS

PROGRESS ENERGY FLORIDA CRYSTAL RIVER FGD/SCR PROJECT

SPECIFICATION

FOR

LOW NOX BURNERS

FOR PEF CRYSTAL UNITS 4 AND 5

CRCA-4-SP-168301

REVISION C

AUGUST 2006

WorleyParsons 2675 Morgantown Road Reading, PA 19607

TABLE OF CONTENTS

<u>SECTION</u>	<u>TITLE</u>	PAGE
1.0	SCOPE	1
2.0	CODES AND STANDARDS	2
3.0	GENERAL	4
4.0	DESIGN REQUIREMENTS	5
5.0	TESTING	8
6.0	SPARE PARTS	8
7.0	GUARANTEES	9
8.0	OTHER REQUIREMENTS	9
	ATTACHMENT A – COAL ANALYSIS	

1.0 SCOPE

1.1 GENERAL

This specification covers the technical requirements for designing, supplying and shipping 108 (54 per unit) Low NOx Burners (LNB) for the installation in Boilers 4 and 5 at Progress Energy Florida Crystal River Station. The burners shall be Babcock and Wilcox model number DRB-4Z. The LNBs will replace the existing burners to reduce the NOx emissions from Boilers 4 and 5.

1.2 OPTIONS

The Seller shall provide an option price to perform clean air tests on all mills for both Units 4 and 5 and develop mill calibration curves for each mill.

1.3 EQUIPMENT AND SERVICES BY THE SELLER

The scope of work listed below for each of the LNBs is only intended to provide a broad definition of the scope of work, not an itemized listing of each element of work required. Seller shall provide all required equipment, services, hardware, and documents for the supply, installation, start up and testing of the LNBs in accordance with Engineering Requisition, CRCA-4-ER-168301.

- A. Provide and ship to site 108 new Low NOx Burners. Fifty-four for Boiler 4 and fifty-four for Boiler 5. Burners shall have provisions to use the existing spark igniters, oil igniters, igniter flame scanners, and coal burner flame scanners. Each burner shall include, as a minimum, the following:
 - 1. Manually adjustable inner and outer spin vanes.
 - 2. Transition zone air flow control sleeve.
 - 3. Sliding air zone disk with manual ratchet actuator.
 - 4. Ceramic lined coal nozzle with mating elbow flange and spun cast SS tip.
 - 5. Silicon carbide conical diffuser/deflector.
 - 6. Burner air monitor with Magnehelic gage.
 - 7. Three (3) shop mounted (on coverplate) Type K sheath thermocouples with common terminal box.
 - 8. Burner slip seal ring.
 - 9. Burner throat tile assembly.
 - 10. Burner slide rails.
- B. Provide engineering, drawings and instructions for any boiler modifications that may be required for the installation of new LNBs.

- C. Provide supervision for the installation and start-up of the burners. Start-up shall include balancing of the secondary air flow to all the burners plus burner optimization including burner tuning and testing.
- D. Provide Operation and Maintenance manuals.

1.4 EQUIPMENT AND SERVICES TO BE FURNISHED BY OTHERS

- A. All management and labor for on-site unloading, storing, handling.
- B. On-site storage facilities consisting of an outdoor area for large components. Limited indoor storage facilities on site will be available for items requiring special handling as required by the Seller.
- C. Labor for the installation and start-up of the LNBs.
- D. Igniters and flame scanners. The existing spark igniters, oil igniters, igniter flame scanners, and coal burner flame scanners will be re-used. The new LNBs shall have provisions for re-using these existing items.
- E. Combustion Controls and Burner Management System. The new burners as supplied shall interface with the existing control systems.
- F. Burner elbows. The existing burner elbows will be reused.

2.0 CODES AND STANDARDS

- A. All equipment and materials furnished under these specifications shall be designed and constructed in accordance with the latest applicable requirements of the standard specifications and codes of AISC, ANSI, ASME, ASTM, AWS, EPA, NFPA, Florida Building Code, and other such regularly published and accepted standards except where modified or supplemented by these specifications; and in accordance with the applicable requirements of the Federal "Occupational Safety and Health Administration."
- B. It is the responsibility of the Seller to ensure that all aspects of the design, fabrication, and testing meet the requirements of all the applicable and specified codes, standards and specifications including all regulating and governing authorities over the location where the equipment will be installed.
- C. Seller shall verify compliance with the applicable portions of the referenced Codes and Standards or state which codes and standards and which editions of these codes/standards apply.
- D. All deviations by the Seller from the listed and supporting Codes and Standards shall be noted by the Seller and only accepted if stated, in writing, by the Owner.
- E. Any other applicable design Codes and Standards that are used by the Seller, such as International Organization for Standardization (ISO), that govern the design and manufacture of the Seller's equipment shall be noted by the Seller and subject to review by the Owner.

- F. Reference to the Standards of any technical society, organization, or association, or to the laws, ordinances, or Codes of governmental authorities shall mean the latest Standard, Code, or Specification adopted, published, and effective at the date of taking bids unless specifically stated otherwise in these specifications.
- G. The Specifications, Codes, and Standards referenced in these specifications (including addenda, amendments, and errata) shall govern in all cases where references thereto are made except where they conflict with these specifications. Where the referenced Codes and Standards contain recommendations in addition to requirements, the recommendations shall be considered requirements and shall be followed unless stated otherwise by this Specification. In the event of any conflict between Codes, Standards or Specifications the more stringent regulation shall apply.
- H. As a minimum, the Codes and Standards that apply are as follows:
 - 1. American Institute of Steel Construction

Manual of Steel Construction

- 2. American Society of Mechanical Engineers (ASME):
 - a. Code for Pressure Piping, B31.1
 - b. Boiler and Pressure Vessel Code Section I, Section II, Section V and Section IX
- 3 American Society for Testing and Materials (ASTM):
 - a. A 36, "Standard Specification for Structural Steel."
 - b. A 53, "Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless."
 - c. A 105, "Standard Specification for Forgings, Carbon Steel, for Piping Components."
 - d. A 106, "Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service."
 - e. A 182, "Standard Specification for Forged or Rolled Alloy Steel Pipe Flanges, Forged Fittings, Valves, and Parts for High Temperature Service."
 - f. A 234, "Standard Specification for Pipe Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service."
 - g. A 312, "Standard Specification for Seamless and Welded Austenitic Stainless Steel Pipe."
- 4. American Welding Society (AWS):

D1.1, "Structural Welding Code."

- 5. National Fire Protection Association (NFPA)
 - a. 70, "National Electrical Code".
 - b. 85E, "Prevention of Furnace Explosions/Implosions in Pulverized Coal Fired Multiple Burner Boiler-Furnaces."
 - c. 85F, "Installation and Operation of Pulverized Fuel Systems."
- 6. Florida State Building Code (2000 International Building Code with Florida Amendments), 2002 Edition.
- 7. Occupational Safety and Health Administration (OSHA).

3.0 GENERAL

The Seller is expected to comply fully with the complete requirements of this specification. Any deviations must be clearly defined in their proposal. If no deviations are provided in writing in their proposal, then it is understood that the Seller is complying with all parts of this specification and attachments stated in Engineering Requisition CRCA-4-ER-168301. The Seller shall assume final responsibility for complete design, fabrication and performance for all equipment that it and its sub Sellers supply.

3.1 MATERIALS AND EQUIPMENT

Unless specifically provided otherwise, all materials and equipment furnished for permanent installation in the work shall conform to applicable standard specifications and shall be new, unused, and undamaged.

3.2 HAZARDOUS MATERIALS

- A. The Seller shall provide Material Safety Data Sheets (MSDS) covering all hazardous materials furnished under or otherwise associated with the Work included herein. All MSDS sheets require Owner approval prior to shipment. The Seller shall provide the Owner with either copies of the applicable MSDS or copies of a document certifying that no MSDS are required under any federal, state, or local law, regulation, statute, or ordinance in effect at the Crystal River Station.
- B. Hazardous materials are defined in the applicable statute that may use the terminology "toxic substances" instead of "hazardous materials." The Seller is responsible for determining if any substance or material furnished, used, applied, or stored under this Contract is within the provisions of any applicable statute.
- C. All shipments of hazardous materials shall be identified on the materials list. A copy of the hazardous materials documentation required shall be included with the materials list and shall also be included with the shipping papers attached to the shipment.
- D. No item provided by the Seller shall contain any asbestos containing product, part, or component. No lead paint is permitted.

-1-' ---'

3.3 TOOLS

If required, installation and maintenance tools for the LNBs shall be boxed separately and the box shall be marked with the large painted legend as follows:

PROGRESS ENERGY FLORIDA CRYSTAL RIVER FGD/SCR PROJECT INSTALLATION & MAINTENANCE TOOLS FOR LNBs PURCHASE ORDER NUMBER

A weatherproofed itemized list of the contents shall also be attached to the outside of the box.

All maintenance tools shall be in new and unused condition and shall become the property of the Owner.

3.4 CORRECTION OF ERRORS

Equipment and materials shall be complete in all respects within the limits herein outlined. The Seller or its duly authorized representative, at the Seller's expense, shall correct all errors or omissions found in the field.

4.0 DESIGN REQUIREMENTS

4.1 BACKGROUND

Units 4 and 5 will be operated anywhere between full load and minimum load. Load changes can be continuous without the benefit of mandatory hold periods after a step change. High availability, operational flexibility, and system maintainability are necessary. The ability to move the unit quickly (either up or down) on an on-going basis is important. The burners shall be capable of changing load level to keep up with the changes made by the steam generator.

Crystal River Units 4 and 5 are coal-fired "Early Election Compliance Plan" Units. The two units are essentially identical. Maximum net output of each unit at 5% overpressure is approximately 750 MWs. The units are semi-indoor, balanced draft Carolina type radiant boilers that were manufactured by Babcock & Wilcox ("B&W") and were placed in service in 1982 and 1984. The original design NOx emissions rate for each boiler is 0.7 lb/MMBtu. The boilers are front and rear wall fired, with 3 elevations of burners for each wall. Each boiler has six MPS-89GR pulverizers, each supplying fuel through individually orificed coal pipes to 9 burners on each of the elevations. The 54 burners on each boiler are the original Dual-Register designs as supplied by B&W, and there are no over-fire air systems installed on either boiler. The coal pipe orifices are also original. The windboxes are divided, with a separate windbox for each elevation of burners. Each unit has a single flue gas recirculation fan that is used for reheat temperature control. Each unit has three Rothemühle air heaters (two secondary and one primary), two FD Fans, and two PA Fans. The single furnaces are 79 feet wide by 57 feet deep and 201 feet high from the centerline of the lower wall headers to the drum centerline. There is a vertical separation of approximately 24 feet between burner elevations, with the top burner elevation approximately 50 feet below the furnace nose. The boilers were designed to burn a 50/50% blend of eastern bituminous and western sub-bituminous as well as 100% Illinois Basin coals. The coal specification for current coal fired for guarantee purposes and the future design coal is provided as Attachment "A". Light fuel oil is used for boiler startup and flame stabilization. There is no

natural gas available at the site. The combustion control on each unit is an ABB/Bailey Infi 90. The systems were upgraded in 2002.

Both units are currently operating as base loaded units, with both requiring that all six pulverizers be in operation to achieve full load at 5% overpressure. In order to reduce NOx emissions rates below the 0.50 lb/MMBtu annual NOx Permit limit, excess O₂ has been reduced from the design value of 3.5% to approximately 2.3-2.4% as measured by eight O₂ probes in the backpass of the boiler. Secondary air flow is automatically controlled by dampers at each end of the windboxes. The burner registers are manually controlled. Windbox pressures are approximately 3-3 ½ inches of H₂O, with the outer burner registers nearly in the closed position.

With these changes, the NOx emissions rates at full load have been reduced to approximately 0.5-0.52 lb/MMBtu on both boilers. However, unburned carbon in the ash ("LOI") has increased from 3-4% to in excess of 6% at times, the level which must be not be exceeded to continue the commercial sale of the flyash. When load conditions have allowed, the boilers have been operated with the top levels of front and rear burners out of service with approximately 20% air flow through the burners to simulate overfire air. In this configuration, the NOx emissions rates have been approximately 0.38-0.42 lb/MMBtu.

Maximum Heat Input	6,800 MMBTU/HR
Maximum Coal Firing Rate@ 100% Load (Based upon MCR Heat Input and Coal Higher Heating Value)	597,802 LB/HR

4.2 INTERFACE REQUIREMENTS

- A. The existing spark igniters, oil igniters, igniter flame scanners, and coal burner flame scanner will be re-used. The new LNBs shall have provisions for re-using these existing items. This shall include the addition of fiber-optic extensions compatible with the existing flame scanner heads.
- B. The new burners shall interface with the existing Combustion Controls and Burner Management System.
- C. The Seller shall assure the fit up of the new burners to the existing boiler. If modifications or repairs are required to assure proper fit the Seller shall provide engineering, drawings and instructions to accomplish the modifications to assure proper fit up of the new burners.
- D. There shall be no change to the operational capability of the boilers. Minimum load shall be not less than the minimum load with the existing burners. The ramp up rate, ramp down rate and the boiler MCR shall not be less than the ramp up and down rates and boiler MCR with the existing burners.
- E. Burner design shall preclude flame impingement of any furnace pressure parts.
- F. Burners shall be provided with properly sized and located lifting lugs. Drawings shall show burner weights and center of gravity.

4.3 DESIGN AND CONSTRUCTION REQUIREMENTS

A. Welding

- All welding and repair welding shall be in accordance with the Seller's written
 procedures and the applicable Codes referenced herein. These procedures shall
 include welding method, inspection method, and criteria for acceptance of a
 welded member.
- 2. All welding shall be performed by qualified welders, inspected by qualified personnel, and shall comply with the requirements of ASME Boiler and Pressure Vessel Code, Section IX, or AWS D1.1 and 14.6.
- 3. All welder qualification records shall be available to the Owner for review upon request.

B. Materials

All materials shall be new and unused. The Seller shall have the ultimate responsibility for proper selection of materials based upon the intended service and the requirements of the Seller's design.

4.4 INSTALLATION REQUIREMENTS

- A. The Seller shall provide the services of an on-site qualified representative acceptable to the Owner to provide technical direction of installation of the burners. The field personnel provided by the Seller shall be capable, qualified, fluent in English and able to perform the duties required to the satisfaction of the Owner and shall be vested with authority to make decisions binding on the Seller.
- B. The Seller's representative shall provide all necessary technical assistance including at least the following:
 - 1. Provide technical direction for:
 - a. Removal of insulation, lagging and any adjacent equipment needed to remove the existing burners and install the new burners.
 - b. Removal of the existing burners and installation of new LNBs.
 - c. Re-install any insulation, lagging and equipment that was removed to complete the installation of the new burners.
 - d. Start-up of new burners including balancing the secondary air flow and coal flow to all the burners.
 - 2. Assist the Owner's Contractor in scheduling the installation during construction, and inform the Owner's Contractor of difficulties encountered or anticipated.
 - 3. Instruct the Owner's operating personnel in the following:

- a. Conduct of such operating tests that the Owner may specify.
- b. Initial starting and placing the burners in good operating condition.
- c. The Seller's recommended procedure for regular starting, operating, and shutting down of the burners.

5.0 TESTING

5.1 GENERAL

- A. The Owner shall have free access to the Seller's facility during fabrication of the equipment covered by this Specification. The Seller shall make the necessary arrangements to provide access. Any inspection by the Owner shall not be considered a waiver of any warranty or other rights.
- B. Tests shall verify the ability of all equipment to perform its intended functions within the applicable tolerances and performance guarantees, such that when the equipment is shipped and correctly connected to external devices, the complete system is operable as intended.
- C. Test results shall be submitted in accordance with CRCA-4-ER-168301-RA, Section III.

5.2 SHOP TESTS

- A. All moving parts on the burner shall be stroked and operated to verify that they operate properly without binding prior to shipment.
- B. Visual Inspection:

All burner welds shall be visually inspected. Acceptance criteria of burner welds shall be per AWS D14.6.

5.3 FIELD TESTS

The Owner will conduct a final performance test to determine if the burners are meeting the performance requirements listed in Section 4.2. The Seller can elect to witness the test at his discretion.

6.0 SPARE PARTS

6.1 GENERAL

- A. A normal complement of startup and commissioning spare parts shall be included with the original order and shall be shipped with the burners.
- B. Any spare parts supplied shall be identical to, or interchangeable with the corresponding part originally supplied and shall in all respects conform to the technical specifications governing such original parts.

- C. All spare parts shall be wrapped separately and sealed against moisture. Packaging shall prevent damage caused by normal shipping and handling.
- D. Seller shall furnish a recommended spare parts list, including at least, part description, part number, recommended quantity, lead time and price. This list shall be furnished no later than the date of shipment.

7.0 GUARANTEES

7.1 PERFORMANCE GUARANTEES

- A. The Seller shall guarantee the following burner performance over the entire load range of the boilers as measured at the economizer outlet when firing the guarantee coal shown in Attachment A.
 - 1. NOx emissions shall not exceed 0.41 Lbs/10⁶ BTU heat input.
 - 2. CO emissions shall not exceed 200 PPM.
 - 3. Excess O_2 levels shall not be less than 2.5 % (dry, volumetric).
 - 4. Unburned carbon in the fly ash shall not be greater than 5%.
- B. The Seller shall provide the maximum turndown points of the burners both without and with support fuel which will satisfy all emission and LOI guarantee.
- C. Seller must detail potential remedies for not meeting performance guarantees. Should the burners not meet the performance guarantees, the Seller shall at its option or expense redesign and/or repair the burners in an expeditious manner, as required and as acceptable to the Owner or the Seller shall pay for failure to meet the performance guarantees, in lieu of all other claims or obligations for such failure, as liquidated damages, and not as a penalty, the sum(s) set out in the Commercial Terms of the Contract.
- D. Should the burners not meet the performance guarantees, the Seller elects to redesign and/or repair the burners, the burners shall be retested to verify compliance with performance guarantees. All costs for the retesting shall be borne by the Seller.

8.0 OTHER REQUIREMENTS

8.1 SPECIAL TOOLS

The Seller shall provide one complete set of all necessary special tools, required for installation, start-up, and maintenance for the burners. The tools shall be new, all in first class condition. Identification of all tools by name and number shall be provided. These numbers shall appear on drawings and installation, operation, and maintenance instructions to indicate the application of the tools and to permit ordering replacements. These tools shall remain the property of the Owner.

8.2 IDENTIFICATION

All correspondence, shipping notices, specifications, engineering data, and other documents pertaining to the equipment and materials furnished under this specification shall be identified by the Owner's name, the project name, the specification number, and the purchase order number.

8.3 MATERIALS LIST

The Seller shall prepare and submit with the first shipping notice two copies of an itemized materials list covering all material and equipment furnished under these specifications. The materials list shall be in sufficient detail to permit an accurate determination of the completion of shipment.

8.4 QUALITY ASSURANCE REQUIREMENTS

- A. Seller shall follow their standard procedures for quality assurance and control. Seller's standard QA Manual shall be submitted to the Owner for review and should be in such a form as to enable an assessment to be made of the manufacturing sequence and inspection set-up and other control procedures.
- B. Seller shall impose Seller's Quality Assurance requirements to all applicable sub Sellers. Seller shall identify all proposed sub Sellers to be used, prior to start of work. Included shall be their scope of work, location and a listing of their planned inspection and test points.
- C. Seller is responsible to review and determine that all sub Seller's procedures for special fabrication and testing e.g. welding, NDE, final testing etc. meet the applicable code and specification requirements.
- D. Seller is responsible for using qualified personnel for the performance of all required inspection and tests. All personnel performing nondestructive testing shall be qualified and certified to ASNT-TC-1A, Level II as a minimum. Inspections/tests witnessed or performed by the Owner do not relieve the Seller of the obligation and responsibility to furnish all items in accordance with the requirements of this specification and applicable referenced codes and standards. Any deviations to this specification must be documented and approved by Owner prior to final disposition. The Seller shall verify that all sub Seller's procedures for fabrication and testing, e.g., welding and nondestructive testing, ASME code required tests, etc. meet specification requirements.
- E. Prior to award and during the life of the Purchase Order or Contract, the Owner shall have the right of reasonable access to the Seller's facility and that of any sub Sellers, in order to evaluate the implementation and effectiveness of the Quality Program and work associated with this specification, Purchase Order or Contract.
- F. All sub Sellers are expected to comply fully with all requirements of this specification and the contract drawings. Any exceptions or deviations must be clearly defined in the proposal.
- G. As a minimum, the following are requested:
 - 1. Description of Seller's quality assurance plan.

- 2. Organizational chart of quality assurance department showing relationship to other groups.
- 3. Typical inspection, test and QA audit procedures.
- H. After award of purchase order, the Owner will identify the inspection points to the Seller that will be witnessed by the Owner.
- I. During the execution of the purchase order, manufacturing and quality control procedures shall be available for reference by the Owner at the place of manufacture.
- J. At least two (2) weeks prior to the start of fabrication, the Seller shall submit to the Owner a detailed manufacturing/inspection/testing sequence sheet or flow chart, identifying the major steps in the fabrication/testing/inspection process, including those applicable nondestructive examinations and tests required to satisfy the specification and referenced codes. This requirement is also applicable to all sub Sellers. Selected witness/inspection points will be established by the Owner and identified to the Seller.
- K. Inspection release for shipment at Seller's plant does not relieve the Seller of the responsibility from complying completely with the requirements of this specification, except for deviations specifically brought to the attention of the Owner and specifically waived in writing.
- L. The Seller shall certify that the equipment supplied is in compliance with all applicable codes, standards and requirements of this specification by providing Certificates of Compliance (COC).

8.5 INSPECTIONS

- A. The Owner reserves the right to inspect the equipment at the Seller's location and witness factory and other such tests as may be necessary to verify conformance with this specification.
- B. The Owner may survey the Seller's facilities prior to award of purchase order.
- C. The Owner shall have access to Seller's facilities and records for surveillance of compliance to the Seller's standard procedures of quality assurance and quality control, at any time.
- D. The Owner will inspect the completed shop work prior to shipment.
- E. Seller shall provide or arrange proper notification and facilities for all the purposes listed in sub-paragraphs above.
- F. The Owner shall be notified in writing at least 15 days in advance of the date of completion and availability of inspection points and availability of tests, or prior to shipping, whichever is earlier.
- G. Inspection results shall be submitted in accordance with CRCA-4-ER-168301-RA, Section III.

8.6 CLEANING AND PAINTING

Cleaning and painting shall be in accordance with B&W's standard for burner fabrication.

Low NOx Burners

8.7 PRESERVATION, PACKING, MARKING, SHIPPING, AND STORAGE

- A. Burners and all accessories shall be protected against possible damage and corrosion during shipping, receiving, storing, and handling operations.
- B. Proper precautions shall be taken to ensure that the equipment arrives on the jobsite in an undamaged and satisfactory working condition.
- D. Whenever size permits, the burners and all accessories shall be packed securely in weatherproof crates. If any component is too large for packing in a crate, it shall be placed on skids.
- E. Guards shall be placed over easily damageable parts. All openings, including pipe ends, shall be provided with closures to prevent the entrance of dirt or debris. (The use of cloth for plugs or caps is prohibited.)
- F. Each package, skid, box, or crate shall contain two complete detailed packing lists. Each package, skid, box, and crate shall be properly marked on the outside for identification with the following information so that it is readily visible:
 - 1. Seller's name.
 - 2. Service.
 - 3. The Owner's Purchase Order number.
 - 4. The Owner's tag number.
 - 5. Component identification number(s) and/or bill of material number(s).
 - 6. Short description of part(s).
 - 7. Any special instructions for handling.
 - 8. Weight if in excess of 1,000 pounds.
 - 9. Lift points or the center of gravity to facilitate handling.
- G. The Seller shall prepare and submit written procedures for the handling, storage, shipping, and preservation of the equipment to prevent degradation of the supplied equipment. This shall include recommendations for onsite storage outdoors for up to one year. These procedures shall be submitted for review in accordance with the Engineering Requisition.

8.8 SUBMITTALS

A. With Bid:

- 1. Technical information, guarantees and lead time for delivery.
- 2. Complete description of design and construction features of burners and accessories.
- 3. Outline and sectional drawings of burners including accessories showing principal dimensions, clearances required for maintenance and weights of all components.
- 4. A written list of all exceptions or a statement that clearly specifies that the submitted proposal complies with all aspects of this specification and other referenced specifications in the Engineering Requisition.
- 5. Provide additional information as listed in section III of Engineering Requisition CRCA-4-ER-168301.

B. After Award:

The drawings and information listed in Engineering Requisition CRCA-4-ER-168301 shall be submitted.

Installation, Operation and Maintenance (I/O/M) manuals shall be furnished in both hardback and electronic formats.

ATTACHMENT A

	Guaranteed Basis Coal	Design Basis Coal	Coal Range	Coal Range
NAME	Kanawha Eagle	Highland No. 9	Minimum	Maximum
DDOS/THA A TOD (NY/A/)				
PROXIMATE (Wt%) – As Rec'd	40.10	42.6	25.0	70.0
Fixed Carbon	48.10	42.6 36.5	25.0	70.0
Volatile	32.44		25.0	40.0
Ash	13.95	8.2	5.00	20.0
Moisture	5.51	12.7	3.0	26.5
Moisture	100.0	100.00		
		_		
Sulfur (Wt%)	0.67	3.13	1.14	3.13
HHV (Btu/lb)	12099	11,375	8,600	14,250
SO ₂ (lb/MMBtu)	1.11	5.5	2.0	5.5
ULTIMATE (Wt%) – As Rec'd				
Carbon	69.0	63.2	40.0	80.00
Hydrogen	4.03	4.4	4.25	5.50
Sulfur	0.67	3.13	1.14	3.13
Nitrogen	1.59	1.3	0.75	2.0
	5.25	6.82	2.0	15.0
Oxygen				
Ash	13.95	8.2	5.00	20.0
Moisture	5.51	12.7	3.0	26.5
	0.10		0.01	0.25
Chlorine	0.10	0.25	0.01	0.23
		100.00		
HARD, GRIND. INDEX	45	52	41	60
FUSION TEMPERATURE –				
Reducing (F)				
Initial Def.	2800+	2020	2100	2900
Soft (H=W)	2800+	2055	2100	2900
Soft (H=1/2W)	2800+	2095	2400	2900
Fluid	2800+	2300	2400	2900
MINERAL ANALYSIS (Wt%)		-		
SiO ₂	58.54	47.6	35.0	60.0
Al ₂ O ₃	31.57	17.8	15.0	35.0
TiO ₂	1.85	0.90	0.70	2.0
Fe ₂ O ₃	2.86	18.9	3.0	25.0
CaO	0.50	6.5	0.50	20.0
MgO	0.78	0.9	0.25	5.0
K ₂ O	2.85	2.3	0.50	3.0

	 Guaranteed Basis Coal	Design Basis Coal	Coal Range	Coal Range
Na ₂ O	 0.22	0.8	0.25	1.50
SO ₃	0.1	4.0	0.25	15.0
P_2O_5	 0.38	0.1	0.05	0.75
SrO	0.05	<0.1	<0.1	<0.1
BaO	0.06	0.2	<0.1	<0.1
MnO	0.01	>0.1	<0.1	<0.1
Undetermined	0.23	-00		
		100.00		
Base/Acid	0.08	0.44		
Fouling Index				
Slagging Index				
Coal				
Trace Elements				
(ppm) Dry Basis				
(1) = 1) = 11 = 11 = 11 = 11 = 11 = 11 =	 -	Design	Minimum	Maximum
ANTIMONY	 	0.83	0.15	2.00
ARSENIC	 	11.26	1.00	22.50
BARIUM	 	171.83	30.00	500.00
BERYLLIUM		1.57	0.25	5.00
BORON	 	50.14	20.00	125.00
BROMINE	 	14.34	1.00	30.00
CADMIUM	 _	0.19	0.03	2.00
CHROMIUM	 	11.45	5.00	29.00
COBALT	-	4.72	1.00	15.00
COPPER	 -	11.49	1.00	25.00
FLUORINE	 	74.59	40.00	200.00
GERMANIUM	 	6.50	1.00	15.00
LEAD	 	7.93	2.00	16.00
LITHIUM		9.75	5.00	38.00
MANGANESE	 _	35.53	8.00	50.00
MERCURY	 -	0.10	0.05	1.00
MOLYBDENUM	 	2.52	0.75	9.50
NICKEL	 _	14.16	2.00	30.00
SELENIUM	 	2.13	0.50	5.00
SILVER	 -	0.08	0.05	2.00
STRONTIUM		120.68	20.00	250.00
THALLIUM	 	0.85	0.10	5.00
THORIUM	 	2.25	1.00	5.00
TIN	 -	0.68	0.25	2.00
URANIUM	 	1.42	0.25	2.50
VANADIUM	 -			
	 -	18.55	6.00	58.00
ZINC	 -	26.84	4.00	71.00
ZIRCONIUM		21.76	10.00	25.00

APPENDIX C

CALPUFF MODEL DESCRIPTION AND METHODOLOGY.

CALPUFF MODEL DESCRIPTION AND METHODOLOGY

C.1 INTRODUCTION

As part of the new source review requirements under Prevention of Significant Deterioration (PSD) regulations, new sources are required to address air quality impacts at PSD Class I areas. As part of the PSD analysis report submitted to the Florida Department of Environmental Protection (DEP), the air quality impacts due to the potential emissions of the Crystal Plant Power Project are required to be addressed at the PSD Class I areas of the Chassahowitzka National Wildlife Area (NWA) and St. marks NWA. The Chassahowitzka NWA is located approximately 22 km south of the plant while the St. Marks NWA is located approximately 175 km northwest of the plant.

Currently there are several air quality modeling approaches recommended by the Interagency Workgroup on Air Quality Models (IWAQM) to perform these analyses. The IWAQM consists of EPA and Federal Land Managers (FLM) of Class I areas who are responsible for ensuring that AQRVs are not adversely impacted by new and existing sources. These recommendations have been summarized in two documents:

- Interagency Workgroup on Air Quality Models (IWAQM), Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998), referred to as the IWAQM Phase 2 report.
- Federal Land Managers' Air Quality Related Values Workgroup (FLAG), Phase I Report, USFS, NPS, USFWS (12/00), referred to as the FLAG document.

For the proposed project, air quality analyses were performed that assess the plant's impacts in the PSD Class I areas using the refined modeling approach from the lWAQM Phase 2 report.

The refined analysis approach was used instead of the screening analysis approach since the air quality impacts are based on generally more realistic assumptions, include more detailed meteorological data, and are estimated at locations at the Class I area.

C.2 GENERAL AIR MODELING APPROACH

The general modeling approach was based on using the long-range transport model, California Puff model [CALPUFF, Version 5.754 (the Best Available Retrofit Technology (BART) Version)]. This version of the model was developed by the Visibility Improvement State and Tribal Association of the Southeast (VISTAS). At distances beyond 50 km, the AERMOD model is considered to

overpredict air quality impacts, because it is a steady-state model. At those distances, the CALPUFF model is recommended for use. The FLM have requested that air quality impacts, such as for regional haze, for a source located more than 50 km from a Class I area be predicted using the CALPUFF model. The Florida DEP has also recommended that the CALPUFF model be used to assess if the source has a significant impact at a Class I area located beyond 50 km from the source.

It should be noted that the plant is located within 50 km of the Chassahowitzka NWA. As a result, AERMOD would generally be recommended to address impacts for the plant. However, the CALPUFF model was used to address cumulative air quality impacts that included the Crystal River Power Plant and background sources located within a 200 km radius from the Class I area. Since most of the background sources are located beyond 50 km from the Class I area, one model was selected and used to address cumulative impacts for sources, regardless of their location within the 200 km radius.

The methods and assumptions used in the CALPUFF model were based on the latest recommendations for a refined analysis as presented in the IWAQM Phase 2 Summary Report and the FLAG documents.

C.3 MODEL SELECTION AND SETTINGS

The CALPUFF air modeling system was used to model to assess the proposed project's impacts at the PSD Class I areas for comparison to the PSD Class I significant impact levels and the cumulative source the PSD Class I increments. CALPUFF is a non-steady state Lagrangian Gaussian puff long-range transport model that includes algorithms for building downwash effects as well as chemical transformations (important for visibility controlling pollutants), and wet/dry deposition. CALPUFF was used in a manner that is recommended by the IWAQM Phase 2 and FLAG reports.

C.3.1 CALPUFF MODEL APPROACHES AND SETTINGS

The IWAQM has recommended approaches for performing a Phase 2 refined modeling analyses that are presented in Table C-1. These approaches involve use of meteorological data, selection of receptors and dispersion conditions, and processing of model output.

The specific settings used in the CALPUFF model are presented in Table C-2.

C.3.2 EMISSION INVENTORY AND BUILDING WAKE EFFECTS

The CALPUFF model included the facility's emission, stack, and operating data as well as building dimensions to account for the effects of building-induced downwash on the emission sources. Dimensions for all significant building structures were processed with the Building Profile Input Program (BPIP), Version 04274, and were included in the CALPUFF model input. The PSD report presents a listing of the facility's emissions and structures included in the analysis.

C.4 <u>RECEPTOR LOCATIONS</u>

For the refined analyses, pollutant concentrations were predicted at 113 receptors located at the Chassahowitzka NWA area and at 214 receptors located at the St. Marks NWA area. These receptors were developed by the National Park Service and cover all areas along the boundary and internal areas of the Class I areas.

C.5 METEOROLOGICAL DATA

C.5.1 CALMET DOMAINS

The air modeling analysis used CALMET-developed domains that were prepared for BART applications. The data were developed by VISTAS and obtained from the FEDP for the years 2001 to 2003. The data consists of a 3-dimensional gridded domain of 4-km cell resolution.

Table C-1. Refined Modeling Analyses Recommendations ^a

Model Input/Output	Description
Meteorology	Use CALMET (minimum 6 to 10 layers in the vertical; top layer must extend above the maximum mixing depth expected); horizontal domain extends 50 to 80 km beyond outer receptors and sources being modeled; terrain elevation and land-use data is resolved for the situation.
Receptors	Within Class I area(s) of concern; obtain regulatory concurrence on coverage.
Dispersion	1. CALPUFF with default dispersion settings.
	2. Use MESOPUFF II chemistry with wet and dry deposition.
	3. Define background values for ozone and ammonia for area.
Processing	1. For PSD increments: use highest, second highest 3-hour and 24-hour average SO ₂ concentrations; highest, second highest 24-hour average PM ₁₀ concentrations; and highest annual average SO ₂ , PM ₁₀ and NO _x concentrations.
	2. For haze: process, on a 24-hour basis, compute the source extinction from the maximum increase in emissions of SO ₂ , NO _x and PM ₁₀ ; compute the daily relative humidity factor [f(RH)], provided from an external disk file; and compute the maximum percent change in extinction using the FLM supplied background extinction data in the FLAG document.
	3. For significant impact analysis: use highest annual and highest short-term averaging time concentrations for SO ₂ , PM ₁₀ and NO _x ,

^a IWAQM Phase II report (December, 1998) and FLAG document (December, 2000)

Table C-2. CALPUFF Model Settings

Parameter	Setting
Pollutant Species	SO ₂ , SO ₄ , NO _x , HNO ₃ , NO ₃ , PM ₁₀ , CO
Chemical Transformation	MESOPUFF II scheme, hourly ozone data from FDEP
Deposition	Include both dry and wet deposition, plume depletion
Meteorological/Land Use Input	CALMET
Plume Rise	Transitional, Stack-tip downwash, Partial plume penetration
Dispersion	Puff plume element, PG /MP coefficients, rural mode, ISC building downwash scheme
Terrain Effects	Partial plume path adjustment
Output	Create binary concentration file including output species for SO ₄ , NO ₃ , PM ₁₀ , SO ₂ , and NO _x ; process for visibility change using Method 2 and FLAG background extinctions
Model Processing	For haze: highest predicted 24-hour extinction change (%) for the year
	For deposition: annual average deposition rates
	For significant impact analysis: highest predicted annual
	and highest short-term averaging time concentrations for
	SO_2 , NO_2 , PM_{10} , CO
Background Values	Ozone: hourly concentration file; Ammonia: 0.5 ppb

^a Recommended values by the Florida DEP.

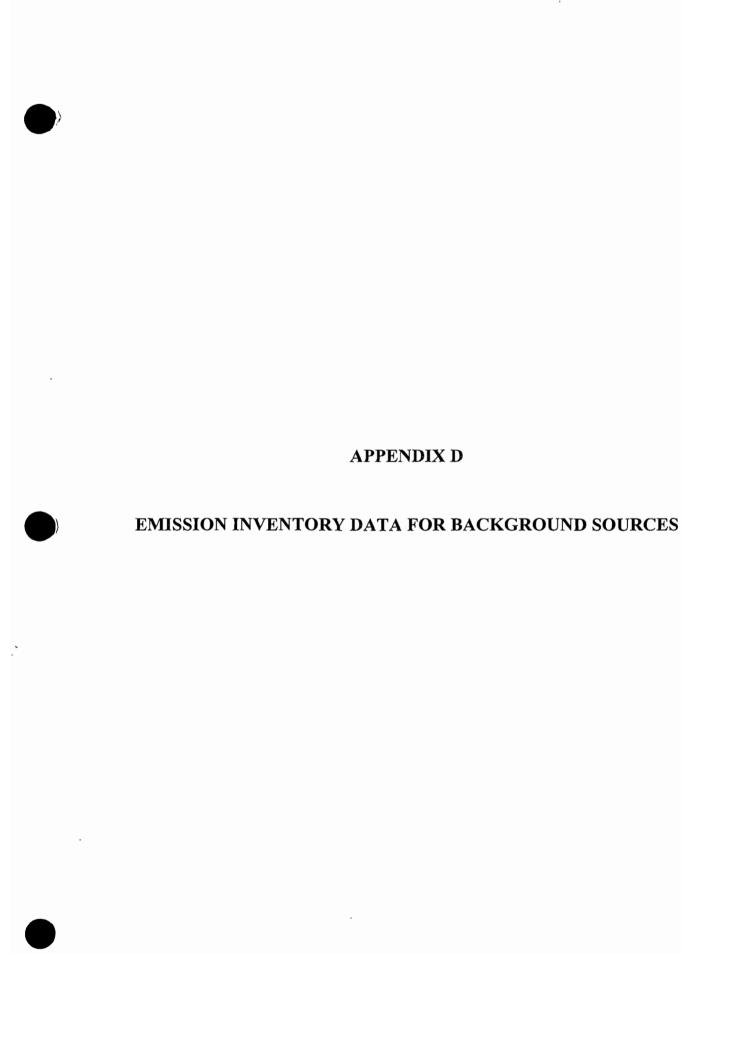


TABLE D-1
SUMMARY OF PM₁₀ SOURCES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTML	ocation				Stack Par	ameters				PM ₁₀ Emis	sion			
cility	Facility Name		Model	x	Υ.	Heig	<u>ht</u>	Diame	ter	Tempera	ture	Veloc	ity	Rate		PSD Source? *	Mode	eled in
)	Emission Unit Description	EU ID	ID Name	(m)	(m)	ft	m	n	m	*F	K	ft/s	m/s	lb/hr	g/s	(EXP/CON)	AAQS	Clas
0022	Progress Materials, Inc.			_														
	Fly Ash Surge Bin W/Baghouse	ι	PMINC1	334,080	3,204,530	60	18.29	0.5	0.15	77	298	76.4	23.3	0.15	0.02	CON	Yes	N
	Lime Storage Silo W/Baghouse	2	PMINC2		3,204,530	60	18.29	0.5	0.15	77	298	38.2	11.6	0.08	0.01	CON	Yes	1
	Embedded Material Surge Bin W/Baghouse	3	PMINC3		3.204,530	60	18.29	0.5	0.15	77	298	38.2	11.6	0.08	0.01	CON	Yes	1
	Uncured Pellet Transfer Point W/Baghouse	4	PMINC4	334,080	3,204,530	60	18.29	0.5	0.15	77	298	38.2	11.6	0.08	10.0	CON	Yes	1
	Four Pellet Curing Silos W/Baghouse Cured Pellet Vibrating Screen W/Baghouse	5 6	PMINC5 PMINC6	334,080 334,080	3,204,530 3,204,530	60 60	18.29 18.29	0.5 0.5	0.15 0.15	77 77	298 298	84.9 38.2	25.9 11.6	0.17 1.07	0.02 0.13	CON	Yes Yes	1
021	Florida Crushed Stone - Brooksville Cement And Power Plants														0.21			
	BCP: Filter Dust Bin With Baghouse(D-75)	1	FCSI	361,340	3,162,370	125	38.10	2	0.6	77	298	36	11.0	0.7	0.09	CON	Yes	,
	BCP: Fly Ash/Equilibrium Catalyst Bin With Baghouse (D-67)	2	FCS2	361,340	3,162,370	125	38.10	2	0.6	77	298	22	6.7	0.4	0.05	CON	Yes	
	BCP: Raw Meal Transfer With Baghouse (F-14)	4	FC\$4	361,340	3,162,370	70	21.34	ı	0.3	180	355	25.5	7.8	0.2	0.03	CON	Yes	
	BCP: Two Blend Silos With Baghouse (G-12A & B)	6	FCS6	361,340	3,162,370	240	73.15	3.5	1.1	180	355	29	8.8	2.2	0.28	CON	Yes	
	BCP: Kiln Feed Surge Bin With Baghouse (H-15)	7	FCS7	361,340	3,162,370	50	15.24	2	0.6	200	366	31.8	9.7	0.8	0.10	CON	Yes	
	BCP: Clinker Receiving/handling System (S-04)	8	FCS8	361,340	3,162,370	15	4.57	2	0.6	70	294	31	9.4	0.7	0.09	CON	Yes	
	Clinker Cooler Discharge with Baghouse (L-03)	9	FCS9		3,162,370	10	3.05	1	0.3	250	394	108.2	33.0	0.66	0.08	CON	Yes	
	BCP: Clinker Silo (L-06) & Finish Mill Silo (L-07)/baghouse	10	FCS10		3,162,370	200	60.96	1.5	0.5	200	366	24	7.3	0.3	0.04	CON	Yes	
	BCP: Gypsum & Limestone Bins With Baghouse (L-08)	l1	FCS11		3,162,370	135	41.15	1.5	0.5	200	366	47	14.3	0.6	0.08	CON	Yes	
	BCP: Silo Discharge With Baghouse(M-08)	12	FCS12	361,340	3,162,370	135	41.15	2.5	0.8	100	311	30	9.1	1.2	0.15	CON	Yes	
	BCP: Finish Mill With Baghouse (N-13)	13	FCS13		3,162,370	70	21.34	5	1.5	210	372	33	1.01	5.1	0.64	CON	Yes	
	BCP:Cement Silos #1 & 2 Discharge System With Baghouse(Q-17)	14	FCS14		3,162,370	50	15.24	1.5	0.5	160	344	30	9.1	0.4	0.05	CON	Yes	
	BCP: Cement Storage Silos #1 & 2 With Baghouse (Q-15)	15	FCS15		3,162,370	200	60.96	2	0.6	180	355	39.3	12.0	1	0.13	CON	Yes	
	BCP: Iron Ore Bin With Baghouse (D-63)	17	FCS17		3,162,370	51	15.54	1.5	0.5	180	355	34	10.4	0.5	0.06	CON	Yes	
	BPP: POWER PLANT	18	FCS18	361,340	3,162,370	320	97.54	16	4.9	300	422	69.6	21.2	25	3.15	CON	Yes	
	BCP: Finish Mill Feed Belt With Baghouse (M-05)	19	FCS19	361,340	3,162,370	29	8.84	2	0.6	85	303	47	14.3	1.16	0.15	CON	Yes	
	BCP: Cement Kiln1, In-line Kiln/Raw Mill & Clinker Cooler 1	20	FCS20	361,340	3,162,370	300	91.44	16	4.9	220	378	47	14.3	49.5	6.24	CON	Yes	
	BCP: Cement Storage Silo #3 Discharge System/Baghouse (Z-17)	21	FCS21	361,340	3,162,370	50	15.24	1.5	0.5	160	344	94	28.7	1.29	0.16	CON	Yes	
	BCP: Cement Storage Sito #3 With Baghouse (Z-15)	22	FCS22	361,340	3,162,370	200	60.96	2	0.6	180	355	28.1	8.6	0.68	0.09	CON	Yes	
	BCP: Cement Silo #4 & Truck Loadout Sys With Baghouse	23	FCS23	361,340	3,162,370	75	22.86	0.8	0.2	77	298	28	8.5	0.11	0.01	CON	Yes	
	BCP: Cement Storage Silo & Railcar Loadout System/Baghouse	24	FCS24	361,340	3,162,370	80	24.38	1.5	0.5	77	298	56	17.1	1.03	0.13	CON	Yes	
	Raw Mill System	25	FCS25	361,340	3,162,370	219	66.75	3.3	1.0	180	355	33.1	10.1	1.688	0.21	CON	Yes	
	FINISH MILL SYSTEM	28	FCS28		3,162,370	123	37.49	8.6	2.6	160	344	33	1.01	12.855	1.62	CON	Yes	
	CEMENT HANDLING SYSTEM	29	FCS29		3,162,370	203	61.87	2.1	0.6	180	355	34.7	10.6	1.414	0.18	CON	Yes	
	COAL HANDLING SYSTEM	30	FCS30	361,340	3,162,370	40	12.19	3.9	1.2	150	339	33.5	10.2	1.89	0.24	CON	Yes	
	BPP: Limestone Rock Bin With Baghouse (D-38)	35	FCS35	361,340	3,162,370	100	30.48	2.5	0.8	70	294	35.7	10.9	1.1	0.14	CON	Yes	
	BPP: Contaminated Flyash & Filter Dust Bin (D-31)	36	FCS36		3,162,370	200	60.96	1.5	0.5	180	355	103.7	31.6	1.41	0.18	CON	Yes	
	BPP: Limestone Screening System With Baghouse (D-39)	37	FCS37	361,340	3,162,370	30	9.14	2	0.6	150	339	15.9	4.8	0.77	0.10	CON	Yes	
	BPP: Limestone Fines Storage Bin With Baghouse (D-13)	38 39	FCS38 FCS39	361,340	3,162,370	150 100	45.72 30.48	3.5 2.5	1.1 0.8	100 120	311 322	32.9 21.4	(0.0 6.5	0.77 1.16	0.10 0.15	CON	Yes Yes	
	BPP: Limedust Storage Bin With Baghouse (Z-31)	39 40	FCS39 FCS40	361,340		15		1.5	0.8	77	322 298	16.3	6.3 5.0	0.22	0.15	CON	Yes Yes	
	BPP: Limestone Dryer Discharge Transfer Point (D-46) Kiln #2	40 44	FCS40 FCS44	361,340 361,340	3,162,370 3,162,370	320	4.57 97.54	1.3	4.3	550	298 561	40.1	12.2	28.8	3.63	CON	Yes Yes	
	Filter Dust ID No. 2E-22	44 45	FCS44 FCS45	361,340	3,162,370	194	59.13	1.7	4.3 0.5	200	366	29.4	9.0	1.14	0.14	CON	Yes	
	Raw Meal Transport 2F-04	45 46	FCS45	361,340	3,162,370	30	9.14	1.4	0.4	180	355	32.5	9.9	0.26	0.14	CON	Yes	
	Kiln Feed Transport ID 2H-05	47	FCS47	361,340		30	9.14	1.4	0.4	180	355	32.5	9.9	0.26	0.03	CON	Yes	
	Clinker Transport to 241-05	48	FCS48	361,340	3,162,370	32	9.75	1.6	0.4	240	389	24.9	7.6	0.19	0.03	CON	Yes	
	Gypsum Bin 2L-14	48	FCS49	361,340	3,162,370	120	36.58	1.6	0.5	95	308	33.2	7.6 10.1	0.19	0.02	CON	Yes	
	Clinker Storage ID 2L-05	50	FCS50	361,340	3,162,370	203	61.87	1.6	0.5	240	389	33.2	10.1	0.253	0.04	CON	Yes	
	Finish Mill Collecting Bin	51	FCS50	361,340	3,162,370	15	4.57	2.3	0.3	180	355	48.1	14.7	0.832	0.03		Yes	
	Finish Mill	52	FCS52	361,340	3,162,370	130	39.62	2.3	1.2	212	373	46.4	14.7	2.31	0.10	CON	Yes	
	Air Slide ID 2N-03	53	FCS53	361,340		46	14.02	1.8	0.5	200	366	39.3	12.0	0.403	0.29	CON	Yes	
	Bucket Elevator ID 2N-04	54	FCS54	361,340		46	14.02	1.8	0.5	200	366	39.3	12.0	0.403	0.05		Yes	
	High Efficiency Seperator	55	FCS55	361,340		130	39.62	7.5	2.3	160	344	48.5	14.8	9.199	1.16		Yes	
	Cement Cooler 2N-26	56	FCS56		3,162,370	46	14.02	1.8	0.5	200	366	39.3	12.0	0.403	0.05	CON	Yes	
	Cement Transport ID 2P-01	57	FCS57	361,340	-,	203	61.87	1.6	0.5	180	355	30.7	9.4	0.832	0.10		Yes	
	Cement Loadout Bin 1D 2Q-28	58	FCS58	361,340		30	9.14	1.4	0.4	180	355	32.5	9.9	0.208	0.03		Yes	
	Cement Loadout Bin 2Q-31	59	FCS59	361,340		30	9.14	1.4	0.4	180	355	32.5	9.9	0.208	0.03		Yes	
	Coal Mill ID 2S-15	60	FCS60	361,340		40	12.19	3.9	1.2	150	339	30.7	9.4	1.6	0.20		Yes	
	Fuel Bin 2S-20	61	FCS61	361,340		40	12.19	1.1	0.3	150	339	35.1	10.7	0.145	0.02	CON	Yes	

TABLE D-1 SUMMARY OF PM 10 SOURCES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTM L	ocation				Stack Par	2meters				PM ₁₀ Emiss	tion			
acility	Facility Name		Model	x	Y	Heig	ht	Diame	ter	Temper	rature	Velo	city	Rate		PSD Source? *	Mod	eled in
D	Emission Unit Description	EU ID	ID Name	(m)	(m)	fi	m	ft	œ	*F	K	ft/s	m/s	lb/br	g/1	(EXP/CON)	AAQS	Class II
	No. 1 Kiln Feed System (Baghouse D-31)	2	CEMEX2	357,470	3,169,190	75	22.86	3	0.9	85	303	23.0	7.0	1.0	0.13	NO	Yes	No
	Cement Kiln No. 1 Baghouse(E-55); Revised Oil Concentrations	3	CEMEX3	357,470	3,169,190	150	45.72	13	4.0	285	414	34.0	10.4	29.7	3.74	NO	Yes	No
	Cement Plant Clinker Cooler No. 1 (Baghouse F-18)	4	CEMEX4	357,470	3,169,190	50	15.24	01	3.0	340	444	29.0	8.8	14.9	1.88	NO	Yes	No
	Finish Mills #1 & #2 With Two Dust Collectors	5	CEMEXS	357,470	3,169,190	83	25.30	3	0.9	195	364	518.0	157.9	36.0	4.54	NO	Yes	No
	Clinker Storage Silo Nos. 1&2 (Baghouse F-31)	6	CEMEX6	357,470	3,169,190	145	44,20	2	0.6	78	299	159.0	48.5	1.5	0,18	NO	Yes	No
	No. 1 Kiln Blending Silos (Baghouse Nos. E-36,F-17)	8	CÉMEX8	357,470	3,169,190	216	65.84	2	0.6	85	303	79.0	24.1	3.7	0.47	Yes	Yes	Yes
	Cement Plt Stg Silos Dust Unit H-3	9	CEMEX9	357,470	3,169,190	141	42.98	3	0.9	85	303	35.0	10.7	36.1	4.54	NO	Yes	No
	Raw Mat'l Storage Silos & Feed Syst. W/Baghouses (C-11,C-11a	11	CEMEX11	357,470	3,169,190	80	24.38	2.5	0.8	77	298	50.0	15.2	2.2	0.27	NO	Yes	No
	Kiln No. 2 Blending Silo W/Baghouse (G-11)	12	CEMEX12	357,470	3,169,190	220	67.06	2.8	0.9	200	366	62.0	18.9	2.0	0.25	Yes	Yes	Yes
	No. 2 Kiln Feed System W/Baghouse (H-13)	13	CEMEX13	357,470	3,169,190	90	27.43	1.4	0.4	130	328	64.0	19.5	13.5	1.70	Yes	Yes	Yes
	Coment Kiln No. 2 Baghouse(E-19); Revised Oil Concentrations	14	CEMEX14	357,470	3,169,190	105	32.00	14	4.3	250	394	32.0	9.8	29.7	3.74	Yes	Yes	Yes
	No. 2 Clinker Cooler W/Baghouse K-09	15	CEMEX 15	357,470	3,169,190	50	15.24	7.5	2.3	400	478	71.0	21.6	14.9	1.88	Yes	Yes	Yes
	Clinker Silo No. 3 W/Baghouse (L-7)	16	CEMEX 16	357,470	3,169,190	150	45.72	2.8	0.9	185	358	23.0	7.0	1.5	0.18	Yes	Yes	Yes
	Clinker/Gypsum Transfer Belt W/Baghouse (M-09)	17	CEMEX17	357,470	3,169,190	75	22.86	1	0.3	150	339	63.0	19.2	0.5	0.06	Yes	Yαs	Yes
	Finish Mill No. 3 Clinker/Gypsum Day Tank W/Baghouse (M-10)	18	CEMEX18	357,470	3,169,190	75	22.86	2.8	0.9	140	333	23.0	7.0	1.5	0.18	Yes	Yes	Yes
	Finish Mill No. 3 W/Baghouse (N-23)	19	CEMEX19	357,470	3,169,190	75	22.86	3.3	1.0	207	370	62.0	18.9	4.0	0.50	Yes	Yes	Yes
	Cement Silos 7 & 8 W/Baghouse (P-05)	21	CEMEX21	357,470	3,169,190	210	64.01	2.2	0.7	145	336	50.0	15.2	1.0	0.13	Yes	Yes	Yes
	Masonry Silo W/Baghouse (P-07)	22	CEMEX22	357,470	3,169,190	210	64.01	1.5	0.5	150	339	51.0	15.5	1.0	0.13	Yes	Yes	Yes
	Truck Loadout System W/Baghouse (Q-17)	23	CÉMEX23	357,470	3,169,190	70	21.34	1.5	0.5	150	339	51.0	15.5	0.5	0.06	Yes	Yes	Yes
	Raw Material Pre-Mix Bin W/Baghouse (M-2280)	24	CEMEX24	357,470	3,169,190	81	24.69	1.7	0.5	107	315	39.0	11.9	0.6	0.08	Yes	Yes	Yes
	Additive Material Storage Bin W/Baghouse M-1171	25	CEMEX25	357,470	3,169,190	32	9.75	2	0.6	70	294	79.0	24.1	0.0	0.00	Yes	Yes	Yes
	Cement Bag Loadout System W/Baghouse (M-3514)	26	CEMEX26	357,470	3,169,190	24	7.32	2	0.6	114	319	20.0	6.1	0.6	0.08	Yes	Yes	Yes
	Coment Bagging Line No. 2	27	CEMEX27	357,470	3,169,190	48	14.63	1.64	0.5		255	67.1	20.5	12.7	1,60	Yes	Yes	Yes
	IMC Agrico (Pierce)																	
	PSD Expanding source	ŧ	IAGRI	404,100	3,079,000	80	24.38	8	2.4	118	321	69.7	21.2	-40.0	-5.04	E	No	Yes
	PSD Expanding source	2	2AGRI	404,100	3.079.000	95	28.96	5.8	1.8	770	683	48.8	14.9	-31.1	-3.92	E	No	Yes

EXP = PSD expanding source.
CON = PSD consuming source.
NO = Baseline Source, does not affect PSD increment.

ND = No data available.

TABLE D-2
SUMMARY OF SO2 SOURCES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

																			Maximum			M	lodeled
			UTM Co	ordinates	Relative	to the Crysta	I River Powe	r Plant"	Stack		Stack		Exit		Volum	eatric			so,		PSD Source? '		PSD
Facility ID	Facility Name	Model 1D Name	East (km)	North (km)	X (km)	Y (km)	Direction (deg.)	Distance (km)	Height (ft)		Diameter (ft)		Temp (F)		Flow (scfm)	rate (dscfm)	Velocity (ft/s)		Emissions (TPY)		(EXP/CON)	AAQS	Class I
0170007	Crystal River Quarries	CRQUAR	340.60	3.205.30	6.3	0.8	83	6.4	60	18.3	3.9	1.19	143	335	15.224	ND	21.0	6.4	133.9	3.85	NA .	YES	NO
0530010	Cernex Cernex	CEMEX02 CEMEX14	357.47 357.47	3.169.19 3.169.19	23.2 23.2	-35.3 -35.3	147 147	42.2 42.2	150	45.7 32.0	13.0 14.0	3.96 4.27	285 250	414 394	275.000 300.000	175.400 200.000	34.0 32.0	10.4 9.76	66.0 66.0	1.90 1.90	CON	YES	NO YES
0330010	Cemer	CEMEX14	337.47	3.109.19	23.2	-33.3	147	42.2	103	32.0	14.0	4,27	250	394	300.000	200.000	32.0	9.76	66.0	1.90	CON	163	163
0530021	Florida Crushed Stone Co., Inc Brookville Cement	FCRUSH18	361.34	3.162.37	27.0	42.1	147	50.1	320	97.6	16.0	4.88	300	422	840,000	540,000	69.6	21.2	3.372.6	97.02	CON	YES	YES
530021	Florida Crushed Stone Co., Inc Brookville Cement	FCRUSH20	361.34	3.162.37	27.0	-42.1	147	50.1	300	91.5	16.0	4,88	220	378	577,700	376,796	47.0	14.3	219.0	6.30	CON	YES	YE!
0530022	Florida Crushed Stone Co., Inc Brookville Cement	FCRUSH44	361.34	3.162.37	27.0	-42.1	147	50.I	320	97.6	15.0	4.57	259	399			33.8	10.3	126.2	3.63	CON	YES	YE
0530004	Citrus Service. Inc.	CITSER1	364.20	3.158.30	29.9	-46.2	147	55.0	34	10.4	2.0	0.61	468	515	9,118	ND	48.0	14.6	118.3	3.40	NA	YES	NO
0530004	Citrus Service, Inc.	CITSER2	364.20	3.158.30	29.9	-46.2	147	55.0	64	19.5	2.5	0.76	150	339	8,000	9.200	27.0	8.2	19.0	0.55	NA	YES	NO
010056	Pasco County	PASCORRF	348.62	3.139.02	14.3	-65.5	168	67.0	275	83.8	4.7	1.43	250	394	85.300	47,600	81.9	25.0	65.9	1.90	CON	YES	YE
010056	Pasco County	PASCORRF	348.62	3.139.02	14.3	-65.5	168	67.0	275	83.8	4.7	1.43	250	394	85,300	47.600	81.9	25.0	65.9	1.90	CON	YES	YE
010056	Pasco County	PASCORRF	348.62	3.139.02	14.3	-65.5	168	67.0	275	83.8	4.7	1.43	250	394	85.300	47.600	81.9	25.0	65.9	1.90	CON	YES	YE
010056	Pasco County	PASCORRF	348.62	3,139.02	14.3	-65.5	168	67.0	30	9.1	1.0	0.30	350	450	900	580	19.1	5.8	800.0	0.00	CON	YES	YE
1010373	Shady Hills Power Company, L.L.C.	SHADYHL	348.72	3.138.37	14.4	-66.1	168	67.7	60	18.3	22.0	6.71	1,113	874	2.645.000	800,000	116.0	35.4	55.3	1.59	CON	YES	YE
1010373	Shady Hills Power Company, L.L.C.	SHADYHL.	348.72	3,138,37	14.4	-66.1	168	67.7	60	18.3	22.0	6.71	1.113	874	2,645,000	800.000	116.0	35.4	55.3	1.59	CON	YES	YE
1010373	Shady Hills Power Company. L.L.C.	SHADYHL	348.72	3.138.37	14.4	-66.1	168	67.7	60	18.3	22.0	6.71	1,113	874	2.645.000	800.000	116.0	35.4	55.3	1.59	CON	YES	YE
1010017	Progress Energy Florida, Inc Anclote Power Plant	ANCL12	327.41	3,120.68	-6.9	-83.8	185	84.1	499	152.1	24.0	7.32	320	433	1,699,026	ND	62.0	18.9	61.104.0	1.757.79	NA	YES	NO
1010017	Progress Energy Florida, Inc Anclose Power Plans	ANCL13	327.41	3,120.68	-6.9	-83.8	185	84.1	499	152.0	24.0	7.32	320	433	1.692.307	ND	62.0	18.9	59.707.0	1,717.60	NA	YES	NO
	Asphalt Pavers 3	ASPHALT3	359.90	3162.40	25.6	-42.1	149	49.3	40.0	12.2	4.5	1.37	219	377	38.077	ND	40.0	12.2	78.2	2.25	CON	YES	YE
	Asphalt Pavers 4	ASPHALT4	361.40	3168.40	27.1	-36.1	143	45.1	27.9	8.5	3.5	1.08	183	357	16.487	ND	27.9	8.5	78.2	2.25	CON	YES	YE
	FDOC	FDOC	382.20	3166.10	47.9	-38.4	129	61.4	29.8	9.1	2.0	16.0	401	478	5,631	ND	29.8	9. t	103.9	2.99	CON	YES	YE
	Hospital Corp of America	HCOA12	333.40	3141.00	-0.9	-63.5	181	63.5	36.1	11.0	1.0	0.31	500	533	1,758	ND	36.1	11.0	5.6	0.16	CON	YES	YE
	Oman Construction	OMAN	359.80	3164.90	25.5	-39.6	147	47.1	24.9	7.6	6.0	1.83	165	347	42,323	ND	24.9	7.6	72.7	2.09	CON	YES	YE
	Oursell Bridge	OVERST	355.90	3143.70	21.6	40.0	140		29.8	9.1	4.3	1,30	275	408	25,574	ND	29.8	9. J	127.6	3.67	CON	YES	YE
	Overstreet Paving	OVEKSI	333.90	3143.70	21.6	-60.8	160	64.5	49.8	9.1	٠,٥	1,30	4/3	400	25.574	ND	47.8	7. 1	127.0	3.67	CON	163	,,

Note: NA = Not applicable, ND = No data. SID = Significant impact distance for the project

* The Crystal River Power Plant is located at UTM Coordinates: East

334.3 km 3204.5 km

^b The significant impact distance (SID) for the project is estimated to be

15.0 km

Based on the North Carolina Screening Threshold method, a background facility is included in the modeling analysis if the facility is beyond the modeling area and its emission rate is greater than the product of (Distance-SID) x 20.

TABLE D-3
SUMMARY OF NO_X SOURCES INCLUDED IN THE AAQS AND PSD CLASS II COMPLIANCE AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTM L	ocation				Stack Par	ameters				NOx Emis	sion		Mod	eled in
Facility	Facility Name		Model	х	Y	Heig	ht	Diame	ter	Tempera	ture	Veioc	ity	Rate		PSD Source? *		PSD
ID	Emission Unit Description	EU ID	1D Name	(m)	(m)	ft	m	n	m	*F	K	ft/s	m/s	TPY	(g/s)	(EXP/CON)	AAQS	Class I
0530010	CEMEX	·																
	Cement Kiln No. 1	3	CEMEX3	355,900	3,169,100	150	45.72	13	4.0	285	414	34.0	10.4	1318.0	37.9	NO	Yes	No
	Cement Kiln No. 2	14	CEMEX14	355,900	3,169,100	105	32.00	14	4.3	250	394	32.0	9.8	1130.0	32.5	NO	Yes	No
0530021	Florida Crushed Stone - Brooksville Cement And Power Plants																	
	BPP: POWER PLANT	18	FCS18	360000	3162500	320	97.54	16	4.9	300	422	69.6	21.2	3705.5	106.6	NO	Yes	No
	BCP: Cement Kiln1, In-line Kiln/Raw Mill & Clinker Cooler 1	20	FCS20	360000	3162500	300	91.44	16	4.9	220	378	47	14.3	1572.0	45.2	NO	Yes	No
	Kiln #2	44	FCS44	360000	3162500	320	97.54	14	4.3	550	561	40.1	12.2	1595.7	45.9	CON	Yes	Yes
1010373	Shady Hills Generating Station																	
	A 170 MW Gas Simple Cycle Combustion Turbine	1	SHILLGS	347,000	3,139,000	60	18.3	22.0	6.71	1113	874	116.0	35.4	252.1	7.3	CON	Υes	Y
	A 170 MW Gas Simple Cycle Combustion Turbine	2	SHILLGS2		3,139,000	60	18.3	22.0	6.71	1113	874	116.0	35.4	252.1	7.3	CON	Yes	Ye
	A 170 MW Gas Simple Cycle Combustion Turbine	3	SHILLGS3	347,000	3,139,000	60	18.3	22.0	6.71	1113	874	116.0	35.4	252.1	7.3	CON	Yes	Ye
010056	Pasco County Resource Recovery Facility																	
	Municipal waste Combustor Unit #1	ı	PCRRF1		3,138,770	275	83.8	4.7	1.43	250	394	81.9	25.0	335.6	9.7	CON	Yes	Y
	Municipal Waste Combustor Unit #2	2	PCRRF2		3,138,770	275	83.8	4.7	1.43	250	394	81.9	25.0	335.6	9.7	CON	Yes	Y
	Municipal Waste Combustor Unit #3	3	PCRRF3		3,138,770	275	83.8	4.7	1.43	250	394	81.9	25.0	335.6	9.7	CON	Yes	Y
	Leachate Treatment Facility	5	PCRRF5	348,810	3,138,770	30	9.1	0.1	0.30	350	450	19.1	5.8	1.32	0.0	CON	Yes	Ye
0010087	Florida Rock Industries - Thompson S. Baker Cement Plant																	
	Kiln/Raw Mill System Stack	3	FRBCP3	348350	3287040	250	76.20	9.42	2.9	356	453	47.8	14.6	980.0	28.2	CON	Yes	Ye
	Kiln/Raw Mill- Line 2	10	FRBCP10	348350	3287040	315	96.01	9.42	2.9	356	453	52.6	16.0	1067.6	30.7	CON	Yes	Ye
1010017	Progress Energy-Anciote Power Plant																	
	Steam Turbine Gen. Anclote Unit No.1	1	FPCANCI	327,400	3,120,700	499	152.10	24	7.3	320	433	62.0	18.9	6812.6	196.0	NO	Yes	N
	Steam Turbine Gen Anclote Unit No.2	2	FPCANC2	327,400	3,120,700	499	152.10	24	7.3	320	433	62.0	18.9	6656.1	191.5	NO	Yes	No
830070	Florida Gas Transmission Company																	
	FGTC Engine 1701 - 2000 bhp RICE compressor engine	1	FGTC1		3,240,900	28	8.53	1,3	0.4	875	741	147.0	44.8	212.4	6.1	CON	Yes	Y
	FGTC Engine 1702 - 2000 bhp RICE compressor engine	2	FGTC2	418,800	3,240,900	28	8.53	1.3	0.4	875	741	147.0	44.8	212.4	6.1	CON	Yes	Ye
	FGTC Engine 1703 - 2000 bhp RICE compressor engine	3	FGTC3	418,800	3,240,900	28	8.53	1.3	0.4	875	741	147.0	44.8	212.4	6.1	CON	Yes	Ye
	FGTC Engine 1704 - 2000 bhp RICE compressor engine	4	FGTC4	418,800	3,240,900	28	8.53	1.3	0.4	875	741	147.0	44.8	154.6	4.4	CON	Yes	Ye
	FGTC Engine 1705 - 2400 bhp RICE compressor engine	5	FGTC5	418,800	3,240,900	40	12.19	1.3	0.4	695	641	180.0	54.9	46.3	1.3	CON	Yes	Y
	FGTC Engine 1706 - 15,700 bhp gas turbine compressor engine	8	FGTC8	418,800	3,240,900	61	18.59	7.6	2.3	910	761	79.1	24.1	61.8	1.8	COM	Yes	Ye
0010006	GRU Deerhaven Generating Station																	
	Fossil Fuel Fired Steam Generator #1(Phase II AR Unit)	3	GRUDGS3	365,700	3,292,600	300	91.4	11.0	3.4	261	400	47.0	14.3	1154.3	33.2	NO	Yes	No
	Fossil Fuel Fired Steam Generator #2 (Phase ! & II AR Unit)	5	GRUDGS 5	365,700	3,292,600	350	106.7	18.5	5.6	275	408	50.0	15.2	7444.1	214.1	NO	Yes	No
	Simple Cycle Comb Turbine No. 3 (Phase II Acid Rain Unit)	6	GRUDGS6	365,700	3,292,600	52	15.8	14.1	4.3	1100	866	168.0	51.2	239.0	6.9	CON	Yes	Ye

^{*} EXP = PSD expanding source.

CON = PSD consuming source.

NO = Baseline Source, does not affect PSD increment.

ND = No data available.

TABLE D-4
SUMMARY OF PM_{IR} SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTM L	ocation	LCCL	ocation				Stack Pan	ameters				PM ₁₀ Emiss	н́ол		Mode
acility	Facility Name		CALPUFF	x	Y	х	Y	Heig	ht	Diame	ter	Temper	ature	Velo	city	Rate		PSD Source? *	PS.
•	Emission Unit Description	EU ID	ID	(m)	(m)	(km)	(km)	U	m	IJ	w	*F	K	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Sour
0010	CEMEX																		
	No. 1 Kiln Feed System (Baghouse D-31)	2	CEMEX2	357,470	3,169,190	1,427.654	-1,147.418	75	22.86	3	0.9	85	303	23.0	7.0	1.0	0.13	NO	1
	Cement Kiln No. 1 Baghouse(E-55); Revised Oil Concentrations	3	CEMEX3		3,169,190	1,427.654		150	45.72	13	4.0	285	414	34.0	10.4	29.7	3.74	NO	1
	Cement Plant Clinker Cooler No. I (Baghouse F-18)	4	CEMEX4		3,169,190	1,427.654		50	15.24	10	3.0	340	444	29.0	8.8	14.9	1.88	NO	
	Finish Mills #1 & #2 With Two Dust Collectors	5	CEMEX5		3,169,190		-1,147.418	83	25.30	3	0.9	195	364	518.0	157.9	36.0	4.54	NO	
	Clinker Storage Silo Nos. 1&2 (Baghouse F-31)	6	CEMEX6		3,169,190		-1,147.418	145	44.20 65.84	2	0.6	78	299 303	159.0 79.0	48.5 24.1	1.5 3.7	0.18	NO Yes	,
	No. 1 Kiln Blending Silos (Baghouse Nos. E-36,F-17)	8	CEMEX8 CEMEX9		3,169,190 3,169,190		-1,147.418 -1,147.418	216 141	42.98	2	0.6	85 85	303	35.0	10.7	36.1	4.54	NO	
	Cement Plt Stg Silos Dust Unit H-3 Raw Mat'l Storage Silos & Feed Syst. W/Baghouses (C-11,C-11a	11	CEMEXII		3,169,190		-1,147,418 -1,147,418	80	42.98 24.38	2.5	0.8	83 77	298	50.0	15.2	2.2	0.27	NO	
	Kiln No. 2 Blending Silo W/Baghouse (G-11)	12	CEMEX 12		3,169,190		-1,147,418	220	67.06	2.8	0.9	200	366	62.0	18.9	2.0	0.25	Yes	
	No. 2 Kiln Feed System W/Baghouse (H-13)	13	CEMEX13		3,169,190		-1,147,418	90	27.43	1.4	0.4	130	328	64.0	19.5	13.5	1.70	Yes	
	Cement Kiln No. 2 Baghouse(E-19); Revised Oil Concentrations	14	CEMEX14		3,169,190		-1,147,418	105	32.00	14	4.3	250	394	32.0	9.8	29.7	3.74	Yes	
	No. 2 Clinker Cooler W/Baghouse K-09	15	CEMEX15		3,169,190		-1,147.418	50	15.24	7.5	2.3	400	478	71.0	21.6	14.9	1.88	Yes	
	Clinker Silo No. 3 W/Baghouse (L-7)	16	CEMEX 16		3,169,190		-1,147,418	150	45.72	2.8	0.9	185	358	23.0	7.0	1.5	0.18	Yes	
	Clinker/Gypsum Transfer Belt W/Baghouse (M-09)	17	CEMEX 17		3,169,190	1,427.654	-1,147.418	75	22.86	1	0.3	150	339	63.0	19.2	0.5	0.06	Yes	
	Finish Mill No. 3 Clinker/Gypsum Day Tank W/Baghouse (M-10)	18	CEMEX 18	357,470	3,169,190		-1,147.418	75	22.86	2.8	0.9	140	333	23.0	7.0	1.5	0.18	Yes	
	Finish Mill No. 3 W/Baghouse (N-23)	19	CEMEX19		3,169,190		-1,147.418	75	22.86	3.3	1.0	207	370	62.0	18.9	4.0	0.50	Yes	
	Cement Silos 7 & 8 W/Baghouse (P-05)	21	CEMEX21		3,169,190		-1,147.418	210	64.01	2.2	0.7	145	336	50.0	15.2	1.0	0.13	Yes	
	Masonry Silo W/Baghouse (P-07)	22	CEMEX22		3,169,190		-1,147.418	210	64.01	1.5	0.5	150	339	51.0	15.5	1.0	0.13	Yes	
	Truck Loadout System W/Baghouse (Q-17)	23	CEMEX23		3,169,190		-1,147.418	70	21.34	1.5	0.5	150	339	51.0	15.5	0.5	0.06	Yes	
	Raw Material Pre-Mix Bin W/Baghouse (M-2280)	24	CEMEX24		3,169,190		-1,147.418	81	24.69	1.7	0.5	107	315	39.0	11.9	0.6	80,0	Yes	
	Additive Material Storage Bin W/Baghouse M-1171	25	CEMEX25		3,169,190		-1,147.418	32	9.75	2	0.6	70	294	79.0	24.1	0.009	100.0	Yes Yes	
	Cement Bag Loadout System W/Baghouse (M-3514) Cement Bagging Line No. 2	26 27	CEMEX26 CEMEX27		3,169,190 3,169,190	.,	-1,147.418 -1,147.418	24 48	7.32 14.63	2 1.64	0.6 0.5	114	319 255	20.0 67.1	6.1 20.5	12.7	1.60	Yes	
21	Florida Crushed Stone - Brooksville Cernent And Power Plants																		
	BCP: Filter Dust Bin With Baghouse(D-75)	1	FCSI	361340	3162370	1432.684		125	38.10	2	0.6	77	298	36	0.11	0.7	0.09	CON	
	BCP: Fly Ash/Equilibrium Catalyst Bin With Baghouse (D-67)	2	FCS2	361340	3162370	1432.684	-1153.561	125	38.10	2	0.6	77	298	22	6.7	0.4	0.05	CON	
	BCP: Raw Meal Transfer With Baghouse (F-14)	4	FCS4	361340	3162370	1432.684	-1153.561	70	21.34	1	0.3	180	355	25.5	7.8	0.2	0.03	CON	
	BCP: Two Blend Silos With Baghouse (G-12A & B)	6	FCS6	361340	3162370	1432.684	-1153.561	240	73.15	3.5	1.1	180	355	29	8.8	2.2	0.28	CON	
	BCP: Kiln Feed Surge Bin With Baghouse (H-15)	7	FCS7	361340	3162370	1432.684		50	15.24	2	0.6	200	366	31.8	9.7	0.8	0.10	CON	
	BCP: Clinker Receiving/handling System (S-04)	8	FCS8	361340	3162370	1432.684	-1153.561	15	4.57	2	0.6	70	294	31	9.4	0.7	0.09	CON	
	Clinker Cooler Discharge with Baghouse (L-03)	9	FCS9	361340		1432.684	-1153.561	10	3.05	1	0.3	250	394	108.2		0.66	0.08	CON	
	BCP: Clinker Silo (L-06) & Finish Mill Silo (L-07)/baghouse	10	FCS10	361340	3162370	1432.684	-1153.561	200	60.96	1.5	0.5	200	366	24	7.3	0.3	0.04	CON	
	BCP: Gypsum & Limestone Bins With Baghouse (L-08)	11	FCS11	361340	3162370	1432.684	-1153.561	135	41.15	1.5	0.5	200	366	47	14.3	0.6	0.08	CON	
	BCP: Silo Discharge With Baghouse(M-08)	12	FCS12	361340	3162370	1432.684	-1153.561	135	41.15	2.5	8.0	100	311	30	9.1	1.2	0.15	CON	
	BCP: Finish Mill With Baghouse (N-13)	13	FCS13	361340	3162370	1432.684	-1153.561	70	21.34	5	1.5	210	372	33	1,01	5.1	0.64	CON	
	BCP:Cement Silos #1 & 2 Discharge System With Baghouse(Q-17)	14	FCS14	361340	3162370	1432.684	-1153.561	50	15.24	1.5	0.5	160	344	30	9.1	0.4	0.05	CON	
	BCP: Cement Storage Silos #1 & 2 With Baghouse (Q-15)	15	FCS15	361340	3162370	1432.684	-1153.561	200	60.96	2	0.6	180	355	39.3	12.0	ı	0.13	CON	
	BCP: Iron Ore Bin With Baghouse (D-63)	17	FCS17	361340			-1153.561	51	15.54	1.5	0.5	180	355	34	10.4	0.5	0.06	CON	
	BPP: POWER PLANT	18	FCS18	361340	3162370	1432.684	-1153.561	320	97.54	16	4.9	300	422	69.6	21.2	25	3.15	CON	
	BCP: Finish Mill Feed Belt With Baghouse (M-05)	19	FCS19	361340	3162370	1432.684	-1153.561	29	8.84	2	0.6	85	303	47	14.3	1.16	0.15	CON	
	BCP: Cement Kiln I, In-line Kiln/Raw Mill & Clinker Cooler 1	20	FCS20	361340	3162370		-1153.561	300	91.44	16	4.9	220	378	47	14.3	49.5	6.24	CON	
	BCP: Cement Storage Silo #3 Discharge System/Baghouse (Z-17)	21	FCS21	361340	3162370	1432.684	-1153.561	50	15.24	1.5	0.5	160	344	94	28.7	1.29	0.16	CON	
	BCP: Cement Storage Silo #3 With Baghouse (Z-15)	22	FCS22	361340		1432.684	-1153.561	200	60.96	2	0.6	180	355	28.1	8.6	0.68	0.09	CON	
	BCP: Cement Silo #4 & Truck Loadout Sys With Baghouse	23	FCS23	361340			-1153.561	75	22.86	0.8	0.2	77	298	28	8.5	0.11	10.0	CON	
	BCP: Cement Storage Silo & Railcar Loadout System/Baghouse	24	FCS24	361340			-1153.561	80	24.38	1.5	0.5	77	298	56	17.1	1.03	0.13	CON	
	Raw Mill System	25	FCS25	361340			-1153.561	219	66.75	3.3	1.0	180	355	33.1	10.1	1.688	0.21	CON	
	FINISH MILL SYSTEM	28	PCS28	361340			-1153.561	123	37.49	8.6	2.6	160	344	33	10.1	12.855	1.62	CON	
	CEMENT HANDLING SYSTEM	29	FCS29	361340	3162370	1432.684	-1153.561	203	61.87	2.1	0.6	180	355	34.7	10.6	1.414	0.18	CON	
	COAL HANDLING SYSTEM	30	FCS30	361340			-1153.561	40	12.19	3.9	1.2	150	339	33.5	10.2	1.89	0.24	CON	
	BPP: Limestone Rock Bin With Baghouse (D-38)	35	FCS35	361340			-1153.561	100	30.48	2.5	0.8	70	294	35.7	10.9	1.1	0.14	CON	
	BPP: Contaminated Flyash & Filter Dust Bin (D-31)	36	FCS36	361340	3162370	1432.684	-1153.561	200	60.96	1.5	0.5	180	355	103.7	31.6	1.41	0.18	CON	
	BPP: Limestone Screening System With Baghouse (D-39)	37	FCS37	361340	3162370	1432.684	-1153.561	30	9.14	2	0.6	150	339	15.9	4.8	0.77	0.10	CON	
	BPP: Limestone Fines Storage Bin With Baghouse (D-13)	38	FCS38	361340	3162370	1432.684	-1153.561	150	45.72	3.5	1.1	100	311	32.9	10.0	0.77	0.10	CON	
	BPP: Limedust Storage Bin With Baghouse (Z-31)	39	FCS39	361340	3162370	1432.684	-1153.561	100	30.48	2.5	0.8	120	322	21.4	6.5	1.16	0.15	CON	
	BPP: Limestone Dryer Discharge Transfer Point (D-46)	40	FCS40	361340	3162370	1432.684	-1153.561	15	4.57	1.5	0.5	77	298	16.3	5.0	0.22	0.03	CON	
	Kiln #2	44	FCS44	361340		1432.684	-1153.561	320	97.54	14	4.3	550	56 t	40.1	12.2	28.8	3.63	CON	
	Filter Dust ID No. 2E-22	45	FCS45	361340			-1153.561	194	59.13	1.7	0.5	200	366	29.4	9.0	1.14	0.14	CON	
	Raw Meal Transport 2F-04	46	FCS46	361340			-1153.561	30	9.14	1.4	0.4	180	355	32.5	9.9	0.26	0.03	CON	
	Kiln Feed Tranport ID 2H-05	47	FCS47	361340		1432.684	-1153.561	30	9.14	1.4	0.4	180	355	32.5	9.9	0.26	0.03	CON	
	Clinker Transport	48	FCS48	361340			-1153.561	32	9.75	1.6	0.5	240	389	24.9	7.6	0.19	0.02	CON	

					eation	rccr					Stack Para					PM ₁₀ Emis	sion		Model
Facility ID	Facility Name		CALPUFF	X	Y	X	Υ .	Heigi		Diamet		Tempera		Veloc		Rate		PSD Source?	PSI
	Emission Unit Description	EU ID	ID	(m)	(m)	(km)	(km)	R	m	R	m	°F	K	ft/s	пи/8	lb/hr	2/5	(EXP/CON)	Sour
	Gypsum Bin 2L-14	49	FCS49	361340	3162370	1432.684		120	36.58	1.6	0.5	95	308	33,2	10.1	0.32	0.04	CON	Y
	Clinker Storage ID 2L-05	50	FCS50	361340	3162370	1432.684		203	61.87	1.6	0.5	240	389	33.2	10.1	0.253	0.03	CON	Y
	Finish Mill Collecting Bin	51	FCS51	361340	3162370	1432.684	-1153.561	15	4.57	2.3	0.7	180	355	48.1	14.7	0.832	0.10	CON	Y
	Finish Mill	52	FCS52	361340	3162370	1432.684	-1153.561	130	39.62	4	1.2	212	373	46.4	14.1	2.31	0.29	CON	Y
	Air Slide ID 2N-03	53	FCS53	361340	3162370	1432.684	-1153.561	46	14.02	1.8	0.5	200	366	39.3	12.0	0.403	0.05	CON	Y
	Bucket Elevator ID 2N-04	54	FCS54	361340	3162370	1432.684	-1153.561	46	14.02	1.8	0.5	200	366	39,3	12.0	0.403	0.05	CON	Y
	High Efficiency Seperator	55	FCS55	361340	3162370	1432.684	-1153.561	130	39.62	7,5	2.3	160	344	48.5	14.8	9.199	1.16	CON	Υ
	Cement Cooler 2N-26	56	FCS56	361340	3162370	1432.684	-1153.561	46	14.02	1.8	0.5	200	366	39.3	12.0	0.403	0.05	CON	Y
	Cernent Transport ID 2P-01	57	FCS57	361340	3162370	1432.684	-1153.561	203	61.87	1.6	0.5	180	355	30.7	9.4	0.832	0.10	CON	Y
	Cement Loadout Bin 1D 2Q-28	58	FCS58	361340	3162370	1432.684	-1153.561	30	9.14	1.4	0.4	180	355	32.5	9.9	0.208	0.03	CON	Y
	Cement Loadout Bin 2O-31	59	FCS59	361340	3162370	1432.684		30	9.14	1.4	0.4	180	355	32.5	9.9	0.208	0.03	CON	Ÿ
	Coal Mill ID 2S-15	60	FCS60	361340	3162370	1432.684	-1153.561	40	12.19	3.9	1.2	150	339	30.7	9.4	1.6	0.20	CON	Y
	Fuel Bin 2S-20	61	FCS61	361340	3162370	1432.684		40	12.19	1.1	0.3	150	339	35.1	10.7	0.145	0.02	CON	Y
											_						_		
	IMC Agrico (Pierce) PSD Expanding source		IAGRI	404 100	3,079,000	1,489.779	1 229 526	80	24.38	8	2.4	118	321	69.7	21.2	-40.0	-5.04	EXP	Ye
	PSO Expanding source	2	2AGRI				-1,229.526	95	24.38 28.96	5.8	1.8	770	683	69.7 48.8	14.9	-40.0	-3.92	EXP	Ye
	1 3N Tyhmanik Marce	4	2000	404,100	3,079,000	1,707.77	-1,227.320	73	20.70	3.0	1.0	770	003	40.8	14.5	-31.1	-3.72	EAF	,
10056	Pasco County Resource Recovery Facility																		
	Municipal waste Combustor Unit #1	1	PCRRFI				-1,179.090	275	83.8	4.7	1.43	250	394	81.9	25.0	5.37	0.68	CON	Y
	Municipal Waste Combustor Unit #2	2	PCRRF2		3,139,020	1,424.093		275	83.8	4.7	1.43	250	394	81.9	25.0	5.37	0.68	CON	Y
	Municipal Waste Combustor Unit #3	3	PCRRF3		3,139,020	1,424.093		275	83.8	4.7	1.43	250	394	81.9	25.0	5.37	0.68	CON	Y
	Leachate Treatment Facility	5	PCRRFS	348,620	3,139,020	1,424.093	-1,179.090	30	9.1	1.0	0.30	350	450	19.1	5.8	0.52	0.07	CON	Y
10373	Shady Hills Generating Station																		
	A 170 MW Gas Simple Cycle Combustion Turbine	t	SHILLGSI	348,720	3,138,370	1,424.305	-1,179,729	60	18.3	22.0	6.71	1113	874	116.0	35.4	17,0	2.14	CON	Y
	A 170 MW Gas Simple Cycle Combustion Turbine	2	SHILLG\$2		3,138,370	1,424.305	-1,179,729	60	18.3	22.0	6.71	1113	874	116.0	35.4	17.0	2.14	CON	Y
	A 170 MW Gas Simple Cycle Combustion Turbine	3	SHILLGS3			1,424.305	-1,179.729	60	(8.3	22.0	6.71	1113	874	0.611	35.4	17.0	2.14	CON	Y
	Stauffer Tarpon Springs																		
	Boiler	1	STAUFFI	325,600	3,116,700	1,405,057	-1.205.389	24	7.3	3.0	0.9	376	464	10.6	3.2	-9.80	-1.23	EXP	Y
	Rotary Kiln	2	STAUFF2			1,405.057		161	49.1	3.9	1.2	143	335	11.8	3.6	-92.70	-11.68	EXP	Y
	Furnace	3	STAUFF3			1,405.057		84	25.6	3.0	0.91	120	322	22.9	7.0	-1.44	-0.18	EXP	Ye
70005	CE la dustrian Black Cir. Bharachasa Carrellan																		
/0005	CF IndustriesPlant City Phosphate Complex Johnston Scotch Marine Type Boiler	ı	ISMTB	388.000	3,116,000	1.467.276	-1,195.295	25	7.6	3.5	1.07	550	561	61.6	18.8	1.3	0.17	CON	Y
	"A" Dap/Map Plant	10	ADMP		3,116,000		-1,195.295	80	24.4	10.0	3.05	137	331	36.8	11.2	32.7	4.12	CON	Y
	"Z" Dap/Map Plant	ii	ZDMP		3,116,000		-1,195.295	136	41.5	9.0	2.74	140	333	44,5	13.6	22.6	2.85	CON	Y
	"X" Dap/Map Plani	12	XDMP		3,116,000		-1,195.295	136	41.5	9.0	2.74	134	330	50.7	15.5	13.8	1.73	CON	Y
	"Y" Dap/Map Plani	13	YDMP		3,116,000		-1,195.295	136	41.5	9.0	2.74	135	330	53.3	16.2	15.3	1.93	CON	Ý
	"A" Shipping Baghouse	15	ASBAG		3,116,000		-1,195.295	90	27.4	1.7	0.52	110	316	62,4	19.0	5.0	0.63	CON	Y
	"B" Shipping Baghouse	18	BSBAG		3,116,000		-1,195.295	35	10.7	2.0	0.61	120	322	53.1	16.2	5.0	0.63	CON	Ý
	2600 Ton Storage Tank	22	MSTK22		3,116,000		-1,195.295	38	11.6	2.0	0.61	212	373	0.03	10.2	0.13	0.02	CON	Ý
	Truck Pit A	23	MSTPTA		3,116,000		-1,195.295	12	3.7	0.7	0.20	212	373	0.03	10.0	0.13	0.02	CON	Ý
	Truck Pit B	24	MSTPTB		3,116,000		-1,195.295	12	3.7	0.7	0.20	212	373	0.03	0.01	0.13	0.02	CON	Ý
	Phosphoric Acid Clean (Clarification And Scrubber)	32	PACS		3,116,000		-1,195.295	80	24.4	4.0	1.22	110	316	46,4	14.1	0.94	0.12	CON	Ý
	"A" DAP Plant	10	ADMPb		3,116,000		-1,195.295	100	30.5	10.0	3.05	128	326	26.8	8.2	-4.0	-0.51	EXP	Ý
	"X" DAP/MAP Plant	12	XDMPb		3,116,000		-1,195.295	125	38.3	7.3	2.23	110	316	69.7	21.2	-5.1	-0.64	EXP	Ý
	"Y" Dap/Map/GTSP Plant	13	YDMGPb		3,116,000		-1,195.295	125	38.1	7.3	2.23	110	316	44.8	13.7	-5.1	-0.64	EXP	Ý
	"Z" Dap/Map/GTSP Plant	ii	ZDMGPb		3,116,000		-1,195,295	125	38.1	7.3	2.23	110	316	69.7	21.2	-5.1	-0.64	EXP	Ý
	"A" and "B" Storage Building Scrubber	14	ABSTO		3,116,000		-1,195.295	85.5	76.1	9.0	2.74	80	300	45.8	14.0	-2.6	-0.33	EXP	ý
	A Shipping Baghouse	15	ASBAGb		3,116,000		-1,195.295	90	27.4	1.7	0.52	110	316	62.4	19.0	-0.4	-0.05	EXP	Ý
	*B" Shipping Baghouse	16	BSBAGb		3,116,000		-1.195.295	35	10.7	2.0	0.52	120	322	53.1	16.2	-0.4	-0.05	EXP	Ý
	Rock Unloading and Storage Building Collector	25	RUSBCIb		3,116,000	.,	-1,195.295	20	6.1	3.5	1.07	100	311	62.4	19.0	-1.54	-0.19	EXP	Ý
	Product Reclaim bag Collector		RUSBC2h		3,116,000		-1.195.295	3	0.9	1.1	0.34	120	322	02.4	0.1	-0.36	-0.05	EXP	Ý
	"X,Y,Z" Rock Hopper Bag Collectors	28	RBBCh		3.116.000		-1,195.295	119	36.3	1.0	0.30	120	322	45.0	13.7	-0.23	-0.03	EXP	Ý
	ROP/MGTSP manufacturing		RMMAND		3,116,000		-1,195.295	135	41.1	6.5	1.98	87	304	33.9	10.3	-0.08	-0.01	EXP	Ý
20127	Makey Pay Before To Farmer Facility																		
70127	Mckay Bay Refuse-To-Energy Facility Unit #1 - The West Most Unit.	ı	MBREFI	160.700	3,092,210	1.443.748	-1.223.927	160	48.8	5.7	1.74	450	505	41.0	12.5	7.0	0.88	CON	Y
	Unit#2 - Second West Most Unit. Burns Municipal Waste Only.	2	MBREF2		3,092,210		-1,223.927	160	48.8	5.7	1.74	450	505	41.0	12.5	7.0	0.88	CON	Ý
	Unit #3 - 3rd Westmost Unit - Burns Municipal Waste.	3	MBREF3	360,200	3.092,210	1,443.748		160	48.8	5.7	1.74	450	505	41.0	12.5	7.0	0.88	CON	Ý
	Unit #4 - East Most Unit. Burns Municipal Waste.	á	MBREF4	360,200	3,092,210	1,443.748		160	48.8	5.7	1.74	450	505	41.0	12.5	7.0	0.88	CON	Ý
	Flyash Silo In Refuse To Energy Facility	•	MBREF5	360,200	3.092,210	1,443.748	-1,223.927	57	17.4	2.0	0.61	200	366			0.4	0.88	CON	Y
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 1	103	MBREFIO3		3,092,210	1,443,748	-1,223.927	201	61.3	4.2	1.28	289	416	11.0 73.3	3.4 22.3	2.8	0.05	CON	Y
		103	MBREF103			1,443,748						289	416		22.3	2.8		CON	Y
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 2	(U4	MEKEI 104	360,200	3,092,210	1.443.748	-1,223,921	201	61.3	4.2	1.28	289	416	73.3	42.3	4.8	0.35	CON	Υ.

				UTM L	ocation	LCC L	ocation				Stack Part	meters				PM ₁₀ Emis	sion		Mode
Facility	Facility Name		CALPUFF	х	Y	х	Y	Heig	nt	Diame	ter	Tempera	ture	Velo	city	Rate		PSD Source? *	PSI
ID	Emission Unit Description	EU ID	ID	(m)	(m)	(km)	(km)	ft	m	ſt	m	*F	K	ft/s	m/s	lb/hr	2/3	(EXP/CON)	Sour
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 4	106	MBREF106	360,200	3,092,210	1,443.748	-1,223.927	201	61.3	4.2	1.28	289	416	73.3	22.3	2.76	0.35	CON	Ye
70038	TECO, Hookers Point																		
	Boiler #1	1	TECOHKI	358,000	3,091,000	1,441,767	-1,225.519	280	85.3	11.3	3.4	356	453	82.0	25.0	-37.3	-4.70	EXP	Ye
	Boiler #2	2	TECOHK2	358,000	3,091,000	1,441.767	-1,225.519	280	85.3	11.3	3.4	356	453	82.0	25.0	-37.3	-4.70	EXP	Y
	Boiler #3	3	TECOHK3	358,000	3.091,000	1,441.767	-1,225.519	280	85.3	12.0	3.7	341	445	62.7	19.1	-51.4	-6.48	EXP	Y
	Boiler #4	4	TECOHK4	358,000	3,091,000	1,441.767	-1,225.519	280	85.3	12.0	3.7	341	445	62.7	19.1	-51.4	-6.48	EXP	Y
	Boiler #5	5	TECOHK5	358,000	3,091,000	1,441.767	-1,225.519	280	85.3	11.3	3.4	356	453	82.0	25.0	-76.3	-9.61	EXP	١
	Boiler #6	6	TECOHK6	358,000	3,091,000	1,441.767	-1,225.519	280	85.3	9.4	2.9	329	438	75.2	22.9	-97.3	-12.26	EXP	Y
	30 Caterpillar XQ2000 Power Modules	8-37	TECOHKPM	358,000	3,091,000	1,441.767	-1,225.519	10	3.0	0.7	0.2	808	704	681.0	207.6	7.5	0.95	CON	١
70261	Hillsborough Cty. RRF																		
	Unit #1 - The West Most Unit.	i	HCRRFI	368,200	3,092,700	1,451.629	-1,222.050	220	67.1	5.1	1.55	290	416	72.5	22.1	7.0	0.88	CON	
	Unit#2 - Second West Most Unit, Burns Municipal Waste Only.	2	HCRRF2	368,200	3,092,700	1,451.629	-1,222.050	220	67.1	5.1	1.55	290	416	72.5	22.1	7.0	0.88	CON	,
	Unit #3 - 3rd Westmost Unit - Burns Municipal Waste.	3	HCRRF3	368,200	3,092,700	1,451.629	-1,222.050	220	67.1	5.1	1.55	290	416	72.5	22.1	7.0	88.0	CON	•
70040	TECO, Bayside Power Station																		
	Unit #1 125 MW Coal Fired Boiler with Steam Generator	1	TECOBAI	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	10	3.05	289	416	94	28.65	-126.0	-15.88	EXP	•
	Unit #2 125 MW Coal Fired Boiler with Steam Generator	2	TECOBA2	360,100		1,444.467	-1,228.660	315	96.01	10	3.05	298	421	101	30.78	-126.0	-15.88	EXP	
	Unit #3 180 MW Coal Fired Boiler with Steam Generator	3	TECOBA3	360,100			-1,228.660	315	96.01	10.6	3.23	296	420	126	38.40	-160,0	-20.16	EXP	
	Unit #4 188 MW Coal Fired Boiler with Steam Generator	4	TECOBA4	360,100		1,444,467	-,	315	96.01	10	3.05	309	427	75	22.86	-188.0	-23.69	EXP	
	Unit #5 239 MW Coal Fired Boiler with Steam Generator	5	TECOBAS		3,087,500	1,444.467		315	96.01	14.6	4.45	303	424	76	23.16	-228.0	-28.73	EXP	
	Unit #6 414 MW Coal Fired Boiler with Steam Generator	6	TECOBA6			1,444,467		315	96.01	17.6	5.36	320	433	81	24.69	-380.0	-47,88	EXP	
	14 MW Gas-Fired Turbine	7	TECOBA7	360,100		1.444.467	-1.228.660	35	10.67	11	3.35	1010	816	92.6	28.22	-122.0	-15.37	EXP	
		ý	TECOBA9	360,100	-1	1,444,467	-1,228.660	72	21.95	0.7	0.21	350	450	35	10.67	-0.14	-0.02	EXP	
	Economizer Ash Silo	10	TECOBA:	360,100	-,,	1,444.467		107	32.61	1.0	0.21	350	450	99	30.18	-1.20	-0.15	EXP	
	Flyash Silo No. 1 For Units 5 & 6	11	TECOBAIL		3,087,500		-1,228.660	104	31.70	2.0	0.50	350	450	59	17.98	-2.90	-0.13	EXP	,
	Fly Ash Silo No. 2 Units 1-4	13		,	-,			175	53.34	1.7	0.61	78	299	70	21.34	-2.90 -0.19	-0.02	EXP	,
	Unit 1 Coal Bunker W/Roto-Clone		TECOBA13		3,087,500		-1,228.660												
	Unit 2 Coal Bunker W/Roto-Clone	14	TECOBA14		3,087,500	1,444.467	-1,228.660	175	53.34	1.7	0.52	78	299	70	21.34	-0.19	-0.02	EXP	
	Unit 3 Coal Bunker W/Roto-Clone	15	TECOBA15		3,087,500	1,444.467	-1,228.660	177	53.95	2.0	0.61	78	299	50	15.24	-0.19	-0.02	EXP	
	Unit 4 Coal Bunker W/Roto-Clone	16	TECOBA16	360,100		1,444.467	-1,228.660	175	53.34	1.7	0.52	78	299	70	21.34	-0.19	-0.02	EXP	
	Unit 5 Coal Bunker W/Roto-Clone	17	TECOBA17			1,444.467		174	53.04	1.2	0.37	78	299	79	24.08	-0.19	-0.02	EXP	1
	Unit 6 Coal Bunker W/Roto-Clone	18	TECOBA18			1,444.467		175	53.34	1.7	0.52	78	299	70	21.34	-0.19	-0.02	EXP	1
	Bayside Unit IA - 170 MW combined cycle gas turbine	20	TECOBA20			1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
	Bayside Unit 1B - 170 MW combined cycle gas turbine	21	TECOBA21		3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
	Bayside Unit 1C - 170 MW combined cycle gas turbine	22	TECOBA22	360,100		1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
	Bayside Unit 2A - 170 MW combined cycle gas turbine	23	TECOBA23	360,100	3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	'
	Bayside Unit 2B - 170 MW combined cycle gas turbine	24	TECOBA24	360,100	3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
	Bayside Unit 2C - 170 MW combined cycle gas turbine	25	TECOBA25	360,100	3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
	Bayside Unit 2D - 170 MW combined cycle gas turbine	26	TECOBA26	360,100	3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	11.5	1.45	CON	,
30117	PINELLAS CO. RESOURCE RECOVERY FACILITY																		
	Municipal Ewaste Combustor Unit I	I	PCRRFI	335,200	3,084,100	1,420.255	-1,236.366	165	50.3	8.5	2.59	270	405	71.4	21.8	14.4	1.81	CON	•
	Municipal Ewaste Combustor Unit 2	2	PCRRF2	335,200	3,084,100	1,420.255	-1,236.366	165	50.3	8.5	2.59	270	405	71.4	21.8	14.4	1.81	CON	
	Municipal Ewaste Combustor Unit 3	3	PCRRF3	335,200	3,084,100	1,420.255	-1,236.366	165	50.3	8.5	2.59	270	405	71.4	21.8	14.4	1.81	CON	
70008	Mosaic Riverview Facility																		
	DAP Manufacturing Plant	7	MOSRIV7	362,900			-1,233.182	126	38.4	8.0	244	104	313	34.5	10.5	12.9	1.62	CON	
	No. 3 MAP Plant	22	MOSRIV22	362,900			-1,233.182	133	40.5	7.0	2.13	142	334	71.5	21.8	3.3	0.42	CON	
	No. 4 MAP Plant	23	MOSRIV23	362,900			-1,233.182	133	40.5	7.0	2.13	142	334	71.5	21.8	3.3	0.42	CON	
	South Cooler	24	MOSRIV24	362,900			-1,233.182	133	40.5	7.0	2.13	142	334	71.5	21.8	3.3	0.42	CON	
	West Bag Filter	51	MOSRIV51	362,900	-, -		-1,233.182	30	9.1	3.5	1.07	80	300	57.2	17.4	1.2	0.15	CON	
	South Baghouse	52	MOSRIV52	362,900	3,082,500	1,448.126	-1,233.182	50	15.2	1.5	0.46	80	300	42.4	12.9	1.2	0.15	CON	
	Vessel Loading System Tower Baghouse Exhaust	53	MOSRIV53	362,900			-1,233.182	30	9.1	2.5	0.76	80	300	40.7	12.4	0.8	0.10	CON	•
	No. 5 DAP Plant	55	MOSRIVSS	362,900			-1,233.182	133	40.5	7.0	2.13	110	316	67.6	20.6	12.8	1.61	CON	•
	Building #6 Belt to Conveyor #7 Transfer Point	58	MOSRIV58	362,900	3,082,500	1,448.126	-1,233.182	30	9.1	1.2	0.35	80	300	57.2	17.4	0.6	0.08	CON	
	Conveyor #7 to Conveyor #8 Transfer Point with Baghouse	59	MOSRIV59	362,900	3,082,500	1,448.126	-1,233.182	45	13.7	1.2	0.35	80	300	57.2	17.4	0.6	0.08	CON	•
	Conveyor #8 to Conveyor #9 Transfer Point with Baghouse	60	MOSRIV60	362,900		1,448.126	-1,233.182	75	22.9	1.6	0.48	80	300	59.5	18.1	1.2	0.15	CON	
	Animal Feed Ingredient (AFI) Plant No. I	78	MOSRIV78	362,900	3,082,500	1,448.126	-1,233.182	136	41.5	6.0	1.83	150	339	64.5	19.7	8.0	1.01	CON	
	Diatomaccous Earth Silo	79	MOSRIV79	362,900			-1,233.182	64	19.5	1.5	0.46	90	305	5.7	1.7	0.1	0.01	CON	
	Limestone Silo	80	MOSRIV80	362,900			-1,233.182	85	25.9	1.5	0.46	90	305	33.0	1.01	0.3	0.04	CON	
	Animal Feed Plant Loadout System	81	MOSRIV81	362,900			-1,233.182	30	9.1	3.0	0.91	90	305	54.5	16.6	2.1	0.26	CON	
	Animal Feed Ingredient Plant No. 2	103	MOSRIV 103	362,900			-1,233.182	145	44.2	7.0	2.13	150	339	66.4	20.2	13.1	1.66	CON	
	Anmonia Plant		AMMPLTB	362,900			-1,233.182	60	18.3	8.3	2.53	600	589	22.7	6.9	-18.4	-2.32	EXP	,
	Sodium Silicolluoride/Sodium Fluoride Plant		SSFSFPB	362,900			-1,233.182	28	8.5	2.5	0.76	95	308	11.6	3.5	-6.1	-0.76	EXP	
	No. 2 and No. 3 Rock Silo Bag Filter		NO23RSB	362,900			-1,233.182	93	28.3	1.1	0.34	91	306	48.8	14 9	-0.9	-0.11	EXP	

				UTM L	ocation		ocation				Stack Para	ameters				PM ₁₀ Emis	sion		Mod
Facility	Facility Name		CALPUFF	х	Y	x	Y .	Heig	ht	Diame	ter	Tempera		Veloc	ity	Rate		PSD Source? "	PS
ID	Emission Unit Description	EU ID	ID	(m)	(m)	(km)	(km)	n	m	u	m	*F	к	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Sou
	No. 10 KVS Mill	-	10KVSMB	362,900			-1,233.182	87	26.5	1.7	0.52	118	321	59.8	18.2	-4.4	-0.55	EXP	Y
	No. 11 KVS Mill		IIKVSMB	362,900	3,082,500		-1,233.182	70	21.3	1.6	0.49	126	325	63.6	19.4	-6.9	-0.87	EXP	,
	No. 12 KVS Mill		12KVSMB	362,900			-1,233.182	71	21.6	1.6	0.49	135	330	68.5	20.9	-2.9	-0.37	EXP	
	No. 2 Air Slide North Bag Filter		2ASNBFB	362,900			-1,233.182	85	25.9	1.0	0.30	97	309	47.7	14.6	-1.2	-0.15	EXP	
	No. 2 Air Slide South Bag Filter No. 3 Air Slide North Bag Filter		2ASSBFB 3ASNBFB	362,900 362,900			-1,233,182	96 82	29.3	0.9	0.27	115	319	72.8	22.2	-0.4	-0.05	EXP	
	No. 3 Air Slide Center Bag Filter		JASNEE	362,900	3,082,500		-1,233.182 -1,233.182	115	25.0 35.1	1.2 1.2	0.37 0.37	113 118	318 321	16.1 25.8	4.9 7.9	-0.2 -1.0	-0.03 -0.12	EXP EXP	
	No. 3 Air Slide South Bag Filter		3ASSBFB	362,900				100	30.5	1.2	0.37	117	320	25.8 16.5	7.9 5.0	-1.0 -0.8	-0.12	EXP	
	No. 3 Air Slide Bin Bag Filter		JASBBFB	362,900			-1,233.182	108	32.9	1.2	0.37	122	323	23.3	7.t	-0.8 -1.1	-0.11	EXP	
	No. 2 Phosphoric Acid System		PASNO2B	362,900	3,082,500		-1,233,182	110	33.5	4.0	1.22	145	336	43.3	13.2	-14.8	-1.86	EXP	
	No. 3 Phosphoric Acid System		PASNO3B	362,900	3,082,500		-1,233.182	93	28.3	4.0	1.22	118	321	23.5	7.2	-9.2	-1.16	EXP	
	No. 1 Horizontal Filter Scrubber		1HZF\$B		3,082,500		-1,233.182	59	18.0	4.8	1.45	86	303	35.5	10.8	-6.5	-0.82	EXP	
	No. 2 Horizontal Filter Scrubber		2HZFSB	362,900	3,082,500	1,448.126	-1,233.182	51	15.5	4.0	1.22	93	307	51.9	15.8	-10.4	-1.31	EXP	
	No. 2 Horizontal Filter Vacuum System		2HZFVSB	362,900	3,082,500	1,448.126	-1,233.182	4.5	1.4	1.1	0.34	153	340	16.8	5.1	0.0	0.00	EXP	
	No. 3 Horizontal Filter Vacuum System		3HZFVSB	362,900	3,082,500	1,448.126	1,233.182	4.5	1.4	1.5	0.46	126	325	16.3	5.0	-0.7	-0.08	EXP	
	No. 7 Oil-Fired Concentrator		7OFCONB	362,900		1,448.126		78	23.8	6.0	1.83	165	347	17.2	5.2	-12.5	-1.58	EXP	
	No. 8 Oil-Fired Concentrator		8OFCONB	362,900		1,448.126		78	23.8	6.0	1.83	159	344	16.7	5.1	-16.8	-2.12	EXP	
	GTSP Bag Filter		GTSPBFB	362,900	3,082,500	1,448.126		88	26.8	1.3	0.40	153	340	26.6	8.1	-0.5	-0.06	EXP	
	GTSP Plant		GTSPAPB	362,900		1,448.126		126	38.4	8.0	2.44	129	327	34.9	10.7	-19.1	-2.41	EXP	
	No. 5 and No. 9 Mills Bag Filter		RKML59B	362,900		1,448.126		66	20.1	2.0	0.61	115	319	58.3	17.8	-12.4	-1.56	EXP	
	No. 3 Triple Reactor Belt		3TRIPLB	362,900		1,448.126		65	19.8	4.0	1.22	77	298	48.4	14.7	-11.8	-1.49	EXP	
	No. 4 Triple Reactor Belt		4TRIPLB	362,900		1,448.126		65	19.8	4.0	1.22	84	302	50.9	15.5	-8.6	-1.08	EXP EXP	
	No. 3 Continuous Triple Dryer No. 4 Continuous Triple Dryer		3CONTDB 4CONTDB	362,900 362,900		1,448.126	-1,233.182 -1,233.182	68 68	20.7 20.7	3.5 3.5	1.07	115 134	319 330	45.8 61.8	14.0 18.8	-18.2	-2.29 -1.49	EXP	
	Nos. 2 & 4 Sizing Units		24SIZUB	362,900	3,082,500		-1,233.182	74	22.6	4.0	1.22	73	296	29.7	9.1	-11.8 -9.7	-1.49	EXP	
	Normal Superphosphate		NORMSPB	362,900			-1,233.182	73	22.3	2.5	0.76	104	313	53.1	16.2	-9.7 -2.3	-0.29	EXP	
	No. 1 Ammonium Phosphate Plant		IAMMPPB	362,900	3,082,500		-1,233.182	90	27.4	4.0	1.22	141	334	51.2	15.6	-11.7	-1.47	EXP	
	No. 2 Ammonium Phosphate Plant		2AMMPPB	362,900	3,082,500	1.448.126		90	27.4	3.5	1.07	132	329	64.5	19.7	-16.1	-2.03	EXP	
	No. 3 Ammonium Phosphate Plant		ЗАММРРВ	362,900			-1,233.182	90	27.4	3.5	1.07	144	335	63.0	19.2	-12.9	-1.63	EXP	
	No. 4 Ammonium Phosphate Plant		4AMMPPB	362,900	3,082,500		-1,233.182	90	27.4	3.5	1.07	149	338	60,0	18.3	-18.9	-2.38	EXP	
	North Ammonium Phosphate Cooler		NAMMPCB	362,900	3,082,500		-1,233.182	55	16.8	4.3	1.31	144	335	60.9	18.6	-64.8	-8.16	EXP	
	South Ammonium Phosphate Cooler		SAMMPCB	362,900	3,082,500		-1,233.182	55	16.8	4.3	1.31	125	325	69.7	21.2	-67.3	-8.48	EXP	•
050004	Lakeland Electric - Mcintosh																		
	McIntosh Unit 1- FFFSG (Phase II Acid Rain Unit)	1	MCINTI	409,000	3,106,200	1,489,890	-1,201.443	150	45.72	9.0	2.74	277	409	81.2	24.75	95.00	11.97	NO	
	Diesel Engine Peaking Unit 2	2	MCINT2	409,000		1,489.890		20	6.10	2.6	0.79	715	653	77.0	23.47	1.74	0.22	NO	
	Diesel Engine Peaking Unit 3	3	MCINT3		3,106,200	1,489.890		20	6.10	2.6	0.79	715	653	77.0	23.47	1.74	0.22	NO	
	Gas Turbine Peaking Unit 1	4	MCINT4		3,106,200	1,489.890	-1,201.443	35	10.67	13.5	4.11	900	755	79.5	24.23	12.16	1.53	NO	
	McIntosh Unit 2 FFFSG (Phase Il Acid Rain Unit)	5	MCINT5	409,000		1,489.890	-1,201.443	157	47.85	10.5	3.20	277	409	73.2	22.31	111.5	14.05	CON	
	McIntosh Unit 3 FFFSG (Phase II Acid Rain Unit)	6	MCINT6	409,000	3,106,200	1,489.890	-1,201.443	250	76.20	18.0	5.49	167	348	82.6	25.18	273.00	34.40	CON	
	250 MW Combustion Turbine UNIT 5	28	MCINT28	409,000	3,106,200	1,489.890		85	25.91	28.0	8.53	1095	864	82.7	25.21	139.60	17.59	CON	
	250 M. Companion (2000 Civily)		Mentito	407,000	3,100,200	1,707.070	-1,201,443	• • • • • • • • • • • • • • • • • • • •	23.71	20.0	0.55	1093	004	02.7	23.21	139.00	17.33	COIT	
570094	Mosaic - Big Bend Terminal	_																	
	Shipping Terminal Incoming/Transfer Point #1	1	MOSBBT1	361,000	3.076,200	1.448.443	-1,239.730	36	11.0	1.5	0.46	95	308	43.0	13.1	1.2	0.15	CON	
	Shipping Terminal Outgoing Transfer Point #2	;	MOSBBT2	361,000		1.448.443		25	7.6	1.3	0.40	95	30g	34.0	10.4	0.7	0.09	CON	
	Shipping Terminal Outgoing Transfer Point #3	3	MOSBBT3	361,000		.,	.,25550	25	7.6	1.3	0.40	95	308	34.0	10.4	0.7	0.09	CON	
	Shipping Terminal Gantry and Shiploading	4	MOSBBT4		3,076,200		-1,239.730	30	7.0 9.1	2.2	0.67	95	308	34.0	10.4	5.1	0.65	CON	
		•		55.,500	2,0.0,200	.,045	.,237.,30		<i>.</i>		V.D.	,,	,,,,	34.0	19.7	7.1	0.03		
50003	Lakeland Electric, Larsen Power Plant	_																110	
	Fossil Fuel Fired Steam Generator # 6	3	LARPWR3		3,102,500		-1,205,163	165	50.3	10.0	3.05	340	444	21.0	6.4	38.3	4.83	NO	
	Steam Generator # 7 (Phase II Acid Rain unit)	4	LARPWR4		3,102,500		-1,205.163	165	50.3	10.0	3.05	340	444	22.0	6,7	77.0	9.70	NO	
	Peaking Gas Turbine # 3	5	LARPWR5		3,102,500		-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	7.94	1.00	NO	
	Peaking Gas Turbine # 2	6	LARPWR6		3,102,500		-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	7.94	00.1	NO	
	Combined Cycle Combustion Turbine (Phase II Acid Rain unit)	8	LARPWR8		3,102,500		-1,205.163	155	47.2	16.0	4.88	481	523	85.7	26.1	26.00	3.28	CON	
	Peaking Gas Turbine # 1	7	LARPWR7	408,900	3,102,500	1,490,439	-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	-7.94	-1.00	E	•
570039	TECO - Big Bend Station																		
	Unit #1 Coal Fired Boiler w/ ESP	ı	TECOBBI		3,075,000		-1,240.867	490	149.35	24.0	7.3	294	419	115.9	35.3	121.1	15.26	NO	
	Unit #2 Riley-Stoker Coal Boiler w/ Esp	2	TECOBB2	361,900	3,075,000	1,448.435		490	149.35	24.0	7.3	125	325	87.6	26.7	l 19.9	15.11	NO	
	Unit #3 Riley-Stoker Coal Boiler w/ ESP	3	TECOBB3	361,900	3,075,000			499	152.10	24.0	7.3	279	410	47.0	14.3	123.5	15.56	CON	
	Unit #4 Coal Boiler W/ Belco ESP	4	TECOBB4	361,900		1,448.435		499	152.10	24.0	7.3	156	342	59.0	0.81	43.3	5.46	CON	
	Combustion Turbine #2 - No. 2 Fuel Oil	\$	TECOBB5	361,900	3,075,000			75	22.86	14.0	4.3	928	771	0.16	18,6	33.0	4,16	NO	
	Combustion Turbine #3 - No. 2 Fuel Oil	6	TECOBB6	361,900	3,075,000	1,448.435	-,	75	22.86	14.0	4.3	928	771	61.0	18.6	33.0	4.16	NO	
	Combustion Turbine #1 - No. 2 Fuel Oil	7	TECOBB7	361,900	3,075,000	1,448.435	-1,240.867	35	10.67	11.0	3.4	1010	816	91.9	28.0	33.0	4.16	NO	
	Fly Ash Silo No. 1 Baghouse	8	TECOBB8 TECOBB9	361,900	3,075,000	1,448.435		102	31.09 34.44	2.5 0.9	0.8 0.3	250 250	394 394	52.0 52.0	15.8 15.8	5.16 5.16	0.650	NO NO	
	Fly Ash Silo No. 2 Baghouse Limestone Silo A W/2 Baghouses	12	TECOBB9	J01,900	3,073,000	1,448.413	-1,240.867	113	34.44	U.y	د.ں	230	274	3 2.0	13.8	2.10	0.030	NO NO	

				UTM L	ocation	rcc r	ocation				Stack Par	ameters				PM ₁₀ Emis	ssion		Mod
acility	Facility Name		CALPUFF	x	Y	x		Heigi	he	Diame		Tempera	lure	Velo	city	Rate		PSD Source? *	PS
D	Emission Unit Description	EU ID	ID	(m)	(m)	(km)	(km)	R	m	ſt	m	*F	К	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Sou
	Limestone Silo B W/ 2 Baghouses	13	TECOBBI3		3,075,000	1,448.435	.,	101	30.78	0.5	0.2	150	339	46.0	14.0	0.05	0.006	NO	
	Flyash Silo For Unit #4	14	TECOBB14	361,900	3,075,000	1,448.435	-1,240.867	139	42.37	1.6	0.5	140	333	59.0	18.0	0.20	0.025	NO	N
	Unit I Coal Bunker W/Roto-Clone Unit 2 Coal Bunker W/Roto-Clone	15 16	TECOBB15 TECOBB16	361,900		.,	-1,240.867 -1,240.867	179 179	54.56 54.56	1.7 1.7	0.5 0.5	78 78	299 299	69.0 69.0	21.0	0.48 0.48	0.060	NO NO	,
	Unit 2 Coal Bunker W/Roto-Clone Unit 3 Coal Bunker W/Roto-Clone	17	TECOBB16	361,900 361,900	3,075,000 3,075,000	.,	-1,240.867 -1,240.867	179	54.56	1.7	0.5	78 78	299	69.0 69.0	21.0 21.0	0.48	0.060	NO	1
50047	Agrifos Mining, L.L.C Nichols																		
	Rock Dryer N. 1	,	AGRNIC1	398,700	3,085,300	1.483.296	-1,224,159	80	24.4	7.5	2.29	160	344	41.0	12.5	38.1	4.80	CON	١
	Rock Dryer N. 2	2	AGRNIC2	398,700		1,483.296	-1,224.159	80	24.4	7.5	2.29	160	344	41.0	12.5	38.1	4.80	CON	
	Dry Rock Storage Building	10	AGRNIC10	398,700	3,085,300	1,483.296	-1,224.159	85	25.9	5.5	1.68	80	300	47.0	14.3	40.0	5.04	CON	
	Dry Rock Loadout	tı	AGRNICII	398,700	3,085,300	1,483.296	-1,224.159	85	25.9	5.0	1.52	75	297	63.0	19.2	33.0	4.16	CON	
50057	Mosaic Phosphates (Nichols)																		
	Phosphoric Acid Plant	1	IMCNIC I	398,400			-1,225.312	42	12.8	4.0	1.2	100	311	34.0	10.4	-22.4	-2.82	EXP	
	DAP Cooler Venturi Scrubber	2	IMCNIC2	398,400		1,483.190		52	15.8	2.5	0.8	120	322	66.0	20.1	-2.4	-0.30	EXP EXP	
	DAP Plant Dryer DAP Plant Scrubber 4a	3	IMCNIC3 IMCNIC4	398,400 398,400	3,084,200 3,084,200	1,483.190		80 72	24.4 21.9	3.5 3.2	1.t 1.0	130 190	328 361	78.0 101.0	23.8 30.8	-7.3 -10.1	-0.92 -1.27	EXP	
	North Ball Mill	•	IMCNIC9	398,400	3,084,200	1,483.190		207	63.1	1.4	0.4	135	330	69.0	21.0	-5.0	-0.63	EXP	
	South Ball Mill	10	IMCNIC10	398,400	3,084,200	1,483.190		207	63.1	1.4	0.4	135	330	69.0	21.0	-5.0	-0.63	EXP	
	Phosphate Rock Dryer W/ Wet Scrubber	12	IMCNIC12	398,400	3,084,200	1,483.190		81	24.7	7.5	2.3	130	328	12.0	3.7	-35.24	-4.44	EXP	
	Package Boiler (North Standby Boiler)	15	IMCNIC15	398,400		1,483.190		27	8.2	2.0	0.6	500	533	45.0	13.7	-0.36	-0.05	EXP	
	Package Boiler	16	IMCNIC 16	398,400	3,084,200	1,483.190	-1,225.312	39	11.9	3.2	0.1	500	533	29.0	8.8	-0.72	-0.09	EXP	
	Dry Phosphate Rock Storage Bin Mohen Sulfur Storage Tanks, Railcar & Truck Unloading Pits	19 21	IMCNIC19 IMCNIC21	398,400 398,400			-1,225.312 -1,225.312	207 6	63.1 1.8	0.9 0.75	0.3 0.2	140 77	333 298	168.0 11.6	51.2 3.54	-22.0 -0.90	-2.77 -0.11	EXP EXP	
	•			270,.00	2,000,000	.,	.,	_	-						•				
0087	Florida Rock Industries - Thompson S. Baker Cement Plant Kiln/Raw Mill System Stack	3	FRBCP3	348350	3287040	1.398.163	-1.031.470	250	76.20	9.42	2.9	356	453	47.8	14.6	25.9	3.26	CON	
	Clinker Cooler & Handling	4	FRBCP4	348350				115	35.05	9.00	2.7	480	522	41.9	12.8	15.4	1.94	CON	
	Raw Mill System- Line 2	•	FRBCP9	348350				240	73.15	2.61	0.8	200	366	46.7	14.2	3.58	0.45	CON	
	Kiln/Raw Mill- Line 2	ίο	FRBCPIO	348350				315	96.01	9.42	2.9	356	453	52.6	16.0	28.8	3.63	CON	
	Clinker Handling System- Line 2	ti	FRBCPII	348350				198	60.35	9.00	2.7	480	522	45.1	13.7	13.7	1.73	CON	
	Finish Grinding Operation- Line 2	12	FRBCP12	348350	3287040	1,398.163	-1,031.470	131	39.93	7.50	2.3	158	343	48.3	14.7	14.51	1.83	CON	
	Cement Loadout Silos 6 & 7	13	FRBCP13	348350	3287040	1,398.163	-1,031.470	30	9.14	1.50	0.5	150	339	28.3	8.6	0.22	0.03	CON	
	Coal/Coke Handling & Grinding Operation	14	FRBCP14	348350	3287040	1,398.163	-1,031.470	198	60.35	9.00	2.7	150	339	6.3	1.9	1.81	0.23	CON	
0059	Mosaic Phosphates Co. (New Wales)																		
	Dap Plant No. 1 W/3 Teller Venturi Scrubbers,	9	WALES9	396,700	3,079,400	1,482.337	-1,230.415	133	40,5	7.00	2.1336	105	314	49.0	14.9352	28.60	3.604	NO	
	Map Prill Tower W/Venturi Scrubber And Cyclonic Demister	11	WALESII	396,700	3,079,400	1,482.337	-1,230.415	120	36.6	4.00	1.2192	155	341	57.0	17.3736	15.00	1.890	NO	
	Animal Feed Shipping/Truck Loadout (200 Tph), With Baghouse.	15	WALES15	396,700	3,079,400	1,482.337	-1,230.415	65	19.8	1.00	0.3048	105	314	169.0	51.5112	1.08	0.136	CON	
	Animal Feed Storage Silos (3) -"A"Side	23	WALES23	396,700				114	34.7	1.00	0.3048	105	314	33.0	10.0584	4.75	0.599	CON	
	Animal Feed Storage/Shipping/Railcar Loadout	24	WALES24	396,700				103	31.4	1.00	0.3048	105	314	140.0	42.672	3.60	0.454	CON	
	Animal Feed - (2) Limestone Silos	25	WALES25	396,700				119	36,3	1.00	0.3048	105	314	127.0	38.7096	3.60	0.454	CON	
	Animal Feed - Silica Storage Bin	26	WALES26		3,079,400			18	5.5	1.00	0.3048	105	314	31.0	9.4488	1.60	0.202	CON	
	Animal Feed Ingredient Granulation Plant	27	WALES27	396,700	-,		-1,230.415	172	52.4	8.00	2.4384	130	328	66.3	20.2082	36.80	4.637	CON	
	Animal Feed Storage Silos (3) - "B Side"	28	WALES28	396,700				114	34.7 40.5	1.00	0.3048	105	314 305	33.0	10.0584 12.9235	4.75 4.70	0.599 0.592	CON	
	#1 Fertilizer Rail/Truck Shipping	29	WALES29	396,700				133 108	40.5 32.9	3.00 0.80	0.24384	90 80	300	42.4 31.0	9.4488	3.60	0.392	CON	
	Multifos Soda Ash Conveying System W/Baghouse Multifos "A" Kiln Cooler W/Baghouse	3 i 32	WALES31 WALES32	396,700 396,700				86	26.2	1.50	0.4572	220	378	258.0	78.6384	7.70	0.970	CON	
	Multifos "B" Kiln Cooler W/Baghouse	33	WALES32 WALES33	396,700				86	26.2	1.50	0.4572	274	408	225.0	68.58	7.70	0.970	CON	
	Multifus Plant Milling & Sizing System West Baghouse	34	WALES34	396,700		-		71	21.6		0.51816	125	325	87.0	26.5176	0.93	0.118	CON	
	Muhifos Milling & Sizing System East Baghouse	35	WALES35	396,700			-1,230.415	71	21.6	1.00	0.3048	100	311	253.0	77.1144	0.93	0.118	CON	
	Multifos Production 1 Dryer 2 Kilns (A/B) For Multifos Plant	36	WALES35	396,700				172	52.4	4.50	1.3716	105	314	52.0	15.8496	29.83	3.759	CON	
	Map/Dap #2 Truck Loadout	37	WALES37	396,700				10	3.0		0.54864	100	311	68.0	20.7264	3.60	0.454	CON	
	Multifos Milling & Sizing Syst Surge Bin Baghouse	38	WALES38	396,700				65	19.8		0.33528	100	311	79.0	24.0792	3.60	0.454	CON	
	Gtsp Truck Loadout Facility W/Baghouse	41	WALES41	396,700				lo	3.0	1.50	0.4572	100	311	179.0	54.5592	5.00	0.630	CON	
	Map/Dap No. 2 Rail Loadout	43	WALES43	396,700				10	3.0	1.60	0.48768	105	314	70.0	21.336	3.60	0.454	CON	
	Dap Plant Ii - East Train	45	WALES45		3,079,400		-1,230.415	171	52.1	6.00	1.8288	110	316	58.0	17.6784	6.40	0.806	CON	
	Dap Plant Ii - West Train	46	WALES46	396,700	3,079,400	1,482.337	-1,230.415	171	52.1	6.00	1.8288	110	316	58.0	17.6784	6.40	0.806	CON	
	Dap li West Product Cooler	47	WALES47	396,700	3,079,400	1.482.337	-1,230.415	147	44.8		1.31064	175	353	68.9	21.0007	4.22	0.532	CON	
	Uranium Recovery Acid Cleanup Scrubber	48	WALES48	396,700				60	18.3	3.50	1.0668	80	300	31.2	9.50976	1.00	0.126	CON	
					2 070 400	1,482.337	-1,230.415	114	34.7	1.00	0.3048	105	314	33.0	10.0584	4.75	0.599	CON	
	Animal Feed - Limestone Feed Bin	52	WALES52	396,700															
	Map Plant Cooler	55	WALES55	396,700	3,079,400	1,482,337	-1,230.415	25	7.6	4.30	1.31064	140	333	34.0	10.3632	5.14	0.648	NO	
					3,079,400 3,079,400	1,482.337 1,482.337	-1,230.415 -1,230.415											CON	

				UTM L	ocation	LCC L					Stack Par	ameters				PM ₁₀ Emis	sion		Mode
acility	Facility Name		CALPUFF	x	Y	x	Y	Heigl		Diam		Tempera			city	Rate		PSD Source?	PSI
)	Emission Unit Description	EU ID	IĐ	(m)	(m)	(km)	(km)	Ω	т	n	m	*8	K	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Sour
	Kiln C Scrubber Stack - Multifos Plant	74	WALES74	396,700	3,079,400	1,482.337	-1,230,415	172	52.4	4.50	1.3716	105	314	70.2	21.397	14.30	1.802	CON	Ye
	Multifos Kiln C Cooler Baghouse	75	WALES75	396,700	3,079,400		-1,230.415	86	26.2	3.00	0.9144	250	394	106.1	32.3393	1.90	0.239	CON	Y
	Multifos Kitn C Milling & Sizing Baghouse	76	WALES76	396,700	3,079,400	1,482.337	-1,230.415	90	27.4	1.50	0.4572	130	328	113.2	34.5034	1.90	0.239	CON	Y
0046	Mosaic - Bartow Facility																		
	No. 3 Fertilizer Plant	1	MOSBAR1	409,800	3,086,600	1494.126	-1220.919	153	46.6	7.5	2.29	160	344	79.4	24.2	30.0	3.78	CON	Υ
	No. 4 Fertilizer Shipping Plant	2	MOSBAR2	409,800	3,086,600	1494.126	-1220.919	128	39.0	4.9	1.49	91	306	30.9	9.4	10.5	1.33	CON	,
	No. 3 Fertilizer Shipping Plant	4	MOSBAR4	409,800	3,086,600	1494.126	-1220.919	80	24.4	2.3	0.70	77	298	38.2	11.6	12.0	1.51	NO	1
	No. 4 Fertilizer Plant	21	MOSBAR21	409,800	3,086,600	1494.126	-1220.919	140	42.7	10.9	3.33	144	335	45.6	13.9	22.8	2.87	CON	,
	Cleaver Brooks Package Watertube Boiler	51	MOSBAR51	409,800	3,086,600	1494.126	-1220.919	31	9.4	3.5	1.07	410	483	20.0	6.1	4.4	0.55	CON	,
	Phosphate Rock Grinding Mill "D" Vent		ROCKUNLD	409,800	3,086,600	1494.126	-1220.919	83	25.3	1.7	0.51	115	319	26.6	8.1	-1.0	-0.13	EXP EXP	,
	Phosphate Rock Storage Bin Stack R-4		UNGNDP3 UNGNDP4	409,800 409,800	3,086,600	1494.126	-1220.919 -1220.919	55 55	16.8 16.8	3.1 3.0	0.94 0.92	95 75	308 297	59.9 74.7	18.2 22.8	-5.1 -2.7	-0.64 -0.34	EXP	,
	Phosphate Rock Storage Bin Stack R-5 Phosphate Rock Storage Bin Stack R-6		UNGNDP4 UNGNDP5	409,800	3,086,600	1494.126	-1220.919	55	16.8	3.0	0.92	75 82	301	65.3	19.9	-2.7 -9.0	-6.13	EXP	,
	Phosphate Rock Storage Bin Stack R-7		UNGNDP6	409,800	3,086,600	1494.126	-1220.919	50	15.2	1.1	0.32	113	318	25.5	7.8	-9.0 -2.1	-0.26	EXP	,
	GTSP Fertilizer Plant No. 1, Stack No. 8		UNGNDP7	409,800	3,086,600	1494.126	-1220.919	100	30.5	6.7	2.03	135	330	47.9	14.6	-20.0	-2.52	EXP	,
	GTSP Shipping East, Stack No. 13		RGRINDP8	409,800	3,086,600	1494.126	-1220.919	92	28.0	1.8	0.55	75	297	34.7	10.6	-0.4	-0.05	EXP	,
	GTSP Shipping West, Stack No. 14		100BALL	409,800	3,086,600	1494.126	-1220.919	95	29.0	2.2	0.67	75	297	14,0	4.3	-0.4	-0.05	EXP	,
	GTSP Storage Building E-1, Stack No. 31		40BALL	409,800	3,086,600	1494,126	-1220.919	108	32.9	6.9	2.10	108	315	42.8	13.0	-0.7	-0.09	EXP	,
	GTSP Fertilizer Plant No. 2, Stack No. 7		GRNDP10	409,800	3,086,600	1494.126	-[220.919	80	24.4	6.6	2.01	112	318	54.9	16.7	-10.2	-1.29	EXP	,
	GTSP Fertilizer Plant No. 2, Granulator Stack No. 12		FILTERII	409,800	3,086,600	1494.126	-1220.919	46	14.0	2.0	0.61	75	297	53.1	16.2	-0.1	-0.01	EXP	,
	Phosphate Rock Grinding Mill "A" Vent		FILTER 13	409,800	3,086,600	1494.126	-1220.919	74	22.6	1.8	0.56	91	306	25.8	7.9	-1.1	-0.14	EXP	
	Phosphate Rock Grinding Mill "B" Vent		DAPRGSCR	409,800	3,086,600	1494.126	-1220.919	74	22.6	1.8	0.56	106	314	28.8	8.8	-0.9	-0.11	EXP	,
	Phosphate Rock Grinding Mill "C" Vent		SDAPMAIB	409,800	3,086,600	1494.126	-1220.919	74	22.6	1.8	0.56	94	308	24.5	7.5	-0.9	-0.12	EXP	,
	Phosphate Rock Transfer Point R-10, R-11, R-12		DAPCOOL	409,800	3,086,600	1494.126	-1220.919	46	14.0	1.0	0.30	75	297	32.3	9.8	-0.1	-0.01	EXP	,
	Phosphate Rock Conveyor R-8		TSPRBSCR	409,800	3,086,600	1494.126	-1220.919	53	16.2	0.7	0.22	75	297	21.2	6.4	-1.4	-0.18	EXP	,
	Phosphate Rock Conveyor, Stack No. 27		NDAPMAIB	409,800	3,086,600	1494.126	-1220.919	40	12.2	1.8	0.56	99	310	37.9	11.6	-0,8	-0.10	EXP	
	Phosphate Rock Conveyor, Stack No. 28		NDAPMAIB	409,800	3,086,600	1494.126	-1220.919	58 71	17.7	1.8	0.56	91	306 306	38.0	11.6 11.6	-0.5	-0.06 -0.06	EXP EXP	
	Phosphate Rock Conveyor, Stack No. 29 Phosphate Dryers R-1 and R-2		STORSCRB SHIPSCRB	409,800 409,800	3,086,600	1494.126 1494.126	-1220.919 -1220.919	50	21.6 15.2	1.8 6.7	0.56 2.05	91 140	306	38.0 56.6	17.2	-0.5 -5.0	-0.63	EXP	,
					.,														
0034	Mosaic Phosphates (CFMO)	7	CFMO7	398,200	1 075 700	1 404 470	-1,233.860	30	9.1	2.0	0.6	75	297	3.3	1.0	19.20	2.42	CON	,
	Soda Ash Storage & Handling @ Fort Green Mine Boiler @ Four Corners Mine	8	CFMO7	398,200				26	7.9	1.0	0.3	400	478	23.5	7.2	0.06	0.01	CON	,
	Magnetite Storage Bin @ Four Corners Mine (009)	9	CFMO9	398,200			-1,233.860	122	37.2	0.6	0.3	77	298	29.5	9.0	0.14	0.01	CON	Ś
	Ferrosilicon Storage Bin @ Four Corners Mine	ίο	CFMO10	398,200	-,		-1,233.860	122	37.2	0.6	0.2	77	298	22.4	6.8	0.14	0.02	CON	Š
	Dryer No. 1 @ Noralyn Mine (011)	11	CFMOIL	398,200	3,075,700	1,484.479	-1,233.860	76	23.16	6.5	2.0	250	394	56.8	17.3	42.2	5.32	NO	1
	Dryer No. 2 East @ Noralyn Mine (012)	12	CFMO12	398,200	3,075,700	1,484.479	-1,233.860	55	16.76	9.3	2.8	155	341	29.0	8.8	45.1	5.68	NO	1
	Silos 1, 2, 3, 12 @ Noralyn Mine (013)	13	CFMO13	398,200	3,075,700		-1,233.860	150	45.72	3.5	1.1	100	311	52.0	15.8	35.0	4.41	NO	1
	Ball Mill Transfers @ Noralyn Mine (015)	15	CFMO15	398,200			-1,233.860	24	7.32	2	0.6	110	316	26.5	8.1	10.0	1.26	NO	
	Ball Mill No. 3 @ Noralyn Mine (016)	16	CFMO16	398,200		1,484.479		25	7.62	1.5	0.5	75	297	37.7	11.5	0.01	1.26	NO NO	1
	Ball Mill No. 4 @ Noralyn Mine (017)	17 18	CFMO17 CFMO18	398,200 398,200	-,	1,484.479	-1,233.860 -1,233.860	27 25	8.23 7.62	2 1.5	0.6 0.5	75 77	297 298	15.9 37.7	4.8 11.5	0.01 0.01	1.26 1.26	NO NO	
	No. 3 Ball Mill Loadouts @ Noralyn Mine (018) No. 4 Ball Mill Loadouts @ Noralyn Mine (019)	18	CFMO18 CFMO19	398,200			-1,233.860	29	8.84	1.8	0.5 0,5	77	298	19.7	6.0	10.0	1.26	NO	i
	A Track Railcar Loadout @ Noralyn Mine	20	CFMO19	398,200			-1,233.860	27	8.23	2	0.6	85	303	\$3.1	16.2	15.0	1.89	CON	,
	B Track Railcar Loadout @ Norallyn Mine	21	CFMO21	398,200			-1,233.860	27	8.23	1.9	0.6	81	300	71.8	21.9	15.0	1.89	CON	,
	Transfer Points To Conveyors C31 & C33 @ Noralyn	22	CFMQ22	398,200		1,484.479	-1,233.860	40	12.19	1.5	0.5	100	311	47.2		10.0	1.26	NO	
	Material Transfer Sources @ Norallyn	23	CFMO23	398,200	3,075,700	1,484.479	.,	43	13.11	2	0.6	86	303	26.5	8.1	15.0	1.89	CON	,
	Dry Phosphate Transfer @ Noralyn Mine (024)	24	CFMO24		3,075,700		-1,233.860	135	41.15	2.8	0.9	60	289	55.0		15.0	1.89	NO	
	Dry Unground Truck Load Out System @ Noralyn Mine	28	CFMO28	398,200	3,075,700	1,484.479	-1,233.860	27	8.2	2.0	0.6	75	297	33.0	10.1	0.3	0.04	CON	,
	Bartow Phosphale Center (Formerly IMC Uranium Recovery)																		
	PSD Expanding source	16	16IMCF	408,400	3,082,200	1,493.501	-1,225.571	85	25.9	0.7	0.2	75	297	38.1	11.6	-189.7	-23.90	EXP	,
034	Mosaic Phosphates Inc. (CFMO), FL Lonesome																		
	PSD Expanding source		12IMCF	389,500	3,068,000	1,477.158	-1,243.088	125	38.1	8.0	2.4	151	339	49.7		-25.20	-3.18	EXP	•
	PSD Expanding source		13IMCF		3,068,000		-1,243.088	125	38.1	8.0	2.4	151	339	55.1		-24.90	-3.14	EXP	
	PSD Expanding source		14IMCF	389,500	3,068,000	1,477.158	-1,243.088	150	45.7	2.7	0.8	110	316	27.7	8.4	-51.20	-6.45	EXP	,
053	Mosaic - Green Bay Facility																		
	South DAP PlantStack A	7	MOSGB7A	409,500	3,080,100	1494.963	-1227.482	130	39.6	5.0	1.52	150.9	339	20.7		5.9	0.74	NO	
	South DAP PlantStack B	7	MOSGB7B	409,500	3,080,100	1494.963	-1227.482	129.5	39.5	7.5	2.29	107.6	315	52.6		5.9	0.74	CON	,
	North AP Plant-Main Stack	29	MOSGB29M	409,500	3.080,100	1494.963	-1227.482	129.5	39.5	7.5	2.29	104.5	313	68.2		15.9	2.00	CON	3
	North AP Plant-RG Stack	29	MOSGB29R	409,500	3,080,100	1494.963	-1227.482	117	35.7	5.5	1.68	203.6	368	39.4		15.9	2.00	CON	1
	Phosphate Rock Unloading and Storage-Scrubber (A-A)		ROCKUNLD	409,500	3,080,100	1494.963	-1227.482	90	27.4	3.0	0.91	98.6	310	17.7	5.4	-3.9	-0.49	EXP	,

				UTM L	ocation	LCCL	ocation				Stack Par	ameters				PM ₁₀ Emis	ssion		Mode
Facility	Facility Name		CALPUFF	x	Y	х		Heig	ht	Diame	ter	Tempera	ture	Veloc	dty	Rate		PSD Source? *	PS
D	Emission Unit Description	EU ID	tD	(m)	(m)	(km)	(km)	R	m	n	m	*P	к	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Sour
	Unground Rock Storage Silo Filter Pt. 4 (C-C)		UNGNDP4	409,500	3,080,100	1494.963	-1227,482	90	27,4	0.5	0.15	77	298	34.9	10.6	-3.4	-0.43	EXP	Ý
	Unground Rock Storage Silo Filter Pt. 5 (D-D)		UNGNDP5	409,500	3,080,100	1494.963	-1227.482	90	27,4	0.5	0.15	75.2	297	35.4	10.8	-4.2	-0.53	EXP	Y
	Unground Rock Storage Silo Filter Pt. 6 (E-E)		UNGNDP6	409,500	3,080,100	1494.963	-1227.482	90	27,4	0.5	0.15	75.2	297	34.5	10.5	-3.8	-0.48	EXP	Y
	Unground Rock Storage Silo Filter Pt. 7 (F-F)		UNGNDP7	409,500	3,080,100	1494.963	-1227.482	90	27.4	0.5	0.15	75.2	297	35.7	10.9	-3.6	-0.45	EXP	١
	Rock Grinding Filter Pt. 8 (G-G)		RGRINDP8	409,500	3,080,100	1494.963	-1227.482	100	30.5	1.7	0.51	77	298	41.6	12.7	-18.0	-2.26	EXP	١
	100-Ton Ball Mill Dust Collector (H-H)		100BALL	409,500	3,080,100	1494.963	-1227.482	165	50.3	2.3	0.70	77	298	59.1	18.0	-18.7	-2.35	EXP	,
	40-Ton Ball Mill Dust Collector (H1-H1)		40BALL	409,500	3,080,100	1494.963	-1227.482	50	15.2	1.7	12.0	127	326	31.1	9.5	-26.0	-3.27	EXP	1
	Ground Rock Storage Silos Pt. 10 (I-I)		GRNDPIO	409,500	3,080,100	1494.963	-1227.482	90	27.4	0.8	0.26	77	298	39.0	11.9	-9.8	-1.23	EXP	١
	Fluid Bed Calciner Feed Bin Filter Pt. 11 (J-J)		FILTERII	409,500	3,080,100	1494,963	-1227.482	40	12,2	1.0	0.30	77	298	46.5	14.2	-3.5	-0.44	EXP	١
	Rock Storage SiloNo. 2 Phosphoric Acid Plant Feed (L-L)		FILTER13	409,500	3,080,100	1494.963	-1227.482	100	30.5	1.5	0.46	77	298	47.8	14.6	-3.6	-0,45	EXP	,
	DAP Plant-R/G Scrubber (S-S)		DAPRGSCR	409,500	3,080,100	1494.963	-1227.482	185	56.4	5.0	1.52	149	338	9.7	3.0	-1.3	-0.16	EXP	,
	DAP Plant-Dryer Scrubber (U-U)		SDAPMAJB	409,500	3,080,100	1494.963	-1227.482	129	39.3	7.5	2.29	139	333	22.5	6.9	-19.0	-2.39	EXP	,
	DAP Plant-Cooler Scrubber		DAPCOOL	409,500	3,080,100	1494.963	-1227.482	120	36.6	5.0	1.52	139	333	59.8	18.2	-19.0	-2.39	EXP	,
	TSP Plant-Reactor & Blunger Scrubber (W-W)		TSPRBSCR	409,500	3,080,100	1494.963	-1227.482	110.5	33,7	2.5	0.76	130	328	19.7	6.0	-1.0	-0.13	EXP	,
			NDAPMAIB	409,500	3,080,100	1494.963	-1227.482	129	39.3	7.5	2.29	190	361	34.5	10.5	-11.4	-1.44	EXP	,
	TSP Plant-Dryer Scrubber (Y1-Y1)																	EXP	
	Shipping & Storage-Storage Scrubbers d (Z1-Z1)		STORSCRB	409,500	3,080,100	1494.963	-1227.482	130.5	39.8	8.0	2.44	69.8	294	40.8	12.4	-4.5	-0.57		,
	Shipping & Storage-Shipping Scrubbers (Z2-Z2)		SHIPSCRB	409,500	3,080,100	1494.963	-1227.482	130.5	39.8	4.0	1.22	88	304	33.0	10.1	-3.5	-0.43	EXP	١
70014	Progress Energy Florida - Intercession City Plant																		
	Combined CTs 1-6	1-6	ICP16		3,126,000	.,	-1,175.112	45	13.72	14.6	4.46	760	678	174.9	53.3	258.0	32.51	NO	1
	Combined CTs 7-10	7-10	ICP710	446,300			-1,175.112	50	15.24	13.8	4.19	1043	835	174.1	53.1	60.0	7.56	CON	
	CT#11	11	ICPII	446,300			-1,175.112	75	22.86	19.0	5.79	1034	830	139.4	42.5	17.0	2.14	CON	,
	Simple Cycle CTs P-12, P13 & P-14	18-20	ICP1820	446,300	3,126,000	1,523.522	-1,175.112	56	17.07	1.61	4.91	993	807	117.6	35.8	73.8	9,30	CON	١
10006	GRU Deerhaven Generating Station																		
	Fossil Fuel Fired Steam Generator #1(Phase II AR Unit)	3	GRUDGS3		3,292,600		-1,022.938	300	91.4	11.0	3.4	261	400	47.0	14.3	120.0	15.12	NO	
	Fossil Fuel Fired Steam Generator #2 (Phase I & II AR Unit)	5	GRUDGSS	365,700	3,292,600	1,414.383	-1,022.938	350	106.7	18.5	5.6	275	408	50.0	15.2	242.8	30.59	CON	,
	Simple Cycle Comb Turbine No. 3 (Phase II Acid Rain Unit)	6	GRUDGS6	365,700	3,292,600	1,414.383	-1,022.938	52	15.8	14.1	4.3	1100	866	168.0	51.2	15.0	1.89	CON	,
50217	Polk Power Partners, L.P. Mulberry - Mulberry Cogen Facility																		
	Combustion Turbine with HRSG(Phase II, Acid Rain Unit)	1	MCFI	413,600	3,080,600	1,498.961	-1,226.266	125	38.1	15.0	4.6	220	378	64.1	19.5	9.00	1.13	CON	١
10010	Florida Power & Light - Manatec																		
	Generator Unit 1	1	FPLMANI	367,250	3,054,150	1,457.397		499	152.1	26.2	8.0	325	436	68.7	20.9	865	108.99	NO	1
	Generator Unit 2	2	FPLMAN2	367,250	3,054,150	1,457.397	-1,260.832	499	152.1	26.2	8.0	325	436	68.7	20.9	865	108.99	NO	1
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3A	5	FPLMANS	367,250	3,054,150	1,457.397	-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	17.2	2.17	CON	١
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3B	6	FPLMAN6	367,250	3,054,150	1,457.397	-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	17.2	2.17	CON	١
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3C	7	FPLMAN7	367,250	3,054,150	1,457.397	-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	17.2	2.17	CON	١
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3D	8	FPLMAN8	367,250	3,054,150	1,457.397	-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	17.2	2.17	CON	,
50233	TECO, Polk Power Station																		
	260 MW Combined cycle CT (Phase II Acid Rain Unit)	1	TECOPKI	402,450	3,067,350	1490.176	-1241.483	150	. 45.7	19.0	5.79	340	444	75.8	23.1	17.0	2.14	CON	١
	120 MMBtu/HR Auxiliary Boiler	3	TECOPK3	402,450	3,067,350	1490.176	-1241.483	75	22.9	3.7	1.13	375	464	50.0	15.2	12.0	1.51	CON	,
	165MW Simple Cycle Combustion Turbine	9	TECOPK9	402,450	3,067,350	1490.176	-1241.483	114	34.7	29.0	8.84	1117	876	60.2	18.3	48.7	6.14	CON	,
	165MW Simple Cycle Combustion Turbine	10	TECOPK 10	402,450	3,067,350	1490.176	-1241.483	114	34.7	29.0	8.84	1117	876	60.2	18.3	48.7	6.14	CON	,
50234	Progress Energy Florida - Hines																		
	250 MW Combined Cycle Combustion Turbine 1 NG Primary Fuel	1	HINESI	414,340	3,073,910	1500.873	-1232.836	300	91.4	9.0	2.74	312	429	119.2	36.3	44.8	5.64	CON	
	250 MW Combined Cycle Combustion Turbine 2 NG Primary Fuel	2	HINES2	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	270	405	69.4	21.2	44.8	5,64	CON	,
	POWER BLOCK 2, CT 2A	14	HINES2	414,340	3,073,910		-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	64.8	8.16	CON	,
		15		,			-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	64.8	8.16	CON	
	POWER BLOCK 2, CT 2B		HINES15	414,340	3,073,910	1500.873						190	241	59.3		64.8		CON	
	POWER BLOCK 3, CT 3A	16	HINES16	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79		361		18.1	01.0	8.16		
	POWER BLOCK 3, CT 3B	17	HINES17	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	64.8	8.16	CON	
	POWER BLOCK 4, CT 4A		HINES4A	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	39.1	4.93	CON	
	POWER BLOCK 4, CT 4B		HINES4B	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	39.1	4.93	CON	
70028	FPC - Debary Facility																		
	Combustion Turbine Peaking Unit # 1	3	FPCDF3		3,197,200		-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	48.0	6.05	No	
	Combustion Turbine Peaking Unit # 2	5	FPCDF5		3,197,200		-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	48.0	6.05	No	
	Combustion Turbine Peaking Unit # 3	7	FPCDF7		3,197,200		-1,100.273	45	13,7	17.7	5.4	1050	839	173.7	52.9	48.0	6.05	No	
	Combustion Turbine Peaking Unit # 4	9	FPCDF9	467,500	3,197,200	1,532.022		45	13.7	17.7	5.4	1050	839	173,7	52.9	48.0	6.05	No	
	Combustion Turbine Peaking Unit # 5	11	FPCDFII		3,197,200	1,532.022	-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	48.0	6.05	No	
	Combustion Turbine Peaking Unit # 6	13	FPCDF13	467,500		1,532.022	-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	48.0	6.05	No	
	Combustion Turbine # 7 (Phase II Acid Rain Unit)	15	FPCDF15	467,500	3,197,200			50	15.2	13.8	4.2	1043	835	174.1	53.1	15.0	1.89 2.89	CON	,
	Combustion Turbine # 7 (Phase II Acid Rain Unit)	15	FPCDF15	467,500 467,500		1,532.022		50 50	15.2	13.8	4.2	1043	835	174.1	53.1 53.1	15.0			CON

ID E C C C C C C C C C C C C C C C C C C	Facility Name Emission Unit Description Combustion Turbine # 9 (Phase II Acid Rain Unit) Combustion Turbine # 10 (Phase II Acid Rain Unit) Combustion Turbine Peaking Unit No.3 Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palaika No. 4 Recovery Boiler No. 4 Smett Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TMS-[1] Stock Prep Area Exhaust Fan (FM1)	9 10 11 12 18 18 19 15 16 44	FPCDF17 FPCDF18 FPCTUR9 FPCTUR10 FPCTUR12 RB4 SDT4	467,500 473,400 473,400 473,400	3,193,300 3,193,300	1,532.022 1,538.567 1,538.567 1,538.567	-1,103.127 -1,103.127	Heigh ft 50 50	m 15.2 15.2	Diamet ft 13.8 13.8	4.2 4.2	*F 1043 1043	835 835 835	Veloc ft/s 174.1 174.1	m/s 53.1 53.1	15.0 15.0	1.89 1.89	PSD Source? * (EXP/CON) CON CON	PSI Source Yes
CC	Combustion Turbine # 9 (Phase II Acid Rain Unit) Combustion Turbine # 10 (Phase II Acid Rain Unit) oc-Turner Plant Combustion Turbine Peaking Unit No.3 Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TMS-[1] Stock Prep Area Exhaust Fan (FM1)	17 18 9 10 11 12 18 19 15 16	FPCDF17 FPCDF18 FPCTUR9 FPCTUR10 FPCTUR11 FPCTUR12 RB4	467,500 467,500 473,400 473,400 473,400	3,197,200 3,197,200 3,193,300 3,193,300 3,193,300	1,532.022 1,532.022 1,538.567 1,538.567 1,538.567	-1,100.273 -1,100.273 -1,103.127 -1,103.127	50 50	15.2 15.2	13.8	4.2	1043	835	174.1	53.1	15.0	1.89	CON	
270020 Fpc- C C C C C C C C C C C C C C C C C C C	Combustion Turbine # 10 (Phase [I Acid Rain Unit) xx-Turner Plant Combustion Turbine Peaking Unit No.3 Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smeth Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 1 Lime Kiln New Themal Oxidizer TMS-[1] Stock Prep Area Exhaust Fan (FM1)	18 9 10 11 12 18 19 15 16 44	FPCDF18 FPCTUR9 FPCTUR10 FPCTUR11 FPCTUR12 RB4	467,500 473,400 473,400 473,400	3,197,200 3,193,300 3,193,300 3,193,300	1,532.022 1,538.567 1,538.567 1,538.567	-1,100.273 -1,103.127 -1,103.127	50	15.2										Yes
170020 Fpc-C C C C C C C C C C C C C C C C C C C	oc-Turner Plant Combustion Turbine Peaking Unit No.3 Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smett Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themsal Oxidizer TM5-(3) Stock Prep Area Exhaust Fan (FM1)	9 10 11 12 18 19 15 16	FPCTUR9 FPCTUR10 FPCTUR12 RB4	473,400 473,400 473,400	3,193,300 3,193,300 3,193,300	1,538.567 1,538.567 1,538.567	-1,103.127 -1,103.127			13.8	4.2	1043	835	174.1	53.1	15.0	1.89	CON	
C C C C C C C C C C C C C C C C C C C	Combustion Turbine Peaking Unit No.3 Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 P Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Home Boiler No. 4 Lime Kiln New Themal Oxidizer TMS-[3] Stock Prep Area Exhaust Fan (FM1)	10 11 12 18 19 15 16 44	FPCTUR10 FPCTUR11 FPCTUR12 RB4	473,400 473,400	3,193,300 3,193,300	1,538.567 1,538.567	-1,103.127	41											Y
C C C C C C C C C C C C C C C C C C C	Combustion Turbine Peaking Unit No.4 Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themsal Oxidizer TM5-(3) Stock Prep Area Exhaust Fan (FM1)	10 11 12 18 19 15 16 44	FPCTUR10 FPCTUR11 FPCTUR12 RB4	473,400 473,400	3,193,300 3,193,300	1,538.567 1,538.567	-1,103.127	41											
C C C C C C C C C C C C C C C C C C C	Combustion Turbine Peaking Unit No.1 Combustion Turbine Peaking Unit No.2 Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smetl Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer Themal Oxidizer New Themal Oxidizer New Themal Oxidizer This-[3] Stock Prep Area Exhaust Fan (FM1)	11 12 18 19 15 16 44	FPCTUR11 FPCTUR12 RB4	473,400	3,193,300	1,538.567			12.5	12.3	3.75	960	789	133.8	40.8	-52.8	-6.65	EXP	١
C C C C C C C C C C C C C C C C C C C	Combustion Turbine Peaking Unit No.2 P Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themsal Oxidizer TM5-(3] Suock Prep Area Exhaust Fan (FM1)	18 19 15 16 44	FPCTUR12					41	12.5	12.3	3.75	960	789	133.8	40.8	-52.8	-6.65	EXP	,
70005 GPP N N N N N N N N N N N N N N N N N N	P Pulp/Paper Mill, Palatka No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TM5-[3] Stock Prep Area Exhaust Fan (FM1)	18 19 15 16 44	RB4	473,400	3,193,300	1 520 567	-1,103.127	41	12.5	6.0	1.83	960	789	509.3	155.2	-19.9	-2.51	EXP	,
N N N N N N N N N N N N N N N N N N N	No. 4 Recovery Boiler No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themsal Oxidizer TM5-[3] Stock Prep Area Exhaust Fan (FM1)	19 15 16 44				1,336.367	-1,103.127	41	12.5	6.0	1.83	960	789	509.0	155.1	-19.9	-2.51	EXP	Υ
N N N N N N I I I I I I I I I I I I I I	No. 4 Smelt Dissolving Tanks No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TMS-[1] Stock Prep Area Exhaust Fan (FM1)	19 15 16 44																	
N N N N N N N N N N N N N N N N N N N	No. 5 Power Boiler No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TMS-[3] Suock Prep Area Exhaust Fan (FM1)	15 16 44	SDTA		3,283,400		-1,020.228	230	70.1	12.0	3.7		491	65.9	20.1	56.7	7.14	CON	١
N N N N TITE THE THE THE THE THE THE THE THE THE T	No. 4 Combination Boiler No. 7 Power Boiler No. 4 Lime Kiln New Themal Oxidizer TM5-[3] Stock Prep Area Exhaust Fan (FM1)	16 44			3,283,400	1,483.634		206	62.8	5.0	1.5		355	34.0	10.4	11.3	1.43	CON	,
N N N N TITE THE TITE	No. 7 Power Boiler No. 4 Lime Kiln New Thernal Oxidizer TM3-[3] Stock Prep Area Exhaust Fan (FM1)	44	PB5		3,283,400	1,483.634		237	72.2	8.0	2.4		485	85.9	26.2	56.9	7.17	CON	
N N III III III III III III III III III	No. 4 Lime Kiln New Thernal Oxidizer TMS-[3] Stock Prep Area Exhaust Fan (FM1)		CB4		3,283,400	1,483.634		237	72.2	8.0	2.4		514	92.3	28.1	16.7	2.10	CON	1
N	New Thernal Oxidizer TM5-[3] Stock Prep Area Exhaust Fan (FM1)		PB7	434,000	3,283,400	1,483.634	-1,020.228	60	18.3	7.0	2.1		672	43.5	13.3	1.9	0.24	CON	
TT	TM5-[3] Stock Prep Area Exhaust Fan (FM1)	17	LK4	434,000	3,283,400		-1,020.228	131	39.9	4.4	1.4		347	70.6	21.5	29.2	3.68	CON	
TI TI TI TI TI GC CC CC CN N N H H H H H H H H H H H H H			TOX	434,000	3,283,400	1,483.634		250	76.2	3.6	1.1		344	18.0	5.5	7.0	0.88	CON	
TT		43	TM5_3	434,000	3,283,400		-1,020.228	94	28.7	5.7	1.7		319	39.2	11.9	0.3	0.04	CON	,
TITTITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TM5-[4] Roof Exhaust Fan 776	43	TM5_4	434,000	3,283,400		-1,020.228	94 94	28.7	5.7	1.7		319	39.2	11.9	0.3 0.9	0.04 0.11	CON	,
TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TM5-[6] Reel Roof Exhaust Fan 2040 (WND)	43	TM5_6	434,000	3,283,400		-1,020.228	94 94	28.7	5.2	1.6		319	47.1			0.11	CON	
TITITITITITITITITITITITITITITITITITITI	TM5-[5] AirCap Roof Exhaust Fan 2041(FM2)	43	TM5_5	434,000	3,283,400	1,483.634			28.7	5.7	1.7		319	39.2	11.9	0.1			
TITITITITITITITITITITITITITITITITITITI	TM5-[7] Winder Area Roof Exhaust Fan 2039	43	TM5_7	434,000	3,283,400		-1,020.228	94	28.7	4.7	1.4		319	38.4	11.7	0.9	0.11	CON	
TTTTTTTCCCCCCCCCCNNNHHHHHHHHHHHHHHHHHHH	TM5-[9] Former Area Exhaust Fan 2042	43	TM5_9	434,000	3,283,400	1,483.634		94	28.7	5.7	1.7		322	39.2	11.9	0.3	0.04	CON	
T.TTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TM5-[10] Roof Exhaust Fan 902	43	TM5_10	434,000	3,283,400	1,483.634		94	28.7	4.7	1.4		319	38.4	11.7	0.2	0.03	CON	
TI TI CC CC CC CN N N H H H H H H H H H H H H	TM5-(11) Fan 778	43	TM5_11		3,283,400	1,483.634		94	28.7	5.7	1.7		319	39.2	11.9	0.4	0.05	CON	1
FITCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TM5-[12] Roof Exhaust Fan 905	43	TM5_12	434,000	3,283,400	1,483.634		94	28.7	4.7	1.4		319	38.4	11.7	0.2	0.03	CON	
TT GC CC CC CC CC CC CN N H H H H H H H H H	TM5-[14] Afterdryer Hood Exhaust (MND)	43	TM5_14		3,283,400	1,483.634		94	28.7	3.8	1.2		355	56.7	17.3	0.3	0.04	CON	
C C C C C C C N N H H H H H H H H H H H	TM5-[15] Existing Wet & Dry Yankee Hood (YKD)-burner	43	TM5_15		3,283,400	1,483.634	-1,020.228	94	28.7	5.0	1.5		505	64.5	19.7	1.2	0.15	CON	
C C C C C C C C C C C C C C C C C C C	TM5-[16] Burner Area Exhaust Fan	43 45	TM5_16		3,283,400	1,483.634	-1,020.228	94	28.7	5.7	1.7		319	39.2	11.9	0.4	0.05	CON	
C C C C C C C C C C C C C C C C C C C	Converting Operations	45 45	CONVI CONV2		3,283,400	1,483.634	-1,020.228 -1,020.228	55 55	16.9 16.9	3.t	0.9 0.9		305	147.2 147.2	44.9 44.9	0.6 0.6	0.07 0.07	CON	
C C C N N H H H H H H H H H H H H H H H	Converting Operations	45	CONV3		3,283,400	1,483.634	-1,020.228	55	16.9	3.t 3.1	0.9		305 305	147.2	44.9	0.6	0.07	CON	,
CON. N. N. N. N. N. N. N. N. N. N. N. N. N	Converting Operations Converting Operations	45	TRIMI		3,283,400 3,283,400	1,483.634	.,	55	16.8	2.8	0.9		305	81.2	24.8	3.6	0.07	CON	,
C N N H H H H H H H H H H H H H H H H H		45	TRIM2		3,283,400	1,483.634		55	16.8	2.8	0.9		305	81.2	24.8	3.6	0.45	CON	,
N. N. H.	Converting Operations	45	TRIM2		3,283,400		-1,020.228	58	17.8	2.8	0.9		305	0.0	0.0	3.8	0.48	CON	,
N # # # # # # # # # # # # # # # # # # #	Converting Operations No. 3 Tissue Machine Combined Source	• • • • • • • • • • • • • • • • • • • •	TM3		3,283,400		-1,020.228	94	28.7	5.0	1.5		505	64.5	19.7	0.6	0.43	CON	'n
# # # # # # # # # # # # # # # # # # #	No 4 Tissue Machine Combined Source		TM4		3,283,400		-1,020.228	94	28.7	5.0	1.5		505	64.5	19.7	0.6	0.07	CON	ì
# # # # # # # # # # # # # # # # # # # #	# 1 Recovery Boiler		RBIB		3,354,380		-1,020.228	250	76.2	12.0	3.7		360	28.9	8.8	-67.8	-8.54	EXP	ì
# ## ## ## ## ## ## ## ## ## ## ## ## #	# 2 Recovery Boiler		RB2B	408.810	3,354,380		-1,020.228	250	76.2	12.0	3.7		372	28.9	8.8	-86.6	-10.91	EXP	j
# # # # # # # # # # # # # # # # # # #	# 3 Recovery Boiler		RB1B		3,354,380		-1,020.228	133	40.5	11.2	3.4		372	23.9	7.3	-93.7	-11.81	EXP	Š
# # # # # #	# 4 Recovery Boiler		RB4B		3,354,380		-1,020.228	230	70.1	12.0	3.7		474	55.3	16.9	-143.2	-18.04	EXP	,
# # # # #	# 1 Smelt Dissolving Tanks		SDTIB		3,354,380		-1,020.228	100	30.5	2.5	0.8		366	24.7	7.5	-2.1	-0.26	EXP	,
# # # #	# 2 Smelt Dissolving Tanks		SDT2B		3,354,380		-1,020,228	100	30.5	3.0	0.0		375	31.2	9.5	-3.1	-0.39	EXP	,
# # # #	# 3 Smelt Dissolving Tanks		SDT3B		3,354,380		-1,020.228	109	33.2	2.5	0.8		369	11.7	3.6	-2.8	-0.35	EXP	,
# # #	# 4 Smell Dissolving Tanks		SDT4B		3,354,380	1,483.634		206	62.8	5.0	1.5		346	27.1	8.3	-35.1	-4.42	EXP	,
# #	# 1 Lime Kiln		LKIB		3,357,300	1,483.634		50	15.2	4.2	1.3		401	17.2	5.2	-154.8	-19.50	EXP	,
#	# 2 Lime Kiln		LK2B		3,357,300		-1,020.228	52	15.9	5.6	1.7		341	35.0	10.7	-81.7	-10.29	EXP	
#	# 3 Lime Kiln		LK3B		3,357,300		-1,020,228	52	15.9	5.6	1.7		342	27.8	8.5	-80.0	-10.08	EXP	,
	# 4 Lime Kiln		LX4B		3,357,300		-1,020.228	149	45.4	4.3	1.3		351	54.0	16.5	-27.2	-3.43	EXP	
			PB4B	427,600			-1,020.228	122	37.2	4.0	1.2		477	47.7	14.5	-100.6	-12.68	EXP	
	# A Bourse Boiler		PB5B		3,357,300		-1,020.228	232	70.7	9.0	2.7		520	52.4	16.0	-100.8 -43.9	-5.53	EXP	
	# 4 Power Boiler		CB4B		3,357,300		-1,020.228	237	72.2	10.0	3.1		477	34.5	10.5	-612.1	-77.12	EXP	
	# 5 Power Boiler		ТМ3В		3,357,300	1,483.634		94	28.7	5.0	1.5		505	64.5	19.7	-1.7	-0.22	EXP	,
	# 5 Power Boiler # 4 Combination Boiler		TM5B		3,358,300	1,483.634		94	28.7	5.0	1.5		505	64.5	19.7	-1.7	-0.21	EXP	
950137 Stant	# 5 Power Boiler																		
	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source		STANI	492 600	3,150,600	1 556 150	-1,143.982	550	167.6	19,0	5.79	127	326	83.0	25.3	124.0	15.62	CON	
	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source anton Energy Center	i	STANI STAN2		3,150,600		-1,143.982 -1,143.982	550	167.6	19.0	5.79 5.79	127	326	77.0	23.5	85.7	10.80	CON	
	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source anton Energy Center Fossil Fuel Steam Generation Unit #1	1 2																	
	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source anton Energy Center Fossil Fuel Steam Generation Unit #1 Pulverized Coal Fired Unit No. 2 (460 Mw Gross)	1 2																0011	,
	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source anton Energy Center Fossil Fuel Steam Generation Unit #1 Pulverized Coal Fired Unit No. 2 (460 Mw Gross)	1 2	SECSEMI	438.850	3 289 300	1.487.407	-1.013.508	675	205.7	36.0	11.0	128	326	26.2	8.0	215.2	27.12		
บ	# 5 Power Boiler # 4 Combination Boiler # 3 Tissue Machine Combined Source # 5 Tissue Machine Combined Source anton Energy Center Fossil Fuel Steam Generation Unit #1 Pulverized Coal Fired Unit No. 2 (460 Mw Gross)	1 2 1 2	SECSEM1 SECSEM2		3,289,300 3,289,300		-1,013.508 -1,013.508	675 675	205.7 205.7	36.0 36.0	11.0	128 128	326 326	26.2 26.2	8.0 8.0	215.2 215.2	27.12 27.12	CON	,

EXP = PSD expanding source.
 CON = PSD consuming source.

					UTM L	ocation	LCCL	ocation				Stack Pa	rameters				PM ₁₀ Emission	n		Modeled
F	acility	Facility Name		CALPUFF	х	Y	х	Y	He	ight	Diam	eter	Tempe	rature	Velo	city	Rate		PSD Source? "	PSD
I	D	Emission Unit Description	EU ID	Œ	(m)	(m)	(km)	(km)	ft	m	Ω	m	°F	К	ft/s	m/s	lb/hr	g/s	(EXP/CON)	Source?

NO = Baseline Source, does not affect PSD increment.

ND = No data available.

TABLE D-5
SUMMARY OF SO₁ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		_UTM Cod						rameters						PSD *
	Model	East	North	Hei	ght	Diam	ieter	Tempe	rature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EX
lorida Power & Light (FPL)- Putnam Plant	CFPLPUTM	443.3	3277.6	73.144	22.3	10.33	3.15	327.65	437.4	192.21	58.6	1,549.2 925.4	195.2 ° 116.6 °	NA CON
lorida Power & Light (FPL)- Palatka Plant	FPLPALAT	442.8	3277.6	149.896	45.7	12.99	3.96	274.91	408.1	31.16	9.5	-2,039.9	-257.0	CON
ieorgia Pacific, Palatka Mill b	SDT4	433.9347	3283.478	206.0	62.8	5.0	1.52	179	355	33.9	10.35	7.7	0.97	CON
	PB524	433.9773	3283.447	236.8	72.2	8.0	2.44	413	485	85.9	26.19	1,461.9	184.2	CON
	CB4	433.9825	3283.45	236.8	72.2	8.0	2.44	466	514	92.3	28.14	961.1	121.1	CON
	PB7	433.9862	3283.466	60.0	18.3	7.0		750	672	43.5	13.25	0.2	0.0189	CON
	LK4	434.1067	3283.247	130.9	39.9	4.4	1.35	164	346.5	70.6		34.5	4.35	CON
	TM5P	434.2864	3283.44	94.0	28.65	4.2	1.29	450	505.4	77.1	23.5	0.030	0.00378	CON
	RB4 24HR	433.8823	3283.438	229.9	70.1	12.0	3.66	424	491	65.9	20.08	109.8	13.84	CON
	TOX	433.8823	3283.38	249.9	76.2	3.6	1.1	160	344	18.0	5.49	31.3	3.94	CON
	RB1B	434.0536	3283.407	249.9	76.2	12.0	3.66	188	360	28.9	8.8	49.3	6.21	EXP
	RB2B	434.0536	3283.407	249.9	76.2	12.0	3.66	210	372	28.9	8.8	70.5	8.88	EXP
	RB3B	434.0195	3283.385	132.8	40.5	11.2		210	372	23.9	7.28	68.1	8.58	EXP
	RB4B	433.8823	3283.438	229.9	70.1	12.0	3.66	394	474	55.3	16.86	277.8	35	EXP
	SDT1B	434.0593	3283.411	100.0	30.5	2.5	0.76	199	366	24.7	7.53	1.0	0.13	EXP
	SDT2B	434.0593		100.0	30.5	3.0	10.0	215	375	31.2	9.51	1.4	0.13	EXP
	SDT3B	434.0253	3283.388	100.0	33.2	2.5	0.76	205	369	11.7	3.57	1.4	0.18	EXP
	SDT4B	433.9347	3283.478											EXP
				206.0	62.8	5.0	1.52	163	346	27.1	8.26	5.6	0.71	
	LKIB	434.1219	3283.301	49.9	15.2	4.2		262	401	17.2	5.24	1.9	0.24	EXP
	LK2B	434.1174	3283.299	52.2	15.9	5.6	1.71	154	341	35.0	10.67	1.9	0.24	EXP
	LK3B	434.1193	3283.271	52.2	15.9	5.6	1.71	156	342	27.8	8.47	3.8	0.48	EXP
	LK4B	434.1067	3283.247	148.9	45.4	4.3	1.31	172	351	54.0	16.46	11.1	1.4	EXP
	PB4B	433.998	3283.481	122.0	37.2	4.0	1.22	399	477	47.7	14.54	358.7	45.2	EXP
	PB5B	433.9773	3283.447	239.1	72.9	9.0	2.74	476	520	52.4	15.97	1,277.8	161	EXP
	CB4B	433.9825	3283.45	239.1	72.9	10.0	3.05	399	477	34.5	10.52	960.3	121	EXP
erdau Ameristeel	EAFBHI	405.708	3350.0	110.0	33.53	12.0	3.66	230	383.2	55.2	16.84	0.61	2.02	CON
	EAFBH2	405.715	3350.0	110.0	33.53	12.0	3.66	230	383.2	55.2	16.84	16.0	2.02	CON
	REHEATN	405.811	3350.3	66.0	20.12	5.8	1.77	480	522	45.0	13.72	0.16	0.02	CON
	ST12	405.699	3350.1	115.0	35.05	10.0	3.05	230	383.2	64.8	19.76	10.16	1.28	EXP
	ST34	405.732	3350.1	115.0	35.05	10.0	3.05	230	383.2	67.9	20.7	1.11	0.14	EXP
	REHEAT	405.758	3350.4	160.0	48.77	6.9	2.1	900	755.4	19.5	5.93	0.054	0.0068	EXP
A Brandy Branch	SING	408.835	3354.5	189.9	57.91	18.0	5.49	266	403	69.8	21.28	32.70	4.12	CON
	S2NG	408.713	3354.5	189.9	57.91	18.0	5.49	266	403	69.8	21.28	32.70	4.12	CON
	\$3FO	408.774	3354.5	189.9	57.91	0.81	5.49	266	403	69.8	21.28	32.70	4.12	CON
	SFP	408.893	3354.5	24.0	7.32	0.5	0.15	649	616	196.9	60.02	0.032	0.0040	CON
inesville Regional Utilities- Deerhaven	GRUDH2	365.7	3292.6	349.9	106.68	18.5	5.64	275	408.1	. 50.0	15.24	2,913.97	367.16	CON
	GRUDHCC	365.5	3292.6	52.0	15.85	14.1	4.3	1100	866.5	168.0	51.21	53.02	6.68	CON

TABLE D-5
SUMMARY OF SO₁ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

			UTM Coo						rameters						PSD *
		Model	East	North	Hei	ght	Dian	ieter	Tempe	rature	Velo	city	Emission	Rate	Source
	Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXI
F Indu	stries, Plant City														
01	Johnson Scotch Boiler	JOHNSTON	388.0	3116.0	25.0	7.6	3.5	1.1	550	561	61.6	18.8	46.86	5.90	CON
02	"A" SAP	SAPA			110.0	33.5	5.0	1.5	85	303	72.6	22.1	303.30	38.22	CON
03	"B" SAP	SAPB			110.0	33.5	5.0	1.5	84	302	80.1	24.4	303.30	38.22	CON
07	"C" SAP	SAPC			199.0	60.7	8.0	2.4	0	0	46.7	14.2	401.04	55.58	CON
80	"D" SAP	SAPD			199.0	60.7	8.0	2.4	0	0	48.3	14.7	401.04	55.58	CON
10	"A" DAP/MAP Plant	ADMP			80.0	24.4	10.0	3.0	137	331	36.8	11.2	13.86	1.75	CON
11	"Z" DAP/MAP Plant	ZDMP			136.0	41.5	9.0	2.7	140	333	44.5	13.6	20.79	2.62	CON
12	"X" DAP/MAP/GTSP Plant	XDMGP			136.0	41.5	9.0	2.7	134	330	50.7	15.5	24.17	3.05	CON
13	"Y" DAP/MAP/GTSP Plant	YDMGP			136.0	41.5	9.0	2.7	135	330	53.3	16.2	24.07	3.03	CON
22	Storage Tank (022)b	MSTK22			38.0	11.6	2.0	0.6	212	373.2	-	0.0	0.13	0.02	CON
33	Storage Tank (033)c	MSTK33			41.0	12.5		-		-	-	-	0.13	0.02	CON
23	Truck Pit Ab	MSTPTA			12.0	3.7	0.7	0.2	212	373.2	-	0.0	0.13	0.02	CON
24	Truck Pit Bb	MSTPTB			12.0	3.7	0.7	0.2	212	373.2		0.0	0.13	0.02	CON
10	"A" DAP Plant	ADMPB			100	30.5	10.0	3.0	128	326.483	26.8	8.2	-18.42	-2.32	EXP
12	"X" DAP/MAP/GTSP Plant	XDMGPB			125	38.1	7.3	2.2	110	316.483	69.7	21.2	-27.43	-3.46	EXP
13	"Y" GTSP Plant	YDMGPB			125	38.1	7.3	2.2	110	316.483	44.8	13.6	-18.34	-2.31	EXP
11	"Z" DAP/GTSP Plant	ZDMPB			125	38.1	7.3	2.2	110	316.483	69.7	21.2	-18.34	-2.31	EXP
02	"A" Sulfuric Acid Plant with Ammonia Scrubber	SAPAB			80	24.4	5.0	1.5	98	309.817	62.2	19.0	-416.70	-52.50	EXP
03	"B" Sulfuric Acid Plant with Ammonia Scrubber	SAPBB			80	24.4	5.0	1.5	96	308.706	68.4	20.9	-416.70	-52.50	EXP
07	"C" Sulfuric Acid Plant Double Absorption	SAPCB			199	60.7	8.0	2.4	150	338.706	34.5	10.5	-250.00	-31.50	EXP
80	"D" Sulfuric Acid Plant Double Absorption	SAPDB			199	60.7	8.0	2.4	150	338.706	27.7	8.4	-250.00	-31.50	EXP
-	Sulfur Storage and Handling (b)												-0.33	-0.04	EXP
-	ROP/MGTSP Manufacturing	RMMANB			135	41.1	6.5	2.0	87	303.706	33.9	10.3	-14.11	-1.78	EXP
Cargill F	Fertilizer, IncRiverview														
	MOLTEN SULFUR PITS 7, 8, AND 9	CRPITS	363	3083	d	d	d	d	d	d	đ	đ	0.13	0.016	CON
	MOLTEN SULFUR TANKS 1, 2, AND 3/TRUCK L	O/ CRTKTL			33	10.1	0.8	0.25	110	316	20.5	6.24	3.34	0.42	CON
	4 NO. 7 SULFURIC ACID PLANT	CR7\$AP			150	45.7	7.5	2.29	152	340	41.5	12.64	466.70	58.8	CON
	5 NO. 8 SULFURIC ACID PLANT	CR8SAP			150	45.7	8.0	2.44	165	347	42.9	13.08	393.75	49.6	CON
	6 NO. 9 SULFURIC ACID PLANT	CR9SAP			150	45.7	9.0	2.74	155	341	44.8	13.66	495.83	62.5	CON
	100 NO. 5 ROCK MILL	CR5RKML			91	27.7	2.5	0.76	166	348	122.6	37.36	6.59	0.83	CON
	106 NO. 7 ROCK MILL	CR7RKML			91	27.7	3.0	0.91	165	347	47.2	14.37	6.59	0.83	CON
	101 NO. 9 ROCK MILL	CR9RKML			91	27.7	2.5	0.76	162	345	106.5	32.46	6.59	0.83	CON
	7 NO. 6 GRANULATION PLANT DRYER STACK	CR6GRAN			162	49.4	8.5	2.59	164	346	58.7	17.89	40.57	5.1	CON
	AFI PLANT NO. 1	CRAFII			136	41.5	6.0	1.83	150	339	64.5	19.66	25.36	3.2	CON
	AFI PLANT NO. 2	CRAFI2			155	47.2	6.0	1.83	150	339	64.5	19.66	38.04	4.8	CON

TABLE D-5
SUMMARY OF SO₁ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

	Mode	UTM Coo	North	Heig	ht	Diam		rameters Tempe	rature	Velo	city	Emission	Data	PSD * Source
Facility	ID Na		(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	•	(lb/br)	(g/s)	(CON/EXF
SE NO. S CRANKEL ATION BY ANT DRA	VED/COOL ED ST CD4CD AN			133	40.5	7.0	2.12	110	316	67.6	20.59	12.58	1.585	CON
55 NO. 5 GRANULATION PLANT-DRY							2.13			-				CON
2,23,24 NOS. 3 AND 4 MAP PLANTS, SOUT	H COOLER CR34MAP			133	40.5	7.0	2.13	142	334	71.5	21.78	0.0030	0.00038	CON
Ammonia Plant (Expanding Source)	AMMPLTB			60	18.3	8.3	2.5	600	589	22.7	6.93	-32.80	-4.13	EXP
Sodium Silicofluoride/Sodium Fluorid	e Plant (Expandin SSFSFPB			28	8.5	2.5	0.76	95	308	11.6	3.55	-0.20	-0.03	EXP
No. 10 KVS Mill (Expanding Source)	10KVSMB			87	26.5	1.7	0.52	118	321	59.8	18.24	-0.020	-0.0025	EXP
No. 12 KVS Mill (Expanding Source)	12KVSMB			71	21.6	1.6	0.49	135	330	68.5	20.87	-0.040	-0.0050	EXP
No. 7 Oil-Fired Concentrator (Expand	ing Source) 7OFCONB			78	23.8	6.0	1.83	165	347	17.2	5.24	-41.40	-5.22	EXP
No. 8 Oil-Fired Concentrator (Expand	ing Source) 8OFCONB			78	23.8	6.0	1.83	159	344	16.7	5.10	-39.70	-5.00	EXP
GTSP Plant (Expanding Source)	GTSPAPB			126	38.4	8.0	2.44	129	327	34.9	10.65	-71.40	-9.00	EXP
No. 5 and No. 9 Mills Bag Filter (Expansion)	anding Source) RKML59B			66	20.1	2.0	0.61	115	319	58.3	17.75	-0.010	-0.0013	EXP
No. 3 Continuous Triple Dryer (Expan	ding Source) 3CONTDB		•	68	20.7	3.5	1.07	115	319	45.8	13.96	-22.80	-2.87	EXP
No. 4 Continuous Triple Dryer (Expan	ding Source) 4CONTDB			68	20.7	3.5	1.07	134	330	61.8	18.85	-23.20	-2.92	EXP
Molten Sulfur Handling- Pits 7 & 8 (E	xpanding Source) MSPTSB			c	e	e	e	e	¢	¢	•	-0.080	-0.010	EXP
Molten Sulfur Handling- Pits 4,5, & 6	(Expanding Sourt PTS456B			ſ	(f	ı	ľ	ſ	r	ľ	-0.13	-0.02	EXP
Molten Sulfur Handling- Tanks (Expa	nding Source) MSTKTLB			8	8	8	8	8	8	8	8	-2.12	-0.27	EXP
No. 4 Sulfuric Acid Plant (Expanding	Source) NO4SAPB			80	24.4	4.7	1.43	194	363	20.4	6.23	-282.00	-35.53	EXP
No. 5 Sulfuric Acid Plant (Expanding	Source) NO5SAPB			74	22.6	5.3	1.62	189	360	25.3	7.72	-480.00	-60.48	EXP
No. 6 Sulfuric Acid Plant (Expanding	Source) NO6SAPB			72	21.9	5.9	1.80	189	360	31.3	9.53	-688.00	-86.69	EXP
No. 7 Sulfuric Acid Plant (Expanding	Source) NO7SAPB			92	28.0	9.4	2.87	183	357	22.3	6.80	-1,503.00	-189.38	EXP
No. 8 Sulfuric Acid Plant (Expanding	Source) NOSSAPB			96	29.3	10.7	3.26	174	352	24.2	7.37	-1,679.00	-211.55	EXP
atonal Gypsum - Apollo Beach														
l Imp Mill #1	NATGYPI	363.3	3075.6	98	29.9	3.8	1.14	350	450	28.2	8.6	5.28	0.67	CON
Imp Mill #2	NATGYP2			98	29.9	3.8	1.14	350	450	28.2	8.6	5.28	0.67	CON
lmp Mill #3	NATGYP3			98	29.9	3.8	1.14	350	450	28.2	8.6	5.28	0.67	CON
Imp Mill #4	NATGYP4			98	29.9	3.8	1.14	350	450	28.2	8.6	5.28	0.67	CON
Kiln	NATGYP5			54	16.5	13.4	4.08	384	469	58.2	17.7	33.22	4.19	CON
ig Bend Transfer Co. L.L.C.														
Melter/ Molten Scrubber stack	ВВТССМВО	361.1	3076.2	95	29.0	2.2	0.66	97	309	57.0	17.4	0.014	0.002	CON
Package Boiler	BBTCPKBL	20111		106	32.3		1.22	350	450	29.7	9.1	3.56	0.45	CON
ECO - Big Bend														
4 UNIT #4 BOILER W/ESP	TECOBB4	361.9	3075.0	490	149.4	24.0	7.32	127	326	78.3	23.9	3,576	451	CON
1,2 Steam Generators 1 & 2 Baseline	TCBB12B	30		490	149.4		7.32	300	422	94.0	28.7	-19333	-2436	EXP
3 Steam Generator 3 Baseline	ТСВВЗВ			490	149.4		7.32	293	418	47.0	14.3	-9667	-1218	EXP

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo	rdinates			5	Stack Pa	rameters						PSD *
	Model	East	North	Heig	ght	Dian	neter	Tempe	rature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXI
5 DIESEL COMPRESSORS	TBSHIP5	358.0	3089.0	10	3.0	0.5	0.15	350	450	148.5	45.3	2.74	0.35	CON
fcKay Bay Refuse-to-Energy Facility														
103 MWC & Aux Burner No. I	MCKY103	360.2	3092.2	201	61.3	4.2	1.28	289	416	73.3	22.3	40.87	5.15	CON
104 MWC & Aux Burner No. 2	MCKY104			201	61.3	4.2	1.28	289	416	73.3	22.3	40.87	5.15	CON
105 MWC & Aux Burner No. 3	MCKY105			201	61.3	4.2	1.28	289	416	73.3	22.3	40.87	5.15	CON
106 MWC & Aux Burner No. 4	MCKY106			201	61.3	4.2	1.28	289	416	73.3	22.3	40.87	5.15	CON
fillsborough Cty. Resource Recovery Fac.														
1 MWC & Aux Burner #1	HILLSRCI	368.2	3092.7	220	67.1	5.1	1.55	290	416	72.5	22.1	58.67	7.39	CON
2 MWC & Aux Burner #2	HILLSRC2			220	67.1	5.1	1.55	290	416	72.5	22.1	58.67	7.39	CON
3 MWC & Aux Burner #3	HILLSRC3			220	67.1	5.1	1.55	290	416	72.5	22.1	58.67	7.39	CON
uengling Brewing Co.														
l 2 Natural gas boilers	YNGBREWI	362.0	3103.2	90	27.4	6.5	1.98	275	408	7.0	2.1	9.00	1.13	CON
inellas Co. Resource Recovery Facility														
1 Waste Combustor & Aux burners-Unit #1	PINRCYI	335.2	3084.1	161	49.1	7.8	2.38	449	505	88.0	26.8	170.00	21.4	CON
3 Waste Combustor & Aux burners-Unit #2	PINRCY3			165	50.3	9.0	2.74	450	505	90.0	27.4	525.00	66.2	CON
MC PhosphateS Company - New Wales														
2 SAP No. 1	IMCWAL2	396.7	3079.4	200	61.0	8.5	2.59	170	350	50.0	15.2	483.30	60.90	CON
3 SAP No. 2	IMCWAL3			200	61.0	8.5	2.59	170	350	50.0	15.2	483.30	60.90	CON
4 SAP No. 3	IMCWAL4			200	61.0	8.5	2.59	170	350	50.0	15.2	483.30	60.90	CON
9 DAP Plant No. 1	IMCWAL9			133	40.5	7.0	2.13	105	314	49.0	14.9	74.60	9.40	CON
13 Auxiliary Boiler	IMCWAL13			85	25.9	3.0	0.91	555	564	193.3	58.9	569.00	71.69	CON
27 AFI Plant	IMCWAL27			172	52.4	8.0	2.44	130	328	66.3	20.2	18.30	2.31	CON
36 Kilns, Dryer, Blending Op.	IMCWAL36			172	52.4	4.5	1.37	105	314	52.0	15.8	192.00	24.19	CON
42 SAP No. 4	IMCWAL42			199	60.7	8.5	2.59	170	350	50.0	15.2	483.30	60.90	CON
44 SAP No. 5	IMCWAL44			199	60.7	8.5	2.59	170	350	50.0	15.2	483.30	60.90	CON
45 DAP Plant No 2 - East Train	IMCWAL45			171	52.1	6.0	1.83	110	316	58.0	17.7	22.00	2.77	CON
46 DAP Plant No 2 - West Train	IMCWAL46			171	52.1	6.0	1.83	110	316	58.0	17.7	22.00	2.77	CON
60 Molten Storage Tank	IMCWAL60			40	12.2	2.0	0.61	240	389	0.4	0.1	0.50	0.06	CON
62 Molten Storage Tank	IMCWAL62			40	12.2	2.0	0.61	240	389	0.4	0.1	0.50	0.06	CON
63 Unloading Sulfur Pit	IMCWAL63			40	12.2	2.0	0.61	240	389	0.4	0.1	0.30	0.04	CON
64 Unloading Sulfur Pit	IMCWAL64			40	12.2	2.0	0.61	240	389	0.4	0.1	0.10	0.01	CON
65 Unloading Sulfur Pit	IMCWAL65			40	12.2	2.0	0.61	240	389	0.4	0.1	0.30	0.04	CON
66 Sulfur Transfer Pit	IMCWAL66			40	12.2	2.0	0.61	240	389	0.4	0.1	0.10	0.01	CON
68 Unloading Sulfur Pit	IMCWAL68			25	7.6		0.03	90	305	0.1	0.03	0.30	0.04	CON

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo						rameters					_	PSD *
	Model	East	North	Heig	ght	Dian	neter	Tempe	rature	Velo	ocity	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXI
69 Unloading Sulfur Pit	IMCWAL69			25	7.6	0.1	0.03	90	305	0.1	0.03	0.10	0.01	CON
74 Multifos C Kiln	IMCWAL74			172	52.4	4.5	1.37	105	314	70.2	21.4	8.70	1.10	CON
78 GRANULAR MAP PLANT	IMCWAL78			133	40.5	6.0	1.83	145	336	109.6	33.4	13.72	1.73	CON
Expanding Source	IMCWAL0			69	21.0	7.0	2.13	165	347	61.0	18.6	-272.0	-34.27	EXP
Expanding Source	IMCWALI			200	61.0	8.5	2.59	170	350	42.9	13.1	-1158.7	-146.00	EXP
Agrifos, L.L.C Nichols	(formerly Mobil Mining &	Minerals Nichols)												
Expanding Source	AGRINK3	398.7	3085.3	93	28.4	3.6	1.10	152	340	63.1	19.2	-110.32	-13.90	EXP
Expanding Source	AGRINK4			13	4.0	2.6	0.79	480	522	5.9	1.8	-6.90	-0.87	EXP
MC Phosphates Company - Nichols	(formerly IMC Agrico/Con													
5 SAP NO. I PSD	AGRNK5	398.4	3084.2	150	45.7		2.29	170	350	33.0		416.80	52.52	CON
Expanding Source	AGRNK I			100	30.5	5.9		95	308	62.0		-120.5	-15.2	EXP
Expanding Source	AGRNK2			80	24.4	5.0	1.52	151	339	42.3	12.9	-30.8	-3.88	EXP
ECO - Polk Power Station														
1 Combined cycle CT	TECOPKI	402.5	3067.4	150	45.7	19.0	5.79	340	444	75.8	23.1	518.00	65.27	CON
3 120 MMBtu/HR AuxBlr	TECOPK3			75	22.9	3.7	1.13	375	464	50.0	15.2	96.00	12.10	CON
4 Sulfuric Acid Plant	TECOPK4			199	60.7	2.5	0.76	180	355	60.0	18.3	35.60	4.49	CON
9 Simple Cycle CT	TECOPK9			114	34.7	29.0	8.84	1117	876	60.2	18.3	9.20	1.16	CON
10 Simple Cycle CT	TECOPK10			114	34.7	29.0	8.84	1317	876	60.2	18.3	9.20	1.16	CON
Cargill Mulberry (Formerly Mulberry Phosphates, Inc.)														
2 SAP 2	MULPHS2	406.8	3085.1	200	61.0	7.0	2.13	200	366	32.0	9.8	283.33	35.70	CON
1 Expanding Source	MULPHSX			168	51.2	7.0	2.13	181	356	37.5	11.4	-2,044.40	-258	EXP
F Industries, Inc Bartow	(Bonnie Mine Road)													
6 SAP NO.6	CFIBAR6	408.3	3082.5	206	62.8	7.0	2.13	140	333	21.0	6.4	400.00	50.40	CON
21 BOILER NO. I	CFIBAR21			36	11.0	2.5	0.76	600	589	44.0		16.80	2.12	CON
1 Expanding Source	CFIBARXI			100	30.5	4.5	1.37	170	350	40.0	12.2	-483	-61	EXP
2 Expanding Source	CFIBARX2			100	30.5	5.5		170	350	34.0		-875	-110	EXP
3 Expanding Source	CFIBARX3			100	30.5		2.74	196	364	14.0		-850	-107	EXP
4 Expanding Source	CFIBARX4			100	30.5	7.0	2.13	185	358	26.0		-1,388	-175	EXP
5 Expanding Source	CFIBARX5			206	62.8	7.0		185	358	35.0		-1,800	-227	EXP
6 Expanding Source	CFIBARX6			206	62.8	7.0	2.13	187	359	34.0	10.4	-1,350	-170	EXP
MC Phosphates Company - South Pierce														
4 SAP No. 10	IMCSPR4	407.5	3071.4	144	43.9	9.0	2.74	170	350	41.1	12.5	450.0	56.70	CON
5 SAP No. 11	IMCSPR5			144	43.9	9.0	2.74	170	350	41.1	12.5	450.0	56.70	CON

TABLE D-5
SUMMARY OF SO₁ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo	rdinates			S	tack Pa	rameters						PSD *
	Model	East	North	Heig	ht	Diam	ieter	Tempe	rature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXI
Combined Expanding Sources	IMCPIER6			144	43.9	5.2	1.58	170	350	86.6	26.4	-600.0	-75.6	EXP
argill Green Bay (Formerly Farmland Hydro, L.P Green Bay)													
3 SAP #3	FARM3	409.5	3080.1	100	30.5	7.5	2.29	170	350	28.0	8.5	350.00	44.10	CON
4 SAP #4	FARM4			100	30.5	7.5	2.29	180	355	39.6	12.1	350.00	44.10	CON
5 SAP #5	FARM5			150	45.7	8.0	2.44	180	355	44.1	13.4	466.70	58.80	CON
7 South AP PlantStack A	FARM7			130	39.5	8.0	2.44	97	309	49.7	15.2	3.16	0.40	CON
29 NORTH MAP/DAP PLANTMAIN STACK	FARM29			128	39.0	8.0	2.44	113	318	50.7	15.5	2.63	0.33	CON
34 MOLTEN SULFUR PIT	FARM34			10	3.0	0.8	0.24	200	366	54.0	16.5	0.70	0.09	CON
38 No. 6 SAP	FARM38			150	45.7	9.0	2.74	180	355	34.8	10.6	401.00	50.53	CON
SAP # 1 (Expanding Source)	FRMSAPI			100	30.5	7.0	2.13	169	349	18.9	5.8	-493	-62.10	EXP
SAP # 2 (Expanding Source)	FRMSAP2			100	30.5	7.0	2.13	171	350	18.8	5.7	-533	-67.13	EXP
SAP # 3 (Expanding Source)	FRMSAP3			100	30.5	7.5	2.29	162	345	30.3	9.2	-653	-82.23	EXP
SAP # 4 (Expanding Source)	FRMSAP4			100	30.5	7.5	2.29	124	324	22.7	6.9	-542	-68.34	EXP
rgill Fertilizer - Bartow														
1 NO.3 FERTILIZER PLANT	CARBARI	409.8	3086.6	141	43.0	7.5	2.29	160	344	79.0	24.1	76.90	9.69	CON
12 No. 4 SAP	CARBAR12			200	61.0	6.8	2.07	180	355	61.0	18.6	433.30	54.60	CON
32 No. 6 SAP	CARBAR32			200	61.0	6.8	2.07	180	355	61.0	18.6	433.30	54.60	CON
33 No. 5 SAP	CARBAR33			200	61.0	6.8	2.07	180	355	61.0	18.6	433.30	54.60	CON
51 Boiler	CARBAR51			31	9.4	3.5	1.07	410	483	20.0	6.1	165.17	20.81	CON
ardee Power Station														
1 CT IA W\HRSG	HARDEI	404.8	3057.4	90	27.4	14.5	4.42	236	386	77.5	23.6	734.40	92.53	CON
2 CT 2A W\HRSG	HARDE2			90	27.4	14.5	4.42	245	391	75.8	23.1	734.40	92.53	CON
3 Simple cycle CT 2A	HARDE3			75	22.9	17.9	5.46	986	803	94.3	28.7	734.40	92.53	CON
5 Unit 2B - 75 MW gas turbine	HARDE5			85	25.9	14.8	4.51	999	810	142.0	43.3	5.30	0.67	CON
skeland Electric, Larsen Power Plant														
8 Combined Cycle CT	LARS8	408.9	3102.5	155	47.2	16.0	4.88	481	523	85.7	26.1	211.40	26.64	CON
keland Electric, McIntosh Power Plant														
6 McIntosh Unit 3	MCINT6	409.0	3106.2	250	76.2	18.0	5.49	167	348	82.6	25.2	4,368.00	550.37	CON
28 CT UNIT 5	MCINT28			85	25.9	28.0	8.53	1095	864	82.7	25.2	126.70	15.96	CON
S. Agri-Chemicals - Ft. Meade														
16 SAP #1	USAGFM16	416.0	3069.0	175	53.3	8.5	2.59	180	355	32	9.8	500.00	63.00	CON
17 SAP #2	USAGFM17			175	53.3	8.5	2.59	180	355	32	9.8	500.00	63.00	CON
28 MOLTEN SULFUR TANK	USAGFM28			6	1.8	0.3	0.09	270	405	344	104.9	0.49	0.06	CON

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

			UTM Coc						arameters						PSD *
		Model	East	North	Heig	tht	Dian	neter	Tempe	rature	Velo	city	Emission	Rate	Source
·	Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXF
25	9 MOLTEN SULFUR TANK	USAGFM29			6	1.8	0.3	0.09	260	400	157	47.9	0.23	0.03	CON
	Expanding Source	USAGFM0			95	29	9.9		106	314	23	6.9	-625.4	-78.80	EXP
	Expanding Source	USAGFMI			93	28	5.0	1.52	134	330	58	17.6	-145.0	-18.27	EXP
	trus Juices USA, Inc.														
	3 PEEL DRYER	CUTR3	421.6	3103.7	100	30.5		0.98	161	345	49.0	14.9	186.00	23.44	CON
	8 COGEN #1 9 COGEN #2	CUTR8 CUTR9			40 40	12.2 12.2	4.0 4.0		323 330	435 439	60.0 66.0	18.3 20.1	170.80 26.00	21.52 3.28	CON
_															
Auburndal	le Power Partners, LP						-								
	Proposed CT	LD7595A	420.8	3103.3	50	15	22.0	6.71	1,040	833	68	20.8	53.60	6.75	CON
1	Existing CT	CALEXTI			160	49	18.0	5.49	280	411	58	17.7	70.00	8.82	CON
	Proposed CT, Osprey	CALOSPI			135	41	19.0	5.79	200	366	60	18.3	6.50	0.82	CON
	Proposed CT, Osprey	CALOSP2			135	41	19.0	5.79	200	366	60	18.3	6.50	0.82	CON
	stillers - Auburndale														
3	Boiler	FDIST31	421.4	3102.9	45	14	4.0	1.22	350	450	5	1.5	0.060	0.008	CON
FPC - Inte	rcession City Plant														
1-6	Combined CT Units 1-6	INTCP16	446.3	3126.0	20	6	14.6	4.46	760	678	175	53.3	2,185.20	275.34	CON
7-10	Combined CTs 7-10	INTCP710			75	23	19.0		1034	830	139	42.5	1,295.00	163.17	CON
11	CT II	INTCPII			75	23	19.0	5.79	1034	830	139	42.5	407.00	51.28	CON
PS - Shad	ly Hills														
	CT No. 1-3	IPSPASCO	347.2	3138.8	60	18.3	22	6.71	1076	853	122.4	37.3	304.50	38.37	CON
Estech/Sw	rift Polk	FOTONIA					0.7	2.05		220	27.0	0.47	100.00	22.04	EVD
		ESTDRY! ESTDRY2	411.5	3,074.2	60.0 61.5	18.3 18.8		2.95 2.95	151 152	339 340	27.8 16.6	8.47 5.06	-190.00 -180.95	-23.94 -22.80	EXP EXP
		ESTSAP			101	30.8		2.13	185	358	12.8	3.90	-737.06	-92.87	EXP
FL Crushe	ed Stone Kiln 1	FCSI	360.0	3,162.5	320	97.5	21.3	6.48	323	435	54,6	16.6	806.35	101.60	CON
		resi	300.0	3,102.3	320	71.3	21.3	0.46	323	455	J 4 ,0	10.0	000.33	101.00	CON
PC Polk	County Site				113	34.4	13.5	4.115	260	400	133.0	40.5	98.02	12.35	CON
					113	34.4	13.5	4.1	260	400	133.0	40.5	98.02	12.35	CON

TABLE D-5
SUMMARY OF SO, SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		rdinates					rameters						PSD *
Model	East	North	Heig	ght	Dian	neter	Tempe	rature	Velo	city	Emission	Rate	Source
ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXF
FPCPKC2	414.3	3,073.9	113	34.4	13.5	4.1	260	400	133.0	40.5	196.03	24.7	CON
GPCEM4B	358.0	3,090.6	118	36.0	9.0	2.74	450	505	57.8	17.6	-499.92	-62.99	EXP
GPCEM5B	358.0	3,090.6	149	45.4	12.5	3.81	430	494	19.0	5.80	-550.00	-69.3	EXP
IAPRC12 IAPRC34	404.1 404.1	3,079.0 3,079.0	80.0 80.0	24.4 24.4			151 151	339 339	42.5 61.7	12.9 18.8	-193.02 -182.54	-24.3 -23.0	EXP EXP
D CONT. V		2.000.0		27.		2.22					150.00		roze.
	404.8	3,069.5	90	27.4	7.5	2.29	151	339	50.0	15.3	-152.86	-19.3	EXP
	405.6	3,079.4											EXP
													EXP
													EXP
													EXP
													EXP
MOBELE6			96.0	29.3	7.0	2.13	106	314	28.0	8.5	-3/5.00	-47.25	EXP
	325.6	3,116.7											EXP
													EXP
													EXP
													EXP
STAUFR5			84.0	25.6	3.0	0.91	120	322	22.9	7.0	-3.57	-0.45	EXP
	413.2	3,086.3											EXP
UAGBAR2			95.0	29.0	7.0	2.12	89	305	24.6	7.5	-333.33	-42.00	EXP
ASPHALT3	350.0	3 162 4	40.0	12.2	45	1 37	210	377	347	10.6	17.86	2 25	CON
ASTINLIS	339.9	3,102.4	40.0	12.2	7.3	,	219	5,,,	54.7	10.0	17.00	2.23	00.1
A CRUIAL TA	201	21604	20.0	0.6	3.5	1.00	104	257	36.0	11.0	1200	2.25	CON
	FPCPKC2 GPCEM4B GPCEM5B IAPRC12	FPCPKC2 414.3 GPCEM4B 358.0 GPCEM5B 358.0 IAPRC12 404.1 IAPRC34 404.1 IMPRLX 404.8 MOBELE1 405.6 MOBELE2 MOBELE3 MOBELE4 MOBELE5 MOBELE5 MOBELE6 STAUFR1 325.6 STAUFR3 STAUFR4 STAUFR5 413.2 UAGBAR1 413.2 ASPHALT3 359.9	FPCPKC2 414.3 3,073.9 GPCEM4B 358.0 3,090.6 GPCEM5B 358.0 3,090.6 IAPRC12 404.1 3,079.0 IAPRC34 404.1 3,079.0 IMPRLX 404.8 3,069.5 MOBELEI 405.6 3,079.4 MOBELE3 MOBELE4 MOBELE5 MOBELE5 MOBELE6 STAUFR1 325.6 3,116.7 STAUFR2 STAUFR3 STAUFR4 STAUFR5 UAGBAR1 413.2 3,086.3 UAGBAR2 413.2 3,086.3	FPCPKC2 414.3 3,073.9 113 GPCEM4B 358.0 3,090.6 118 GPCEM5B 358.0 3,090.6 149 IAPRC12 404.1 3,079.0 80.0 1APRC34 404.1 3,079.0 80.0 80.0 1APRC34 404.1 3,079.0 80.0 1APRC34 404.1 3,079.0 80.0 1APRC34 404.1 3,079.0 80.0 1APRC34 405.6 3,079.4 24.0 1APRC34 405.6 3,079.4 24.0 1APRC34 405.6 3,079.4 24.0 1APRC34 40.0 1APRC34 1APRC34 1APRC34 1APRC34 1APRC34 1APRC34 1APRC34 1APRC34 1APRC35 1AP	FPCPKC2 414.3 3,073.9 113 34.4 GPCEM4B 358.0 3,090.6 118 36.0 GPCEM5B 358.0 3,090.6 149 45.4 LAPRC12 404.1 3,079.0 80.0 24.4 LAPRC34 404.1 3,079.0 80.0 24.4 IMPRLX 404.8 3,069.5 90 27.4 MOBELEI 405.6 3,079.4 24.0 7.3 MOBELE2 60.0 18.3 MOBELE4 84.0 25.6 MOBELE5 60.0 18.3 MOBELE6 96.0 29.3 STAUFR1 325.6 3,116.7 24.0 7.3 STAUFR2 60.0 18.3 STAUFR3 161 49.0 STAUFR5 40.0 25.6 UAGBAR1 413.2 3,086.3 51.8 15.8 UAGBAR2 95.0 29.0 ASPHALT3 359.9 3,162.4 40.0 12.2	FPCPKC2 414.3 3,073.9 113 34.4 13.5 GPCEM4B 358.0 3,090.6 118 36.0 9.0 GPCEM5B 358.0 3,090.6 149 45.4 12.5 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 IAPRC34 404.1 3,079.0 80.0 24.4 8.0 IMPRLX 404.8 3,069.5 90 27.4 7.5 MOBELE1 405.6 3,079.4 24.0 7.3 3.0 MOBELE2 20.0 6.1 3.0 MOBELE3 60.0 18.3 6.0 MOBELE4 84.0 25.6 7.0 MOBELE5 60.0 18.3 2.3 MOBELE6 96.0 29.3 7.0 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 STAUFR2 60.0 18.3 2.3 STAUFR3 161 49.0 3.9 STAUFR4 84.0 25.6 7.0 STAUFR5 84.0 25.6 3.0 UAGBAR1 413.2 3,086.3 51.8 15.8 6.0 UAGBAR2 95.0 29.0 7.0 ASPHALT3 359.9 3,162.4 40.0 12.2 4.5	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 IAPRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 MOBELE1 405.6 3,079.4 24.0 7.3 3.0 0.91 MOBELE2 20.0 6.1 3.0 0.91 MOBELE3 60.0 18.3 6.0 1.83 MOBELE4 60.0 18.3 2.3 0.7 MOBELE5 60.0 18.3 2.3 0.7 MOBELE6 96.0 29.3 7.0 2.13 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 STAUFR2 60.0 18.3 2.3 0.7 STAUFR3 161 49.0 3.9 1.2 STAUFR4 84.0 25.6 7.0 2.13 STAUFR5 84.0 25.6 7.0 2.13	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 IAPRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 MOBELEI 405.6 3,079.4 24.0 7.3 3.0 0.91 376 MOBELE3 60.0 18.3 6.0 1.83 170 MOBELE4 84.0 25.6 7.0 2.13 91 MOBELE5 60.0 18.3 2.3 0.7 120 MOBELE6 96.0 29.3 7.0 2.13 106 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 STAUFR2 60.0 18.3 2.3 0.7 120 STAUFR3 161 49.0 3.9 1.2 143 STAUFR5 84.0 25.6 7.0 2.13 91 STAUFR5 84.0 25.6 7.0 2.13 91 VAGBAR1 413.2 3,086.3 51.8 15.8 6.0 1.83 138 UAGBAR2 95.0 29.0 7.0 2.12 89	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 400 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 505 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 494 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 339 1APRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 339 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 339 MOBELE1 405.6 3,079.4 24.0 7.3 3.0 0.91 376 464 MOBELE2 60.0 18.3 6.0 1.83 170 350 MOBELE4 84.0 25.6 7.0 2.13 91 306 MOBELE5 60.0 18.3 2.3 0.7 120 322 MOBELE6 96.0 29.3 7.0 2.13 106 314 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 STAUFR2 60.0 18.3 2.3 0.7 120 322 STAUFR3 161 49.0 3.9 1.2 143 335 STAUFR4 84.0 25.6 7.0 2.13 91 306 STAUFR5 84.0 25.6 3.0 0.91 120 322 STAUFR5 84.0 25.6 3.0 0.91	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 400 133.0 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 505 57.8 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 494 19.0 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 339 42.5 IAPRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 339 61.7 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 339 50.0 MOBELE1 405.6 3,079.4 24.0 7.3 3.0 0.91 376 464 10.6 MOBELE2 60.0 18.3 6.0 1.83 170 350 22.3 MOBELE3 60.0 18.3 2.3 0.7 120 322 75.0 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 MOBELE6 96.0 29.3 7.0 2.13 91 306 22.9 MOBELE6 96.0 18.3 2.3 0.7 120 322 75.0 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 STAUFR2 60.0 18.3 2.3 0.7 120 322 75.0 STAUFR3 161 49.0 3.9 12 143 335 114 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 400 133.0 40.5 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 505 57.8 17.6 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 494 19.0 5.80 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 339 42.5 12.9 IAPRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 339 61.7 18.8 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 339 50.0 15.3 MOBELEI 405.6 3,079.4 24.0 7.3 3.0 0.91 376 464 10.6 3.2 MOBELE2 60.0 18.3 6.0 1.83 170 350 22.3 6.8 MOBELE5 60.0 18.3 6.0 1.83 170 350 22.3 6.8 MOBELE6 84.0 25.6 7.0 2.13 91 306 22.9 7.0 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 22.9 MOBELE6 96.0 29.3 7.0 2.13 106 314 28.0 8.5 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 3.2 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 3.2 STAUFR2 60.0 18.3 2.3 0.7 120 322 75.0 22.9 STAUFR3 161 49.0 3.9 1.2 143 335 11.8 3.6 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 400 133.0 40.5 196.03 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 505 57.8 17.6 -499.92 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 494 19.0 5.80 -550.00 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 339 42.5 12.9 -193.02 1APRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 339 61.7 18.8 -182.54 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 339 50.0 15.3 -152.86 MOBELEI 405.6 3,079.4 24.0 7.3 3.0 0.91 376 464 10.6 3.2 -51.83 MOBELE2 60.0 18.3 6.0 1.83 170 350 22.3 6.8 -173.10 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 MOBELE6 96.0 29.3 7.0 2.13 106 314 28.0 8.5 -375.00 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 3.2 -38.57 STAUFR2 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 MOBELE5 75.0 16.4 10.6 13.2 3.0 11.5 10.5 11.5 10.5 11.5 10.5 11.5 11	FPCPKC2 414.3 3,073.9 113 34.4 13.5 4.1 260 400 133.0 40.5 196.03 24.7 GPCEM4B 358.0 3,090.6 118 36.0 9.0 2.74 450 505 57.8 17.6 -499.92 -62.99 GPCEM5B 358.0 3,090.6 149 45.4 12.5 3.81 430 494 19.0 5.80 -550.00 -69.3 IAPRC12 404.1 3,079.0 80.0 24.4 5.0 1.52 151 339 42.5 12.9 -193.02 -24.3 1APRC34 404.1 3,079.0 80.0 24.4 8.0 2.43 151 339 61.7 18.8 -182.54 -23.0 IMPRLX 404.8 3,069.5 90 27.4 7.5 2.29 151 339 50.0 15.3 -152.86 -19.3 MOBELEI 405.6 3,079.4 24.0 7.3 3.0 0.91 376 464 10.6 3.2 -51.83 -6.53 MOBELE2 60.0 18.3 60.1 8.3 170 350 22.3 6.8 -173.10 -21.81 MOBELE5 60.0 18.3 6.0 1.83 170 350 22.3 6.8 -173.10 -21.81 MOBELE5 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 -3.17 MOBELE6 96.0 29.3 7.0 2.13 106 314 28.0 8.5 -375.00 4.72.5 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 3.2 -38.57 -4.86 STAUFR2 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -25.16 -3.17 MOBELE6 96.0 29.3 7.0 2.13 106 314 28.0 8.5 -375.00 -47.25 STAUFR1 325.6 3,116.7 24.0 7.3 3.0 0.91 376 464 10.6 3.2 -38.57 -4.86 STAUFR2 60.0 18.3 2.3 0.7 120 322 75.0 22.9 -1.19.0 -1.50 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -7.16 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR4 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 91 306 22.9 7.0 -58.41 -5.05 STAUFR5 84.0 25.6 7.0 2.13 89 305 24.6 7.5 -333333 -42.00 ASPHALT3 359.9 3,162.4 40.0 12.2 4.5 1.37 219 377 34.7 10.6 17.86 2.25

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo						rameters						PSD *
	Model	East	North	Heig	ht	Dian	neter	Tempe	rature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXI
Borden Hillsborough														
-	BORDHIL	394.6	3,069.6	100	30.5	6.0	1.82	160	344	48.5	14.8	-51.43	-6.48	EXP
Borden Polk														
	BORDPLK	414.5	3,109.0	56.0	17.1	7.7	2.34	140	333	27.1	8.3	-41.98	-5.29	EXP
ouch Const-Zephyrhills (Asphalt)														
	COUCHZEP	390.3	3,129.4	20.0	6.1	4.5	1.38	300	422	68.9	21.0	28.10	3.54	CON
Couch Const-Odessa (Asphalt)	COUCHODE	340.7	3,119.5	30.0	9.1	4.6	1.4	325	436	73.2	22.3	57.54	7.25	CON
	COOCHODE	340.7	3,119.3	30.0	7.1	4.0	1.4	323	450	73.2	22.3	37.54	7.23	COIT
ris Paving (Asphalt)	DRIS	340.6	3,119.2	40.0	12.2	10.0	3.05	151	339	21.2	6.5	1.83	0.23	CON
Oolime Oryers	DOLIMEDR	404.8	3,069.5	90.0	27.4	5.0	1.52	140	333	67.8	20.7	-45.08	-5.68	EXP
Boilers	DOLIMEBL		2,007.0	90.0	27.4		0.61	430	494	23,8	7.3	-35.87	-4.52	EXP
Evans Packing														
	EVANS	383.3	3,135.8	40.4	12.3	1.3	0.4	379	466	30.2	9.2	1.59	0.20	CON
ER Jahna (Lime Dryer)														
	ERJAHNA	386.7	3,155.8	35.0	10.7	6.0	1.83	129	327	29.5	9.0	6.51	0.82	CON
DOC Boiler #3													• • •	2011
	FDOC	382.2	3,166.1	30.0	9.1	2.0	16.0	401	478	15.0	4.6	23.73	2.99	CON
L Mining and Materials Kiln														
	FMM	356.2	3,169.9	105	32.0	14.0	4.27	250	394	32.5	9.9	11.51	1.45	CON
PC - Crystal River														
rystal River I	CRYRIV1B	334.2	3,204.5	499	152.0	15.0		300	422	138.1	42.1	-2,492.06	-314.00	EXP
Crystal River 2	CRYRIV2B			502	153.0	16.0	4.88	300	422	138.1	42.1	-14,753.97	-1,859.00	EXP
Crystal River 4				585	178.2		7.77	253	396	68.9	21.0	8,006.35	1,008.80	CON
Crystal River 5	CRYRIV45			585	178.2		7.77	253 253	396 396	68.9 68.9	21.0	8,006.35 16,012.70	2,017.60	CON

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo						rameters					PSD 2	
	Model	East	North	Heig	tht	Dian	neter	Tempe	rature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/br)	(g/s)	(CON/EXP
PC Debary														
	DEBARY	467.5	3,197.2	50.0	15.2	13.8	4.21	1016	820	184.4	56.2	3,701.59	466.40	CON
lospital Corp of America				240								0.42	0.00	COM
Boiler #1				36.0	11.0		0.31	500	533	13.1	4.0	0.63	0.08	CON
3oiler #2	HCOA12	333.4	3,141.0	36.0 36.0	11.0		0.31	500	533 533	13.1	4.0	0.63 1.27	0.08	CON
	HEOA12	333.4	3,141.0	50.0	11.0	•0	0.51	300	333	13.1	4.0		0.10	00
Cissimmee Utilities	KISSUT	447.7	3,127.9	40.0	12.2	10.0	3.05	718	654	95.5	29.1	233.33	29.40	CON
	K1550 i	47.7	3,127.5	40.0	12.2	10.0	3.03	,10	054	,,,	27.1	255.55	25.40	0011
Cissimmee Utilites Exist	KISSEX	460.1	3,129.3	60.0	18.3	12.0	3.66	300	422	124.7	38.0	254.76	32.10	CON
	KISSEA	400.1	3,127.3	00.0	10.5	12.0	3.00	500	422	124.7	30.0	234.70	32.10	COIT
Lake Cogen	LAKECOGN	434.0	3,198.8	100	30.5	110	3.35	232	384	56.2	17.1	40.00	5.04	CON
	LAKECOGN	434.0	3,170.0	100	30.3	11.0	3.33	232	364	30.2	17.1	40.00	3.04	CON
Mulberry Cogeneration	NOTE ONLY	412.6	2.000 (125	20.1	160	4.67	210	277	(10	100	100.79	12.70	CON
CT .	MULCNAA	413.6	3,080.6	125	38.1		4.57	219 300	377	61.9 30.5	18.9 9.3	5.16	0.65	CON
Ouct Burner	MULCNAB			125	38.1	6.5	1.98	300	422	30.5	9.3	5.10	0.65	CON
New Pt Richey Hospital				36.0	110		0.21	520	544	12.7	3.9	0.48	0.06	CON
Boiler #1 Boiler #2				36.0	11.0		0.31	520 520	544	12.7	3.9	0.48	0.03	CON
Soliei #2	NEWPTR12	331.2	3,124.5	36.0	11.0		0.31	520	544	12.7	3.9	0.71	0.09	CON
Oman Construction														
	OMAN	359.8	3,164.9	25.0	7.6	6.0	1.83	165	347	20.6	6.3	16.59	2.09	CON
Orlando Utilities Commission - Stanton														
Jnit I	OUCI	483.5	3,150.6	550	167.6	19.0	5.8	127	326	70.9	21.6	4,769.84	601.00	CON
Jnit 2 (24-hour)	OUC2			550	167.6	19.0	5.8	124	324	77.1	23.5	728.57	91.80	CON
Overstreet Paving														
-	OVERST	355.9	3,143.7	30	9.1	4.3	1.3	275	408	52.5	16.0	29.13	3.67	CON
asco Cty RRF														
•	PASCORRF	347.1	3,139.2	275	83.8	10.0	3.05	250	394	51.0	15.5	111.90	14.10	CON

TABLE D-5
SUMMARY OF SO₂ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES,
PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Coo	rdinates				Stack Pa	aramet <u>er:</u>	s					PSD *
	Model	East	North	He	ght	Dian	neter	Temp	erature	Velo	city	Emission	Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft)	(m)	(°F)	(K)	(ft/s)	(m/s)	(lb/hr)	(g/s)	(CON/EXP)
Pasco Cogen														
	PASCOGN	385.6	3,139.0	100	30.5	11.0	3.35	232	384	56.2	17.1	40.00	5.04	CON
Reedy Creek Energy Services- EPCOT														
Generator 1				17.0	5.2	1.8	0.55	650	617	144.8	44.1	14.52	1.83	CON
Generator 2				17.0	5.2	1.8	0.55	650	617	144.8	44.1	14.52	1.83	CON
	EPCOT12	442.0	3,139.0	17.0	5.2	1.8	0.55	650	617	144.8	44.1	29.05	3.66	CON
Reedy Creek Energy Services														
	REEDY	443.1	3,144.3	65.0	19.8	11.2	3.41	285	414	51.0	15.6	1.19	0.15	CON
tidge Cogeneration														
	RIDGE	416.7	3,100.4	325	99.1	10.0	3.05	170	350	47.6	14.5	109.52	13.80	CON
ecs	SULACC&D	328.3	3368.8	149.896	45.7	5.215	1.59	181.13	356	94.136	28.7	766.7	96.6	CON
	SULACE&F			200.08	61	9.512	2.9	181.13	356	30.504	9.3	833.3	105.0	CON
	AUXBLRE			50.184	15.3	5.248	1.6	310.73	428	52.152	15.9	170.6	21.5	CON
	AUXBLRB			35.096	10.7	4.789	1.46	382.73	468	31.16	9.5	174.6	22.0	CON
	AUXBLRC&			103.976	31.7	6.494	1.98	382.73	468	49.856	15.2	332.4	41.9	CON
	DAP2ZTR			140.056	42.7	8.003	2.44	125.33	325	42.968	13.1	5.5	0.7	CON
	SULACA&B			200.08	61	5.904	1.8	170.33	350	50.84	15.5	-2416.7	-304.5	EXP
	SULACC&D			149.896	45.7	5.215	1.59	181.13	356	94.136	28.7	-600.0	-75.6	EXP
Suwannee American Coment	AMSUWCEM	321.4	3315.9	315	96.0366	9.42	2.872	205	369.261	46.4	14.146	28.4	3.6	CON
Florida Rock Thompson S. Baker Cement Plant	FLROCCEM	348.4	3287.0	250	76.2195	9.42	2.872	356	453.15	47.8	14.573	17.7	2.2	CON
IEA Southside	JEASSI	437.67	3353.89	133.5	40.7		2.44	343	446	50.8	15.5	418.3	52.7	EXP
	JEASS2	437.67	3353.91	133.5	40.7	8.0		343	446	50.8	15.5	418.3	52.7	EXP
	JEASS5B	437.682	3353.841	145.0	44.2	9.7		287	415	69.9	21.3	825.4	104.0	EXP
	JEASS5A	437.682	3353.849	145.0	44.2	9.7		287	415	69.9	21.3	825.4	104.0	EXP
	JEASS4	437.67	3353.962	143.3	43.7	10.7	3.25	275	408	60.7	18.5	873.0	110.0	EXP

^a Comsuming (C) sources are sources that were constructed or modified after the PSD baseline date.
Expanding (E) sources are sources that have shutdown or have been modified since the baseline date.

TABLE D-5 SUMMARY OF SO₁ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

		UTM Co	ordinates			Stack P	arameters					PSD *
	Model	East	North	Heig	ght	Diameter	Temper	rature	Velocity	Emiss	on Rate	Source
Facility	ID Name	(km)	(km)	(ft)	(m)	(ft) (m)	(°F)	(K)	(ft/s) (m/s	(lb/hr)	(g/s)	(CON/EXP)

b Higher emissions based on maximum allowable emissions. Lower emissions are based on maximum actual 3-hour and 24-hour average emissions for the two units from CEM data.

d.e.f.g Modeled as volume sources. Dimensions are based on methods presented in accordance with ISCST3 User's Manual, and are as follows:

	Physical Dimension:	s (ft)		Model Dimensions (ft)	
_	Height (H)	Width (W)	Height (H or H/2)	Sigma Y (W/4.3)	Sigma Z (H/2.15)
d	8.0	210.0	8.0	48.8	3.72
c	8.0	210.0	8.0	48.8	3.72
ſ	8.0	210.0	8.0	48.8	3.72
g	36.0	125.0	36.0	29	16.7

Two of the four CT units (half of the total plant cmissions) consume PSD increment and are included in the PSD increment analysis. Higher emissions based on maximum allowable emissions. Lower emissions are based on maximum actual emissions for the two units.

TABLE D-6
SUMMARY OF NO_x SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTM Location		LCC Location				Stack Parameters						NOx Emission			Modeled
Facility	Facility Name		CALPUFF	x	Y	x	Υ .	Heig	ht	Diame	ter	Tempera	ture	Veloc	ity	Rate	<u> </u>	PSD Source?	PSD
D	Emission Unit Description	EU (D	ID Name	(m)	(m)	(km)	(km)	ft	m	ft	m	' F	K	ft/s	m/\$	TPY	(lb/hr)	(EXP/CON)	Source
530021	Florida Crushed Stone - Brooksville Cement And Power Plants																		
	BPP: POWER PLANT	18	FCS18	361340	3162370	1432.684	-1153.561	320	97.54	16	4.9	300	422	69.6	21.2	3705.5	846.0	NO	No
	BCP: Cement Kilu I, In-line Kiln/Raw Mill & Clinker Cooler I Kiln #2	20 44	FCS20 FCS44	361340 361340	3162370 3162370	1432.684 1432.684	-1153.561 -1153.561	300 320	91.44 97.54	16 14	4.9 4.3	220 550	378 561	47 40.1	14.3 12.2	1572.0 1595.7	358.9 364.3	CON NO	No Yes
10056	Pasco County Resource Recovery Facility																		
	Municipal waste Combustor Unit #!	ı	PCRRF1				-1,179.090	275	83.8	4.7	1.43	250	394	81.9	25.0	335.6	76.6	CON	Yes
	Municipal Waste Combustor Unit #2	2	PCRRF2 PCRRF3	348,620	3,139,020	1,424.093	-1,179.090	275	83.8 83.8	4.7 4.7	1.43	250 250	394 394	81.9 81.9	25.0 25.0	335.6 335.6	76.6 76.6	CON	Ye Ye
	Municipal Waste Combustor Unit #3 Leachate Treaunent Facility	3 5	PCRRF5	348,620 348,620	3,139,020 3,139,020	1,424.093 1,424.093	-1,179.090 -1,179.090	275 30	9. t	1.0	0.30	350	450	19.1	5.8	1.32	0.3	CON	Yes
110373	Shady Hills Generating Station																		
	A 170 MW Gas Simple Cycle Combustion Turbine	ı	SHILLGSI				-1,179.729	60	18.3	22.0	6.71	1113	874	116.0	35.4	252.1	57.6	CON	Ye
	A 170 MW Gas Simple Cycle Combustion Turbine A 170 MW Gas Simple Cycle Combustion Turbine	2 3	SHILLGS2 SHILLGS3		3,138,370 3,138,370	1,424.305 1,424.305	-1,179.729 -1,179.729	60 60	18.3 18.3	22.0 22.0	6.71 6.71	1113 1113	874 874	116.0 116.0	35.4 35.4	252.1 252.1	57.6 57.6	CON	Yes Yes
570005	CF Industries—Plant City Phosphate Complex																		
3.0003	Johnston Scotch Marine Type Boiler	1	JSMTB	388,000	3,116,000	1,467.276	-1,195.295	25	7.6	3.5	1.07	550	561	61.6	18.8	39.3	9.0	CON	Yes
	"A" SAP	2	SAPA		3,116,000		-1,195.295	110	33.5	5.0	1.52	83	301	68.7	20.9	35.0	8.0	CON	Ye
	"B" SAP	3	SAPB	388,000	3,116,000	1,467.276	-1,195.295	110	33.5	5.0	1.52	83	301	74.8	22.8	14.2	3.2	CON	Ye
	"C" SAP	7	SAPC	388,000	3,116,000	1,467.276	-1,195.295	199	60.7	8.0	2.44	158	343	46.7	14.2	60.0	13.7	CON	Ye
	"D" SAP	8	SAPD	388,000	3,116,000	1,467.276	-1,195.295	199	60.7	8.0	2.44	161	345	48.3	14.7	60.0	13.7	CON	Ye
	"A" Dap/Map Plant	10	ADMP	388,000	3,116,000	1,467.276	-1,195.295	80	24.4	10.0	3.05	137	331	36.8	11.2	17.8	4.1	CON	Ye
	"Z" Dap/Map Plant	11	ZDMP	388,000	3,116,000	1,467.276	-1,195.295	136	41.5	9.0	2.74	140	333	44.5	13.6	26.8	6.1	CON	Ye
	"X" Dap/Map Plant "Y" Dap/Map Plant	12 13	XDMP YDMP	388,000 388,000	3,116,000 3,116,000	1,467.276 1,467.276	-1,195.295 -1,195.295	136 136	41.5 41.5	9.0 9.0	2.74 2.74	134 135	330 330	50.7 53.3	15.5 16.2	28.0 31.0	6.4 7.1	CON	Ye Ye
570127	Mckay Bay Refuse-To-Energy Facility																		
	Unit #1 - The West Most Unit.	1	MBREFI	360,200				160	48.8	5.7	1.74	450	505	41.0	12.5	-329.0	-75.1	EXP	Ye
	Unit#2 - Second West Most Unit. Burns Municipal Waste Only.	2	MBREF2	360,200			-1,223.927	160	48.8	5.7	1.74	450	505	41.0	12.5	-329.0	-75.1	EXP	Ye
	Unit #3 - 3rd Westmost Unit - Burns Municipal Waste.	3	MBREF3	360,200			-1,223.927	160	48.8	5.7	1.74	450	505	41.0	12.5	-329.0	-75.1	EXP	Ye
	Unit #4 - East Most Unit. Burns Municipal Waste.	4	MBREF4	360,200			-1,223.927	160	48.8	5.7	1.74	450	505	41.0	12.5	-329.0	-75.1	EXP	Ye
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 1	103	MBREF103	360,200			-1,223.927	201	61.3	4.2	1.28	289	416	73.3	22.3	169.8	38.8	CON	Ye
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 2	104	MBREF104	360,200	3,092,210		-1,223.927	201	61.3 61.3	4.2 4.2	1.28	289 289	416	73.3 73.3	22.3 22.3	169.8 169.8	38.8 38.8	CON	Ye Ye
	Municipal Waste Combustor & Auxiliary Burners - Unit No. 3 Municipal Waste Combustor & Auxiliary Burners - Unit No. 4	105 106	MBREF105 MBREF106	360,200 360,200	3,092,210 3,092,210		-1,223.927 -1,223.927	201 201	61.3	4.2	1.28 1.28	289	416 416	73.3	22.3	169.8	38.8	CON	Ye
570038	TECO, Hookers Point																		
	Boiler #1	1	TECOHICI	358,000			-1,225.519	280	85.3	11.3	3,4	356	453	82.0	25,0	-530.0	-121.0	EXP	Ye
	Boiler #2	2	TECOHK2	358,000	3,091,000		-1,225.519	280	85.3	11.3	3,4	356	453	82.0	25.0	-530.0	-121.0	EXP	Ye
	Boiler #3	3	TECOHK3	358,000	3,091,000		-1,225.519	280	85.3	12.0	3.7	34)	445	62.7	19.1	-731.0	-166.9	EXP	Ye
	Boiler #4	4	TECOHK4	358,000	3,091,000	1,441.767	-1,225.519	280	85.3 85.3	12.0 11.3	3.7	341 356	445 453	62.7 82.0	19.1 25.0	-731.0 -1064.0	-166.9 -242.9	EXP EXP	Ye Ye
	Boiler #5 Boiler #6	6	TECOHK5 TECOHK6	358,000 358,000	3,091,000	1,441.767 1,441.767	-1,225.519 -1,225.519	280 280	85.3	9.4	3.4 2.9	329	438	75.2	22.9	-972.0	-242.9	EXP	Ye
	30 Caterpillar XQ2000 Power Modules	8-37	TECOHKPM	358,000			-1,225.519	10	3.0	0.7	0.2	808	704	681.0	207.6	582.0	132.9	CON	Ye
570261	Hillsborough Cty. RRF																		
	Unit #1 - The West Most Unit.	1	HCRRFI	368,200			-1,222.050	220	67.1	5.1	1.55	290	416	72.5	22.1	256.0	58.4	CON	Ye
	Unit#2 - Second West Most Unit. Burns Municipal Waste Only. Unit #3 - 3rd Westmost Unit - Burns Municipal Waste.	2 3	HCRRF2 HCRRF3	368,200 368,200	3,092,700 3,092,700	1,451.629 1,451.629	-1,222.050 -1,222.050	220 220	67. l 67. l	5.1 5.1	1.55 1.55	290 290	416 416	72.5 72.5	22.1 22.1	256.0 256.0	58.4 58.4	CON	Ye Ye
570040	TECO, Bayside Power Station																		
	Unit #1 125 MW Coal Fired Boiler with Steam Generator	1	TECOBA1	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	10	3.05	289	416	94	28.65	-8,055.0	-1839.0	EXP	Ye
	Unit #2 125 MW Coal Fired Boiler with Steam Generator	2	TECOBA2	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	10	3.05	298	421	101	30.78	-8,314.0	-1898.2	EXP	Ye
	Unit #3 180 MW Coal Fired Boiler with Steam Generator	3	TECOBA3	360,100	3,087,500	1,444,467	-1,228.660	315	96.01	10.6	3.23	296	420	126	38.40	-10,518.0	-2401.4	EXP	Ye
	Unit #4 188 MW Coal Fired Boiler with Steam Generator	4	TECOBA4	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	10	3.05	309	427	75	22.86	-11,555.0	-2638.1	EXP	Ye
	Unit #5 239 MW Coal Fired Boiler with Steam Generator	5	TECOBA5	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	14.6	4.45	303	424	76	23.16	-15,128.0	-3453.9	EXP	Ye
	Unit #6 414 MW Coal Fired Boiler with Steam Generator	6	TECOBA6	360,100	3,087,500	1,444.467	-1,228.660	315	96.01	17.6	5.36	320	433	81	24.69	-24,957.0	-5697.9	EXP	Y
	14 MW Gas-Fired Turbine	7	TECOBA7	360,100		1,444.467	-1,228.660	35	10.67	11	3.35	1010	816	92.6	28.22	-561.0	-128.1	EXP	Y
	Bayside Unit 1A – 170 MW combined cycle gas turbine	20	TECOBA20	360,100	3,087,500	1,444.467	-1,228.660	150 150	45.72 45.72	19 19	5.79 5.79	220	378 378	60.5 60.5	18.44 18.44	101.2 101.2	23.1 23.1	CON	Ye
	Bayside Unit 1B - 170 MW combined cycle gas turbine	`21	TECOBA21	360,100		1,444.467	-1,228.660	150	45,72	19	3.79 5.79	220	378	60.5	18.44	101.2	23.1	CON	Ye
	Bayside Unit 1C = 170 MW combined cycle gas turbine Bayside Unit 2A = 170 MW combined cycle gas turbine	22 23	TECOBA23	360,100 360,100	3,087,500		-1,228.660 -1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	101.2	23.1	CON	Ye

TABLE D.6
SUMMARY OF NO_X SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

			UTM L		rcc r					Stack Para					NOx Em			Modele
acility Facility Name		CALPUFF	x	Y	x	Υ.	Heig	ht .	Diamet		Tempera		Veioc		Rate		PSD Source? *	PSD
D Emission Unit Description	EU ID	ID Name	(m)	(m)	(km)	(km)	n	m	ft	m	¥ 	к	ft/s	m/s	TPY	(lb/hr)	(EXP/CON)	Source
Bayside Unit 2B – 170 MW combined	cycle gas turbine 24	TECOBA24	360,100	3,087,500	1,444.467	-1,228.660	150	45.72	19	5.79	220	378	60.5	18.44	101.2	23.1	CON	Yes
Bayside Unit 2C - 170 MW combined of Bayside Unit 2D - 170 MW combined of		TECOBA25 TECOBA26	360,100 360,100	3,087,500 3,087,500	1,444.467 1,444.467	-1,228.660 -1,228.660	150 150	45.72 45.72	19 19	5.79 5.79	220 220	378 378	60.5 60.5	18.44 [8.44	101.2 101.2	23.1 23.1	CON	Yes Yes
70008 Mosaic Riverview Facility																		
DAP Manufacturing Plant	7	MOSRIV7	362,900	3,082,500	1,448.126	-1,233.182	126	38.4	8.0	2.44	104	313	34.5	10.5	35.0	8.0	NO	No
No. 3 MAP Plant	22	MOSRIV22	362,900	3,082,500	1,448.126	-1,233.182	133	40.5	7.0	2.13	142	334	71.5	21.8	0.7	0.2	NO	No
No. 4 MAP Plant	23	MOSRIV23	362,900	3,082,500		-1,233.182	133	40.5	7,0	2.13	142	334	71.5	21.8	0.7	0.2	NO	No
South Cooler	24	MOSRIV24	362,900	3,082,500		-1,233.182	133	40.5	7.0	2.13	142	334	71.5	21.8	0.7	0.2	NO NO	No
No. 5 DAP Plant	55	MOSRIV55 MOSRIV4	362,900 362,900	3,082,500 3,082,500	1,448.126	-1,233.182 -1,233.182	133 150	40.5 45.7	7.0 7.5	2.13 2.29	110 152	316 340	67.6 41.5	20.6 12.6	17.5 70.1	4.0 16.0	NO NO	No No
No. 7 SAP	4 5	MOSRIVS	362,900	3,082,500	1,448.126	-1,233.182	150	45.7 45.7	7.3 8.0	2.29	165	340	41.5	13.1	59.1	13.5	NO	No
No. 8 SAP No. 9 SAP	6	MOSRIV6	362,900	3,082,500	1,448.126	-1,233.182	150	45.7	9.0	2.74	155	341	44.8	13.7	74.5	17.0	NO	No
Animal Feed Ingredient Plant No. 1	78	MOSRIV78	362,900	3,082,500	1,448.126	-1,233.182	136	41.5	6.0	1.83	150	339	64.5	19.7	21.9	5.0	CON	Ye
Animal Feed Ingredient Plant No. 2	103	MOSRJ103	362,900	3,082,500	1,448.126	-1,233.182	155	47.2	6.0	1.83	150	339	64.5	19.7	32.9	7.5	CON	Ye
Baseline - No. 3 and No. 4 MAP Plants		MAP34CB	362,900	3,082,500	1,448.126	-1,233.182	90	27.4	3.3	1.01	140	333	67.0	20.4	-0.4	-0.1	EXP	Ye
Bascline - No. 5 DAP Plant		NOSDAPB	362,900	3,082,500		-1,233.182	133	40.5	7.0	2.13	108	315	50.5	15.4	-2.4	-0.5	EXP	Ye
Baseline - Auxiliary Steam Boiler		AUXSTB	362,900	3,082,500	1,448.126	-1,233.182	20	6.1	4.5	1.37	420	489	41.2	12.6	-0.8	-0.2	EXP	Ye
Baseline - Sodium Silicofluoride/Sodiu		SSFSFPB	362,900	3,082,500	1,448.126	-1,233.182	40 60	12.2	1.7	0.51	120	322	41.1	12.5	-0.7	-0.2	EXP EXP	Y
Baseline - Phosphate Rock Grinding/D		RKGRNDB	362,900	3,082,500		-1,233.182		18.3 38.4	1.9	0.59	140 125	333	57.6 46.4	17.5 14.1	-0.1 -6.1	0.0	EXP	Y
Baseline - GTSP/DAP Manufacturing I	'iant	GTSPAPB NO9SAPB	362,900	3,082,500 3,082,500	1,448.126 1,448.126	-1,233.182 -1,233.182	126 150	38.4 45.7	8.0 9.0	2.44 2.74	152	325 340	39.0	11.9	-0.1 -41.4	-1.4 -9.5	EXP	Ye
Baseline - No. 9 Sulfuric Acid Plantb Baseline - No. 8 Sulfuric Acid Plantb		NO8SAPB	362,900 362,900	3,082,500	1,448.126	-1,233.182	150	45.7	8.0	2.74	150	339	34.8	10.6	-28.1	-6.4	EXP	Ye
Baseline - No. 7 Sulfuric Acid Plantb		NO7SAPB	362,900	3,082,500		-1,233.182	150	45.7	7.5	2.29	170	350	46.0	14.0	-30.9	-7.1	EXP	Ye
0004 Lakeland Electric - Meintosh																		
McIntosh Unit 1- FFFSG (Phase II Aci	d Rain Unit) l	MCINTI	409,000	3,106,200	1,489.890	-1,201.443	150	45.72	9.0	2.74	277	409	81.2	24.75	2,317.0	529.0	NO	N
Diesel Engine Peaking Unit 2	2	MCINT2	409,000	3,106,200	1,489.890	-1,201.443	20	6.10	2.6	0.79	715	653	77.0	23.47	380.2	86.8	NO	N
Diesel Engine Peaking Unit 3	3	MCINT3	409,000	3,106,200	1,489.890	-1,201.443	20	6.10	2.6	0.79	715	653	77.0	23.47	380.2	86.8	NO	N
Gas Turbine Peaking Unit 1	4	MCINT4	409,000	3,106,200	1,489.890	-1,201.443	35	10.67	13.5	4.11	900	755	79.5	24.23	978.3	223.4	NO	N
McIntosh Unit 2 FFFSG (Phase II Acid		MCINT5	409,000	3,106,200	1,489.890	-1,201.443	157	47.85	10.5	3.20	277	409	73.2	22.31	1,465.1	334.5	NO	N
McIntosh Unit 3 FFFSG (Phase II Acid		MCINT6		3,106,200	1,489.890	-1,201.443	250	76.20	18.0	5.49	167	348	82.6	25.18	11,160.2	2548.0	NO	No
250 MW Combustion Turbine UNIT 5	28	MCINT28	409,000	3,106,200	1,489.890	-1,201.443	85	25.91	28.0	8.53	1095	864	82.7	25.21	1,148.0	262.1	CON	Yo
50003 Lakeland Electric, Larsen Power Plant Fossil Fuel Fired Steam Generator # 6	3	LARPWR3	408,900	3,102,500	1,490.439	-1,205.163	165	50.3	10.0	3.05	340	444	21.0	6.4	674.0	153.9	NO	No
Steam Generator # 7 (Phase II Acid Ra		LARPWR4	408,900	3,102,500		-1,205.163	165	50.3	10.0	3.05	340	444	22.0	6.7	1448.0	330.6	NO	No
Peaking Gas Turbine # 3	5	LARPWR5	408,900	3,102,500	1,490.439	-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	639.00	145.9	NO	N
Peaking Gas Turbine # 2	6	LARPWR6	408,900	3,102,500	1,490.439	-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	639.00	145.9	NO	N
Combined Cycle Combustion Turbine	Phase II Acid Rain unit) 8	LARPWR8	408,900		1,490.439	-1,205.163	155	47.2	16.0	4.88	481	523	85.7	26.1	425.00	97.0	CON	Ye
Peaking Gas Turbine # 1	7	LARPWR7	408,900	3,102,500	1,490.439	-1,205.163	31	9.4	11.8	3.60	800	700	101.0	30.8	-639.00	-145.9	EXP	Y
50057 Mosaic Phosphates (Nichols)										, .				22.5			Free	
DAP Plant Dryer	3	IMCNICS	398,400	2,000,000		-1,225.312	80	24.4	3.5	1.1	130	328	78.0	23.8	-10.0	-2.3	EXP EXP	Y
Sulfuric Acid Plant No. I	5 r 12	IMCNICS IMCNIC12	398,400 398,400			-1,225.312 -1,225.312	150 18	45.7 24.7	7.5 7.5	2.3 2.3	170 130	350 328	33.0 12.0	10.1 3.7	-54.80 -96.40	-12.5 -22.0	EXP	Y
Phosphate Rock Dryer W/ Wet Scrubbe North Auxiliary Boiler	r 12 15	IMCNIC12	398,400 398,400			-1,225.312	27	8.2	2.0	0.6	500	533	45.0	13.7	-96.40 -15.80	-22.0	EXP	Y
South Auxiliary Boiler	16	IMCNIC16	398,400			-1,225.312	39	11.9	3.2	1.0	500	533	29.0	8.8	-31.50	-7.2	EXP	Y
10087 Florida Rock Industries - Thompson S. Ba	ker Cement Plant																	
Kiln/Raw Mill System Stack	3	FRBCP3	348350				250	76.20	9.42	2.9	356	453	47.8	14.6	980.0	223.7	CON	Y
Kiln/Raw Mill- Line 2	10	FRBCP10	348350	3287040	1,398.163	-1,031.470	315	96.01	9.42	2.9	356	453	52.6	16.0	1067.6	243.8	CON	Ye
Mosaic Phosphates Co. (New Wales)		WAT 200	304 300	3 020	1 400 200	1 220	300	41.0	0.40	2.50	170	250	60.0	15.24	62.60	14.6	NO	. .
Sulfuric Acid Plant No. 1	2	WALES2 WALES3	396,700			-1,230,415	200 200	61.0 61.0	8.50 8.50	2.59 2.59	170 170	350 350	50.0 50.0	15.24	63.50 63.50	14.5 14.5	NO NO	N
Sulfuric Acid Plant No. 2	3	WALES3 WALES4	396,700	-,,			200	61.0	8.50 8.50	2.59	170	350	50.0	15.24	63.50	14.5	NO NO	N
Sulfuric Acid Plant No. 3	4	WALES9	396,700 396,700	3,079,400 3,079,400		-1,230.415 -1,230.415	133	40.5	7.00	2.39	105	314	49.0	14.9352	51.20	11.7	NO	N
Dap Plant No. 1 W/3 Teller Venturi Sc AFI Plant	rubbers. 9	WALES27	396,700	3,079,400		-1,230,415	172	52.4	8.00	2.13	130	328			216.80	49.5	NO	N
Muttifos A and B Kilns, Dryer and Blo		WALES27	396,700	3,079,400		-1,230,415	172	52.4	4.50	1.37	105	314	52.0	15.8496	20.10	4.6	NO	N
Manifes A and D terms, Dryd and Die	42	WALES41	396,700	3.079.400			199	60.7	8.50	2.59	170	350	50.0	15.24	63.50	14.5	NO	N

Table D-6
SUMMARY OF NO_X SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

				UTM L	ocation	LCC L	ocation				Stack Par	ameters				NOx Emi	ission		Modele
Facility	Facility Name		CALPUFF	x	Y	x	٧.	Heigl	ht	Diame	ter	Tempera	tare	Velo	city	Rat	<u>. </u>	PSD Source? "	PSD
ID .	Emission Unit Description	EU ID	ID Name	(m)	(m)	(km)	(km)	ft	ø	n	m	*F	к	ft/s	m/s	TPY	(lb/hr)	(EXP/CON)	Source
	Sulfuric Acid Plant No. 5	44	WALES43		3,079,400		-1,230.415	199	60.7	8.50	2.59	170	350	50.0	15.24	63.50	14.5	NO	No
	DAP Plant No 2 - East Train	45	WALES45		3,079,400	1,482.337	-1,230.415	[71	52.1	6.00	1.83	110	316		17.6784	55.20	12.6	NO	No
	DAP Plant No 2 - West Train	46	WALES46		3,079,400	1,482.337	-1,230.415	171	52.1	6.00	1.83	110	316		17.6784	55.20	12.6	NO	No
	Multifos "C" Kiln Grannular MAP Plant	74 78	WALES74 WALES70		3,079,400 3,079,400	1,482.337 1,482.337	-1,230.415 -1,230.415	172 133	52.4 40.5	4.50 6.00	1.37 1.83	105 145	314 336	70.2 109.6	21.397 33.4061	25,60 39.80	5.8 9.1	CON	Yes Yes
050046	Mosaic - Bartow Facility																		
	No. 3 Fertilizer Plant	1	MOSBARI		3,086,600	1494.126	-1220.919	153	46.6	7.5	2.29	160	344	79.4	24.2	24.0	5.5	CON	Ye
	No. 4 Sulfuric Acid Plant	12	MOSBAR12	409,800	3,086,600	1494.126	-1220.919	200	61.0	6.8	2.07	180	355	61.0	18.6	57.0	13.0	CON	Ye
	No. 6 Sulfuric Acid Plant	32	MOSBAR32	409,800	3,086,600	1494.126	-1220.919	200	61.0	6.8	2.07	180	355	61.0	18.6 18.6	57.0 57.0	13.0 13.0	CON	Ye Ye
	No. 5 Sulfuric Acid Plant No. 4 Fertilizer Plant	33 21	MOSBAR33 MOSBAR21		3,086,600 3,086,600	1494.126 1494.126	-1220.919 -1220.919	200 140	61.0 42.7	6.8 10.9	2.07 3.33	180 144	355 335	61.0 45.6	13.9	20.3	4.6	CON	Ye
050034	Mosaic Phosphates (CFMO)																	2011	.,
	Boiler @ Four Corners Mine	8	CFMO8	398,200	3,075,700	1,484.479	-1,233.860 -1,233.860	26 76	7.9 23.16	1.0 6,5	0.3 2.0	400 250	478 394	23.5 56.8	7.2 17.3	2.41 128.1	0.6 29.2	CON	Ye No
	Dryer No. 1 @ Noralyn Mine (011) Dryer No. 2 East @ Noralyn Mine (012)	11	CFMO11 CFMO12	398,200 398,200	3,075,700 3,075,700	1,484.479 1,484.479	-1,233.860 -1,233.860	55	23.16 16,76	9.3	2.8	155	394 341	29.0	8.8	113.5	29.2 25.9	NO	No
50053	Mosaic - Green Bay Facility																		
	No. 4 Sulfuric Acid Plant	4	MOSGB4		3,080,100	1494.963	-1227.482	100	30.5	7.5	2.29	180	355	39.6	12.1 13.4	46.0	10.5	NO	No.
	No. 5 Sulfuric Acid Plant	5	MOSGB5		3,080,100	1494.963	-1227.482	150	45.7 45.7	8.0	2.44 2.74	180 180	355 355	44.l	10.6	61.3 60.0	14.0 13.7	CON	Ye Ye
	No. 6 Sulfuric Acid Plant South DAP Plant—Stack B (Dryer)	38 7	MOSGB38 MOSGB7B	409,500 409,500	3,080,100	1494.963	-1227.482 -1227.482	150 129.5	45.7 39.5	9.0 7.5	2.74	107,6	315	34.8 52.6	16.0	55.2	12.6	NO	No
	North AP Plant-Main Stack	29	MOSGB29M		3,080,100	1494.963	-1227.482	129.5	39.5	7.5	2.29	104.5	313	68.2	20.8	32.4	7.4	NO	No
70014	Progress Energy Florida - Intercession City Plant																		
	Combined CTs 1-6	1-6	ICP16	446,300	3,126,000		-1,175.112	45	13,72	14.6	4.46	760	678	174.9	53.3 53.1	12984.0 1234.0	2964.4	CON NO	No
	Combined CTs 7-10 CT # 11	7-10	ICP110 ICP11	446,300 446,300	3,126,000	1,523.522	-1,175.112 -1,175.112	50 75	15.24 22.86	13.8 19.0	4.19 5.79	1043 1034	835 830	174.1 139.4	42.5	566.1	281.7 129.3	CON	Ye Ye
	Simple Cycle CTs P-12, P13 & P-14	l I 18-20	ICP1820	446,300			-1,175.112	56	17.07	16.1	4.91	993	807	117.6	35.8	371.8	84.9	CON	Ye
010006	GRU Deerhaven Generating Station																		
	Fossil Fuel Fired Steam Generator #1(Phase II AR Unit)	3	GRUDGS3	365,700			-1,022.938	300 350	91.4 106.7	11.0 18.5	3.4 5.6	261 275	400 408	47.0 50.0	14.3 15.2	1317.5 5317.0	300.8 1213.9	NO NO	No No
	Fossil Fuel Fired Steam Generator #2 (Pbase I & II AR Unit) Simple Cycle Comb Turbine No. 3 (Pbase II Acid Rain Unit)	5 6	GRUDGS5 GRUDGS6	365,700 365,700	3,292,600 3,292,600		-1,022.938 -1,022.938	52	15.8	14.1	4.3	1100	866	168.0	51.2	239.0	54.6	CON	Ye
050217	Polk Power Partners, L.P. Mulberry - Mulberry Cogen Facility		MOD		2 000 600		1 22/ 2//	125	20.1	15.0		220	270		10.5	271.00	(1.0	CON	Ye
	Combustion Turbine with HRSG(Phase II, Acid Rain Unit) Secondary Boiler	2	MCF1 MCF2	413,600 413,600	3,080,600 3,080,600	1,498.961 1,498.961	-1,226.266 -1,226.266	125 125	38.1 38.1	15.0 3.0	4.6 4.6	220 220	378 378	64.1 66.5	19.5 19.5	82.00	61.9 18.7	CON	Ye
310010	Florida Power & Light - Manatee									24.					20.0	11266	2505.0		
	Generator Unit 1 Generator Unit 2	1 2	FPLMAN1 FPLMAN2	367,250 367,250			-1,260.832 -1,260.832	499 499	152.1 152.1	26.2 26.2	8.0 8.0	325 325	436 436	68.7 68.7	20.9 20.9	11366 11366	2595.0 2595.0	NO NO	No No
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3A	5	FPLMAN5	367,250		1,457.397	-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	103.4	23.6	CON	Ye
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3B	6	FPLMAN6	367,250	3,054,150		-1,260.832	120	36.6	19.0	5.8	202	368	59.0	18.0	103.4	23.6	CON	Ye
	Gas Turbine (nominal 170 MW) with HRSG- Unit No.3C Gas Turbine (nominal 170 MW) with HRSG- Unit No.3D	7 8	FPLMAN7 FPLMAN8	367,250 367,250	3,054,150	1,457.397	-1,260.832 -1,260.832	120 120	36.6 36.6	19.0 19.0	5.8 5.8	202 202	368 368	59.0 59.0	18.0 18.0	103.4 103.4	23.6 23.6	CON	Ye Ye
50233	TECO, Polk Power Station																		
	260 MW Combined cycle CT (Phase II Acid Rain Unit)	1	TECOPK1	402,450	3,067,350	1490.176	-1241.483	150	45.7	19.0	5.79	340	444	75,8	23.1	1032.9	235.8	CON	Ye
	120 MMBtu/HR Auxiliary Boiler	3	TECOPK3	402,450	3,067,350	1490.176	-1241.483	75	22.9	3.7	1.13	375	464	50.0	15.2	12.0	2.7	CON	Ye
	165MW Simple Cycle Combustion Turbine	9	TECOPK9	402,450	3,067,350	1490.176	-1241.483	114	34.7	29.0	8.84	1117	876	60.2	18.3	355.9	81.3	CON	Ye
	165MW Simple Cycle Compustion Turbine	10	TECOPK10	402,450	3,067,350	1490.176	-1241.483	114	34.7	29.0	8.84	1117	876	60.2	18.3	355.9	81.3	CON	Ye
	Unit 4 - 165MW Simple Cycle Combustion Turbine Unit 5 - 165MW Simple Cycle Combustion Turbine	11 12	TECOPK 11 TECOPK 12	402,450 402,450	3,067,350 3,067,350	1490.176 1490.176	-1241.483 -1241.483	114	34.7 34.7	29.0 29.0	8.84 8.84	1117 1117	876 876	60.2 60.2	18.3 18.3	266.7 266.7	60.9 60.9	CON	Ye Ye
050234	Progress Energy Florida - Hines																		
	250 MW Combined Cycle Combustion Turbine I	I	HINES1	414,340	3,073,910	1500.873	-1232.836	300	91.4	9.0	2.74	312	429	119.2	36.3	319.5	72.9	CON	Ye
	are to the control of		INVEGO		7 027 510		1000 000	125	20.	10.0	6 70		405	60.4	21.2	210 6	72.0	CON	Ye
	250 MW Combined Cycle Combustion Turbine 2 POWER BLOCK 2. CT 2A	2	HINES2 HINES14	414,340	3,073,910	1500.873	-1232.836 -1232.836	125 125	38.1 38.1	19.0	5.79 5.79	270	405 361	69.4 59.3	21.2	319.5	72.9 33.0	CON	Ye

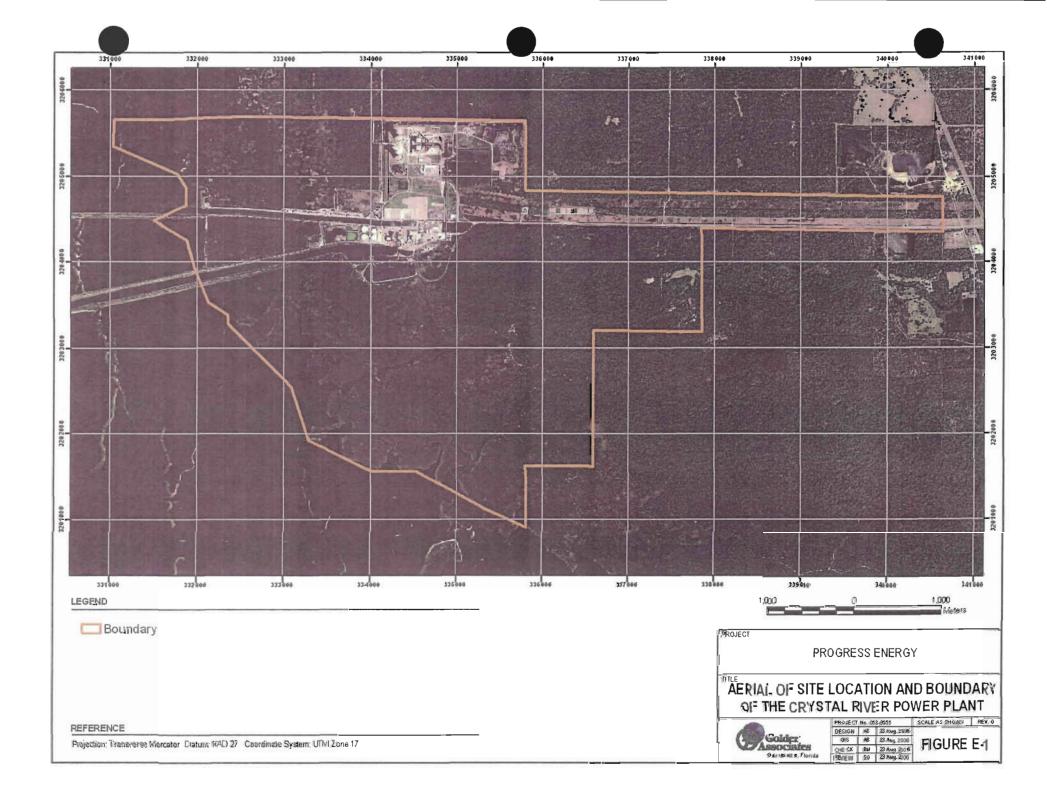
TABLE D-6 SUMMARY OF NO $_{\rm N}$ SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

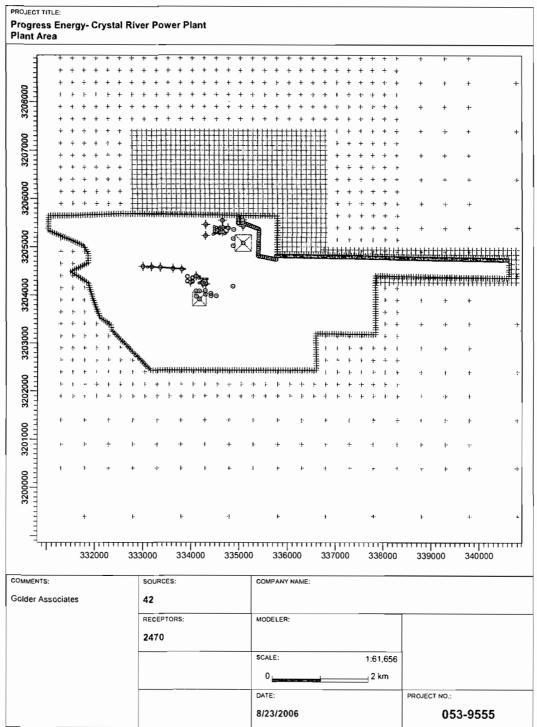
				UTM I	ocation	LCC L	ocation				Stack Par	ameters				NOx Em	ission		Modele
acility	Facility Name		CALPUFF	x	Y	x	Y	Heig	at	Diame	ter	Tempera	ature	Veloc	ity	Rat	e	PSD Source? "	PSD
D	Emission Unit Description	EU ID	ID Name	(m)	(m)	(km)	(km)	ft	m	ft	tts	*F	К	ft/s	m/s	TPY	(lb/hr)	(EXP/CON)	Source
	POWER BLOCK 3, CT 3A	16	HINES16	414,340	3,073,910	1500,873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	108.0	24.7	СОИ	Yes
	POWER BLOCK 3, CT 3B	17	HINES17	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	108.0	24.7	CON	Ye
	POWER BLOCK 4, CT 4A		HINES4A	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	102.5	23.4	CON	Ye
	POWER BLOCK 4, CT 4B		HINES4B	414,340	3,073,910	1500.873	-1232.836	125	38.1	19.0	5.79	190	361	59.3	18.1	102.5	23.4	CON	Yes
70028	FPC - Debary Facility Combustion Turbine Peaking Unit # 1	3	FPCDF3	467,500	3,197,200	1 572 022	-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	988.1	225.6	No	No
	Combustion Turbine Peaking Unit # 2	5	FPCDF5	467,500			-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	988.1	225.6	No	No
	Combustion Turbine Peaking Unit # 3	7	FPCDF7	467,500			-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	988.1	225.6	No	No
	Combustion Turbine Peaking Unit # 4	9	FPCDF9	467,500			-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	988.1	225.6	No	No
	Combustion Turbine Peaking Unit # 5	11	FPCDF11	467,500	3,197,200	1,532.022	-1,100.273	45	13.7	17.7	5.4	1050	839	173.7	52.9	988.1	225.6	No	No
	Combustion Turbine Peaking Unit # 6	13	FPCDF13	467,500				45	13.7	17.7	5.4	1050	839	173.7	52.9	988. I	225.6	No	No
	Combustion Turbine # 7 (Phase II Acid Rain Unit)	15	FPCDF15	467,500				50	15.2	13.8	4.2	1043	835	174.1	53.1	308.5	70.4	CON	Ye
	Combustion Turbine # 8 (Phase II Acid Rain Unit)	16	FPCDF16	467,500			-1,100.273	50	15.2	13.8	4.2	1043	835	174.1	53.1	308.5	70.4	CON	Ye
	Combustion Turbine # 9 (Phase II Acid Rain Unit) Combustion Turbine # 10 (Phase II Acid Rain Unit)	17 18	FPCDF17 FPCDF18	467,500 467,500			-1,100.273 -1,100.273	50 50	15.2 15.2	13.8 13.8	4.2 4.2	1043 1043	835 835	174.1 174.1	53.1 53.1	308.5 308.5	70.4 70.4	CON	Ye Ye
70020	Fpc-Turner Plant																		
	Combustion Turbine Peaking Unit No.3	9	FPCTUR9	473,400	3,193,300	1,538,567	-1,103.127	41	12.5	12.3	3.75	960	789	133.8	40.8	-214.8	-49.0	EXP	Ye
	Combustion Turbine Peaking Unit No.4	10	FPCTUR10	473,400			-1,103.127	41	12.5	12.3	3.75	960	789	133.8	40.8	-214.8	-49.0	EXP	Ye
	Combustion Turbine Peaking Unit No. I	L1	FPCTURIL	473,400	3,193,300	1,538.567	-1,103.127	41	12.5	6.0	1.83	960	789	509.3	155.2	-698.3	-159.4	EXP	Ye
	Combustion Turbine Peaking Unit No.2	12	FPCTUR12	473,400	3,193,300	1,538.567	-1,103.127	41	12.5	6.0	1.83	960	789	509.0	155.1	-698.3	-159.4	EXP	Ye
0005	GP Pulp/Paper Mill, Palatka							220	70.1					"	20.1			201	Ye
	No 4 Recovery Boiler	18 19	RB4	434,000 434,000				230 206	70.1 62.8	12.0	3.7 1.5		491 355	65.9 34.0	20.1 10.4	738.0 69.5	168.5 15.9	CON	Y
	No. 4 Smelt Dissolving Tanks No. 5 Power Boiler	15	SDT4 PB5	434,000	3,283,400 3,283,400		-1,020.228 -1,020.228	237	72.2	5.0 8.0	2.4		485	85.9	26.2	781.1	178.3	CON	Y
	No. 4 Combination Boiler	16	CB4	434,000			-1.020.228	237	72.2	8.0	2.4		514	92.3	28.1	496.4	113.3	CON	Y
	No. 7 Power Boiler	44	PB7	434,000			-1,020,228	60	18.3	7.0	2.1		672	43.5	13.3	39.3	9.0	CON	Ye
	No 4 Lime Kiln	17	LK4	434,000			-1,020.228	131	39.9	4.4	1.4		347	70.6	21.5	297.6	67.9	CON	Ye
	TM5-[15] Existing Wet & Dry Yankee Hood (YKD)-burner	43	TM5_15	434,000	3,283,400	1,483.634	-1,020.228	94	28.7	5.0	1.52		505.4	64.5	19.66	23.6	5.4	CON	Ye
	TM4		TM4	434,000	3,283,400	1,483.634	-1,020.228	94	28.7	5.0	1.52		505.4	64.5	19.66	47.3	10.8	CON	Ye
	TM3		TM3	434,000				94	28.7	5.0	1.52		505.4	64.5	19.66	47.3	10.8	.CON	Ye
	New Themal Oxidizer		TOX	434,000				250	76.2	3.6	1.1		344	18.0	5.5	151.6	34.6	CON	Ye
	# 4 Recovery Boiler		RB4B	434,000				230	70.1 62.8	12.0	3.7		474	55.3	16.9	-514.5	-117.5	EXP EXP	Ye Ye
	# 4 Smelt Dissolving Tanks		SDT4B LK4B	434,000			-1,020.228	206 149	45.4	5.0 4.3	1.5 1.3		346 351	27.1 54.0	8.3 16.5	-11.8 -207.9	-2.7 -47.5	EXP	Ye
	# 4 Lime Kiln # 4 Power Boiler		PB4B	434,000 434,000			-1,020.228 -1,020.228	122	37.2	4.0	1.2		477	47.7	14.5	-95.2	-21.7	EXP	Ye
	# 5 Power Boiler		PBSB	434,000			-1,020.228	232	70.7	9.0	2.7		520	52.4	16.0	473.5	-108.1	EXP	Ye
	# 4 Combination Boiler		CB4B	434,000			-1,020.228	237	72.2	10.0	3.1		477	34.5	10.5	-247.2	-56.4	EXP	Ye
	# 5 Tissue Machine Combined Source		TM5B	434,000			-1,020.228	94	28.7	5.0	1.52		505.4	64.5	19.66	-33.0	-7.5	EXP	Ye
	# 4 Tissue Machine Combined Source		TM4B	434,000	3,283,400	1,483.634	-1,020.228	94	28.7	5.0	1.52		505.4	64.5	19.66	-47.3	-10.8	EXP	Ye
	# 3 Tissue Machine Combined Source		ТМ3В	434,000	3,283,400	1,483.634	-1,020.228	94	28.7	5.0	1.52		505.4	64.5	19.66	-47.3	-10.8	EXP	Ye
0137	Stanton Energy Center Fossil Fuel Steam Generation Unit #1		STANI	483,500	3,150,600	1,556.158	-1,143.982	550	167,6	19.0	5.79	127	326	83.0	25.3	8635.0	1971.5	CON	Ye
	Pulverized Coal Fired Unit No. 2 (460 Mw Gross)	2	STANZ	483,500		-	-	550	167.6	19.0	5.79	124	324	77.0	23.5	3191.0	728.5	CON	Y
0025	SECI Seminole Generating Station																		
	Steam Electric Generator Unit No. 1	1	SECSEMI	438,850				675	205.7	36.0	11.0	128	326	26.2	8.0	15706.7	3586.0	CON	Y
	Steam Electric Generator Unit No. 2	2	SECSEM2	438,850				675	205.7	36.0	11.0	128	326	26.2	8.0	15706.7	3586.0	CON	Ye
	Unit No. 3	3	SECSEM3	438,850	3,289,300	1,487,402	-1,013.508	675	205.7	26.0	7.92	126	325	61.8	18.8	2318.0	529.2	CON	Y
0043	VANDOLAH POWER COMPANY, LLC A 170 MW Gas Simple Cycle Combustion Turbine	,	VANDPI	408,750	3,044,500	1,500,462	-1,263.282	60	18.29	22.0	6.71	1113	874	116.0	35.36	252.10	57.6	CON	Ye
	A 170 MW Gas Simple Cycle Combustion Turbine A 170 MW Gas Simple Cycle Combustion Turbine	2	VANDP1	408,750				60	18.29	22.0	6.71	1113	874	116.0	35.36	252.10	57.6	CON	Y
	A 170 MW Gas Simple Cycle Combustion Turbine	3	VANDP3	408,750				60	18.29	22.0	6.71	1113	874	116.0	35.36	252.10	57.6	CON	Ye
	A 170 MW Gas Simple Cycle Combustion Turbine	4	VANDP4	408,750			-1,263.282	60	18.29	22.0	6.71	1113	874	116.0	35.36	252.10	57.6	CON	Y
0007	Tropicana Products, Inc.																		
	Citrus Peel Dryer #1	1	TROPICI	346,800	3,040,900	1,439,307	-1,277.658	95	28.96	3.2	0.98	100	311	35.2	10.73	37.20	8.5	CON	Y
	Citrus Poel Dryer #2	2	TROPIC2	346,800				95	28.96	3.0	0.91	140	333	70.0	21.34	37.20	8.5	CON	Y

TABLE D-6 SUMMARY OF NO_X SOURCES INCLUDED IN THE CHASSAHOWITZKA NWA CLASS I AREA PSD INCREMENT CONSUMPTION AIR MODELING ANALYSES, PE CRYSTAL RIVER POWER PLANT PROJECT

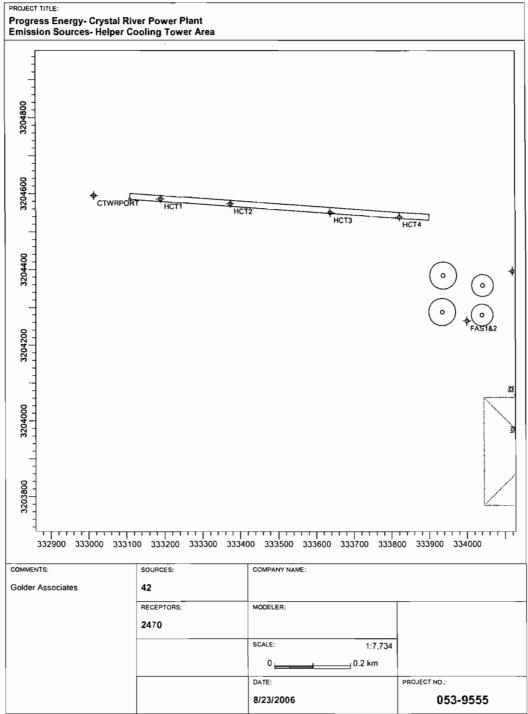
				UTM L	ocation	LCC L	ocation				Stack Par	ameters				NOx Emi	ission		Modeled
Facility	Facility Name		CALPUFF	х	Y	X	Y	Hei	ht	Diame	ter	Temper	ature	Velo	city	Rate		PSD Source? *	PSD
ID	Emission Unit Description	EU ID	ID Name	(m)	(m)	(km)	(km)	ft	m	ft	m	*F	K	ft/s	m/s	ТРҮ	(lb/hr)	(EXP/CON)	Source?
	Citrus Peel Dryer #3	3	TROPICS	346,800	3,040,900	1,439.307	-1,277.658	95	28.96	3.2	0.98	140	333	62.0	18.90	37.20	8.5	CON	Yes
	Glass Plant #2 Fired With Natural Gas Or Bio-Gas.	12	TROPIC12	346,800	3,040,900	1,439.307	-1,277.658	71	21.64	6.2	1.89	425	491	43.3	13.20	423.60	96.7	CON	Yes
	Glass Plant Furnace #3, Burns Natural Gas Or Bio-Gas.	14	TROPIC14	346,800	3,040,900	1,439.307	-1,277.658	103	31.39	6.2	1.89	510	539	57.1	17.40	391.00	89.3	NO	No
	157.4 Mmbtu/Hr Auxiliary Boiler For Cogen Plant	15	TROPIC15	346,800	3,040,900	1,439.307	-1,277.658	75	22.86	5.0	1.52	540	555	48.6	14.81	80.20	18.3	CON	Yes
	Gas Turbine W/Heat Recovery - For Cogeneration Plant	16	TROPIC16	346,800	3,040,900	1,439.307	-1,277.658	67	20.42	12.0	3.66	268	404	54.0	16.46	314.50	71.8	CON	Yes
	400 HP Boiler - 17.0 MMBTU/Hr., NSPS Dc, Natural Gas	23	TROPIC23	346,800	3.040.900	1.439.307	-1,277.658	30	9.14	2.0	0.61	300	422	20.2	6.16	11.00	2.5	CON	Yes

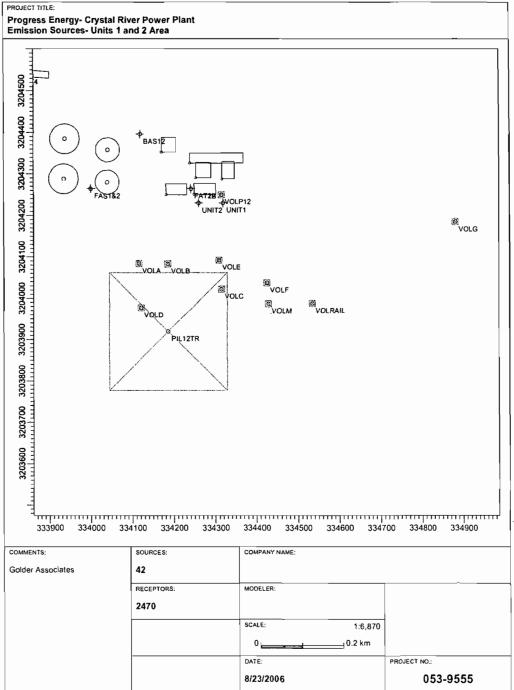
^{*} EXP = PSD expanding source.

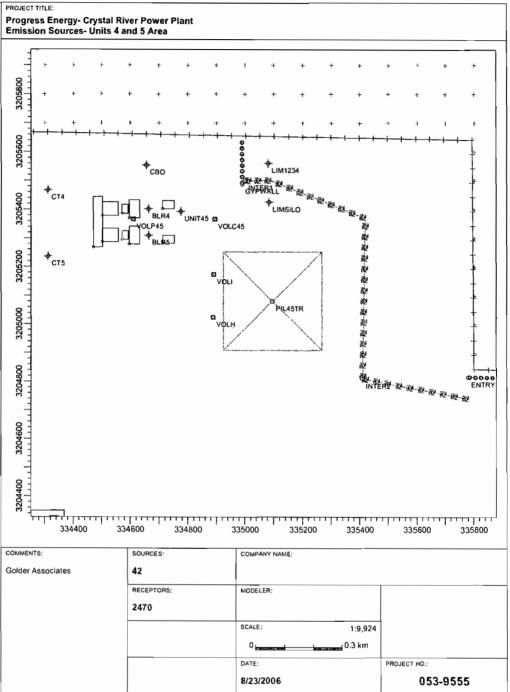

CON = PSD consuming source.

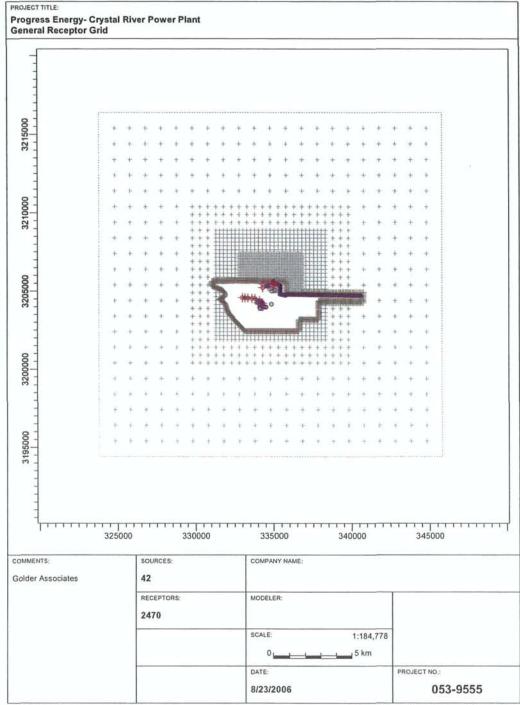

NO = Baseline Source, does not affect PSD increment.

ND = No data available.


APPENDIX E


RECEPTOR LOCATION FIGURES AND BPIP FILES





PROJECT									_
Progres Emission	ss Energy- Crystal Ri on Sources- Entry Ro	ver Power P ad Area	lant						
		_							
-	++++++++	+							
l i	+ + + + + + + + +	+ + +	+ +	+	+ +	+	+	+	ì
] _].	+++++++++	+ + +							1
8 =	+ + + + + + + + + +	+	, ,	•	* *				- 1
3206500	* + + + + + + + + +	+ + +	+	+	+ +	+	+	+	,
"]	+++++++	+							
g =	* * * * * * * * * * * * *	+ + +	+ -	+	+ F				1
3206000	+ + + + + + + + +	ŧ							
8 4	+ + + + + + + + + + + + + + + + + + +	+ + +	+ -	+	+ +	+	+	+	1
‡ه ا	1+++++++	+ + +	+ +	+	+ +				
3205500	* * * * * * * * * * * * * * * * * * *	+							1
8 =	+++++++	+ + +	+ -	+	+ (j.	-•	+	ŧ
]]:	* + + + + + + + + + + + + + + + + + + +	+							
3205000	+++++++	+ +		ŀ	+ +				
SS	+ + + + + + + + + + + + + + + + + + +	t;+++;++;	+++++	++	+++;++	+++++	++#++	+++++++	+++++
1 - 1	ENTRY					++++	+ + + + + + + + +	+++++++
8 = 1	CHIKI								1++
3204500									[]
8				***	† - - - - - -	41414444444	! 	•••••••••	-111111
E.				#*	++++	++++++	++++	+++++++	* + + + + +
\$4				‡					
3204000				‡	+ +	+	÷	+	1
1 3				‡					
3203500				#	+ F				
<u>8</u>				Ŧ	ı .	+			
, e				Ŧ					1
8		, ,, , , , , , , , , , , , , , , , , ,	 1 1 1 1 1 1 1 1 1 1	++	+ +				1
3203000	‡								
8 1	#	i	- г	4.	+ +	÷	+	+	
	#	+ + +		+	i. 4.				
F 32	±								
3202500	11111111111111	+ + +	+	ŀ	÷ ÷	+	÷	+	:
"									
=	+ + + +	+ + +		÷	+ -				
۲ ۲	777777777777777777777777777777777777777	111111111111111111111111111111111111111	111111111	1111	200 22	<u>1111111111111111111111111111111111111</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111111	milimi,
	336000 336500	337000	337500	338	000 33	8500 33900	00 3395	340000	340500
COMMENT	TS:	SOURCES:		$\overline{}$	COMPANY NA	ME:	<u>-</u>		
Golder A	Associates	42							
		RECEPTORS:			MODELER:				
		2470							
					SCALE.		1:31,114		
					0		1 km		
					DATE:		_	PROJECT NO.:	
									0555
					8/23/2006			053-	9555

D:\Projects\progress\Crystal River\Lakes\CRYSITE

BPIP (Dated: 04274) TE: 8/15/2006 ME: 12:27:41

D:\Projects\progress\Crystal River\Lakes\CRYSITE

BPIP PROCESSING INFORMATION:

The P flag has been set for preparing downwash related data for a model run utilizing the PRIME algorithm.

Inputs entered in METERS will be converted to meters using a conversion factor of 1.0000. Output will be in meters.

The UTMP variable is set to UTMY. The input is assumed to be in UTM coordinates. BPIP will move the UTM origin to the first pair of UTM coordinates read. The UTM coordinates of the new origin will be subtracted from all the other UTM coordinates entered to form this new local coordinate system.

The new local coordinates will be displayed in parentheses just below the UTM coordinates they represent.

Plant north is set to 0.00 degrees with respect to True North.

INPUT SUMMARY:

Number of buildings to be processed: 20

ABOILER has 1 tier(s) with a base elevation of 1.02 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS X Y

U5BOILER has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES NAME NUMBER NUMBER HEIGHT CORNERS X Y

```
U5BOILER 1 2 84.40 4

334503.29 3205287.40 meters

( 0.00 -91.38) meters

334503.29 3205333.87 meters

( 0.00 -44.91) meters

334559.77 3205333.87 meters

( 56.48 -44.91) meters

334559.77 3205287.40 meters

( 56.48 -91.38) meters
```

TUBINE has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS X Y

```
IBINE 1 3 29.50 4 334471.95 3205268.86 meters ( -31.34 -109.92) meters 334471.95 3205443.70 meters ( -31.34 64.92) meters
```

```
334503.94 3205443.70 meters
                                   64.92) meters
                           0.65
                        334503.94 3205268.86 meters
                           0.65 -109.92) meters
U4PRECIP has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
U4PRECIP 1
                 4 27.80 4
                        334598.03 3205370.81 meters
                           94.74
                                   -7.97) meters
                        334598.03 3205432.99 meters
                           94.74
                                   54.21) meters
                        334633.99 3205432.99 meters
                          130.70
                                    54.21) meters
                        334633.99 3205370.81 meters
                          130.70
                                   -7.97) meters
U5PRECIP has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS
U5PRECIP 1
                 5 27.80 4
                        334598.00 3205279.16 meters
                                   -99.62) meters
                           94.71
                        334598.00 3205341.33 meters
                           94.71
                                   -37.45) meters
                         334633.96 3205341.33 meters
                          130.67
                                   -37.45) meters
                         334633.96 3205279.16 meters
                          130.67 -99.62) meters
SCR4 has 1 tier(s) with a base elevation of 1.89 METERS BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
SCR4
                   65.30 4
          1
               6
                         334572.62 3205386.56 meters
                           69.33
                                    7.78) meters
                         334572.62 3205416.94 meters
                           69.33
                                    38.17) meters
                         334594.33 3205416.94 meters
                                    38.17) meters
                           91 04
                         334594.33 3205386.56 meters
                           91.04
                                    7.78) meters
BLR5SCR has 1 tier(s) with a base elevation of 1.22 METERS
                                           CORNER COORDINATES
BUILDING TIER BLDG-TIER TIER NO. OF
 NAME NUMBER NUMBER HEIGHT CORNERS
BLR5SCR 1
                     65.30 4
                         334572.60 3205295.27 meters
                                  -83.51) meters
                           69.31
                         334572.60 3205325.66 meters
                                   -53.12) meters
                         334594.31 3205325.66 meters
                           91.02
                                   -53.12) meters
                         334594.31 3205295.27 meters
                           91.02 -83.51) meters
ABSORB4 has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
ABSORB4 1
                  8 38.00 4
                         334713.10 3205403.39 meters
                                    24.61) meters
                           209.81
                         334713.10 3205430.49 meters
                           209.81
                                    51.71) meters
                         334753.50 3205430.49 meters
                           250.21
                                    51.71) meters
```

334753.50 3205403.39 meters

```
250.21
                                      24.61) meters
  SORB5 has 1 tier(s) with a base elevation of 1.00 METERS UILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
ABSORB5 1
                       38.00 4
                          334713.14 3205282.97 meters
                            209.85
                                     -95.81) meters
                          334713.14 3205310.03 meters
                            209.85
                                      -68.75) meters
                          334753.56 3205310.03 meters
                            250.27
                                     -68.75) meters
                          334753.56 3205282.97 meters
                            250.27
                                    -95.81) meters
HCT12 has 1 tier(s) with a base elevation of 1.00 METERS BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
                                                     Х
                10 10.00
HCT12
                          333110.36 3204585.63 meters
                          -1392.93 -793.15) meters
                          333111.44 3204601.07 meters
                                     -777.71) meters
                          -1391.85
                          333900.02 3204545.92 meters
                          -603.27 -832.85) meters
                          333898.94 3204530.49 meters
                           -604.35 -848.29) meters
UN2 BLDG has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
 N2 BLDG 1
                       63.40 4
                  11
                          334254.27 3204291.13 meters
                           -249.02 -1087.65) meters
                          334254.27 3204327.73 meters
                           -249.02 -1051.05) meters
                          334290.87 3204327.73 meters
                          -212.42 -1051.05) meters
                          334290.87 3204291.13 meters
                          -212.42 -1087.65) meters
UN1 BLDG has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
UN1 BLDG 1
                  12
                       60.40 4
                          334317.30 3204288.33 meters
                           -185.99 -1090.45) meters
                          334317.30 3204329.64 meters
                           -185.99 -1049.14) meters
                          334347.41 3204329.64 meters
                          -155.88 -1049.14) meters
                          334347.41 3204288.33 meters
                          -155.88 -1090.45) meters
BLD_13 has 1 tier(s) with a base elevation of 1.00 METERS BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
                     3.70
BLD 13 1
               13
                          334172.00 3204353.36 meters
                          -331.29 -1025.42) meters
                          334172.00 3204388.02 meters
                           -331.29 -990.76) meters
                          334206.66 3204388.02 meters
                           -296.63 -990.76) meters
                          334206.66 3204353.36 meters
                           -296.63 -1025.42) meters
```

```
BLDG12 has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLOG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS
BLDG12 1
               14 22.90 4
                        334239.75 3204326.58 meters
                        -263.54 -1052.20) meters
                        334239.75 3204350.21 meters
                         -263.54 -1028.57) meters
                        334368.94 3204350.21 meters
                        -134.35 -1028.57) meters
                        334368.94 3204326.58 meters
                        -134.35 -1052.20) meters
TANKNW has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS
TANKNW
                     12.20 32
                15
                        333937.22 3204420.22 meters
                         -566.07
                                  -958.56) meters
                        333930.24 3204419.53 meters
                         -573.05 -959.25) meters
                        333923.52 3204417.50 meters
                         -579.77 -961.28) meters
                        333917.33 3204414.19 meters
                         -585.96 -964.59) meters
                        333911.91 3204409.73 meters
                         -591.38
                                  -969.05) meters
                        333907.46 3204404.31 meters
                         -595.83 -974.47) meters
                        333904.15 3204398.12 meters
                         -599.14 -980.66) meters
                        333902.11 3204391.40 meters
                         -601.18 -987.38) meters
                        333901.42 3204384.42 meters
                         -601.87 -994.36) meters
                        333902.11 3204377.44 meters
                         -601.18 -1001.34) meters
                        333904.15 3204370.72 meters
                         -599.14 -1008.06) meters
                        333907.46 3204364.53 meters
                         -595.83 -1014.25) meters
                        333911.91 3204359.11 meters
                         -591.38 -1019.67) meters
                        333917.33 3204354.65 meters
                         -585.96 -1024.13) meters
                        333923.52 3204351.35 meters
                         -579.77 -1027.43) meters
                        333930.24 3204349.31 meters
                         -573.05 -1029.47) meters
                        333937.22 3204348.62 meters
                         -566.07 -1030.16) meters
                        333944.21 3204349.31 meters
                         -559.08 -1029.47) meters
                        333950.92 3204351.35 meters
                        -552.37 -1027.43) meters
333957.11 3204354.65 meters
                         -546.18 -1024.13) meters
                        333962.54 3204359.11 meters
                         -540.75 -1019.67) meters
                        333966.99 3204364.53 meters
                         -536.30 -1014.25) meters
                        333970.30 3204370.72 meters
                         -532.99 -1008.06) meters
                        333972.34 3204377.44 meters
                         -530.95 -1001.34) meters
                        333973.02 3204384.42 meters
                         -530.27
                                  -994.36) meters
                        333972.34 3204391.40 meters
                         -530.95 -987.38) meters
                        333970.30 3204398.12 meters
                         -532.99
                                  -980.66) meters
                        333966.99 3204404.31 meters
                          -536.30 -974.47) meters
                        333962.54 3204409.73 meters
```

-540.75 -969.05) meters

TANKSW

```
333957.11 3204414.19 meters
                         -546.18 -964.59) meters
                        333950.92 3204417.50 meters
                         -552.37 -961.28) meters
                        333944.21 3204419.53 meters
                        -559.08 -959.25) meters
TANKSW has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS
                16
                    12.20 32
                        333935.05 3204323.60 meters
                        -568.24 -1055.18) meters
                        333928.07 3204322.91 meters
                         -575.22 -1055.87) meters
                        333921.35 3204320.88 meters
                         -581.94 -1057.90) meters
                        333915.16 3204317.57 meters
                         -588.13 -1061.21) meters
                        333909.74 3204313.12 meters
                         -593.55 -1065.66) meters
                        333905.29 3204307.69 meters
                         -598.00 -1071.09) meters
                        333901.98 3204301.50 meters
                         -601.31 -1077.28) meters
                        333899.94 3204294.79 meters
                         -603.35 -1083.99) meters
                        333899.25 3204287.80 meters
                         -604.04 -1090.98) meters
                        333899.94 3204280.82 meters
                         -603.35 -1097.96) meters
                        333901.98 3204274.10 meters
```

-601.31 -1104.68) meters 333905.29 3204267.91 meters -598.00 -1110.87) meters 333909.74 3204262.49 meters -593.55 -1116.29) meters 333915.16 3204258.04 meters -588.13 -1120.74) meters 333921.35 3204254.73 meters -581.94 -1124.05) meters 333928.07 3204252.69 meters -575.22 -1126.09) meters 333935.05 3204252.00 meters -568.24 -1126.78) meters 333942.04 3204252.69 meters -561.25 -1126.09) meters 333948.75 3204254.73 meters -554.54 -1124.05) meters 333954.94 3204258.04 meters -548.35 -1120.74) meters 333960.37 3204262.49 meters -542.92 -1116.29) meters 333964.82 3204267.91 meters -538.47 -1110.87) meters 333968.13 3204274.10 meters -535.16 -1104.68) meters 333970.16 3204280.82 meters -533.13 -1097.96) meters 333970.85 3204287.80 meters -532.44 -1090.98) meters 333970.16 3204294.79 meters -533.13 -1083.99) meters 333968.13 3204301.50 meters -535.16 -1077.28) meters 333964.82 3204307.69 meters -538.47 -1071.09) meters 333960.37 3204313.12 meters -542.92 -1065.66) meters 333954.94 3204317.57 meters -548.35 -1061.21) meters 333948.75 3204320.88 meters -554.54 -1057.90) meters 333942.04 3204322.91 meters (-561.25 -1055.87) meters

```
TANKNE has 1 tier(s) with a base elevation of 1.00 METERS
                                          CORNER COORDINATES
BUILDING TIER BLDG-TIER TIER NO. OF
 NAME NUMBER NUMBER HEIGHT CORNERS
TANKNE 1 17 12.20 32
                        334041.44 3204387.32 meters
                         -461.85 -991.46) meters
                        334035.79 3204386.76 meters
                         -467.50 -992.02) meters
                        334030.36 3204385.11 meters
                         -472.93 -993.67) meters
                        334025.36 3204382.44 meters
                         -477.93 -996.34) meters
                        334020.97 3204378.84 meters
                         -482.32 -999.94) meters
                        334017.37 3204374.45 meters
                         -485.92 -1004.33) meters
                        334014.70 3204369.44 meters
                         -488.60 -1009.34) meters
                        334013.05 3204364.01 meters
                         -490.24 -1014.77) meters
                        334012.49 3204358.37 meters
                         -490.80 -1020.41) meters
                        334013.05 3204352.72 meters
                         -490.24 -1026.06) meters
                        334014.70 3204347.29 meters
                         -488.60 -1031.49) meters
                        334017.37 3204342.28 meters
                         -485.92 -1036.50) meters
                        334020.97 3204337.90 meters
                         -482.32 -1040.89) meters
                        334025.36 3204334.29 meters
                         -477.93 -1044.48) meters
                        334030.36 3204331.62 meters
                         -472.93 -1047.16) meters
                        334035.79 3204329.97 meters
                         -467.50 -1048.81) meters
                        334041.44 3204329.42 meters
                         -461.85 -1049.36) meters
                        334047.09 3204329.97 meters
                         -456.20 -1048.81) meters
                        334052.52 3204331.62 meters
                         -450.77 -1047.16) meters
                        334057.53 3204334.29 meters
                         -445.77 -1044.48) meters
                        334061.91 3204337.90 meters
                         -441.38 -1040.89) meters
                        334065.51 3204342.28 meters
                         -437.78 -1036.50) meters
                        334068.19 3204347.29 meters
                         -435.10 -1031.49) meters
                        334069.84 3204352.72 meters
                         -433.45 -1026.06) meters
                        334070.39 3204358.37 meters
                         -432.90 -1020.41) meters
                        334069.84 3204364.01 meters
                         -433.45 -1014.77) meters
                        334068.19 3204369.44 meters
                         -435.10 -1009.34) meters
                        334065.51 3204374.45 meters
                         -437.78 -1004.33) meters
                        334061.91 3204378.84 meters
                          -441.38 -999.94) meters
                        334057.53 3204382.44 meters
                         -445.77 -996.34) meters
                         334052.52 3204385.11 meters
                          -450.77 -993.67) meters
                        334047.09 3204386.76 meters
                         -456.20 -992.02) meters
```

TANKSE has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
NAME NUMBER NUMBER HEIGHT CORNERS X Y

TANKSE 1 18 12.20 32

334040.35 3204309.15 meters

```
-462.93 -1069.63) meters
                         334034.71 3204308.60 meters
                          -468.58 -1070.18) meters
                         334029.28 3204306.95 meters
                          -474.01 -1071.83) meters
                        334024.27 3204304.27 meters
                          -479.02 -1074.51) meters
                         334019.89 3204300.67 meters
                          -483.40 -1078.11) meters
                         334016.28 3204296.29 meters
                          -487.01 -1082.49) meters
                        334013.61 3204291.28 meters
                          -489.68 -1087.50) meters
                         334011.96 3204285.85 meters
                          -491.33 -1092.93) meters
                         334011.41 3204280.20 meters
                          -491.89 -1098.58) meters
                        334011.96 3204274.56 meters
                          -491.33 -1104.22) meters
                         334013.61 3204269.12 meters
                          -489.68 -1109.66) meters
                         334016.28 3204264.12 meters
                          -487.01 -1114.66) meters
                        334019.89 3204259.73 meters
                          -483.40 -1119.05) meters
                         334024.27 3204256.13 meters
                          -479.02 -1122.65) meters
                         334029.28 3204253.46 meters
                          -474.01 -1125.32) meters
                        334034.71 3204251.81 meters
                          -468.58 -1126.97) meters
                        334040.35 3204251.25 meters
                          -462.93 -1127.53) meters
                        334046.00 3204251.81 meters
                          -457.29 -1126.97) meters
                        334051.43 3204253.46 meters
                          -451.86 -1125.32) meters
                        334056.44 3204256.13 meters
                          -446.85 -1122.65) meters
                        334060.83 3204259.73 meters
                          -442.46 -1119.05) meters
                        334064.43 3204264.12 meters
                          -438.86 -1114.66) meters
                        334067.10 3204269.12 meters
                          -436.19 -1109.66) meters
                        334068.75 3204274.56 meters
                         -434.54 -1104.22) meters
                        334069.30 3204280.20 meters
                          -433.98 -1098.58) meters
                        334068.75 3204285.85 meters
                         -434.54 -1092.93) meters
                        334067.10 3204291.28 meters
                          -436.19 -1087.50) meters
                        334064.43 3204296.29 meters
                          -438.86 -1082.49) meters
                        334060.83 3204300.67 meters
                          -442.46 -1078.11) meters
                        334056.44 3204304.27 meters
                          -446.85 -1074.51) meters
                        334051.43 3204306.95 meters
                          -451.86 -1071.83) meters
                        334046.00 3204308.60 meters
                          -457.29 -1070.18) meters
PRECIP2A has 1 tier(s) with a base elevation of 1.00 METERS
BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
PRECIP2A 1
                 19 12.20 4
                        334182.57 3204249.81 meters
                          -320.72 -1128.97) meters
                        334182.57 3204275.86 meters
                          -320,72 -1102.92) meters
                        334232.51 3204275.86 meters
                         -270.78 -1102.92) meters
                        334232.51 3204249.81 meters
                         -270.78 -1128.97) meters
```

```
PRECIP2B has 1 tier(s) with a base elevation of BUILDING TIER BLDG-TIER TIER NO. OF CORNER COORDINATES
 NAME NUMBER NUMBER HEIGHT CORNERS
PRECIP2B 1
                     12.20 4
                20
                        334249.88 3204250.89 meters
                         -253.41 -1127.89) meters
                        334249.88 3204276.95 meters
                         -253.41 -1101.83) meters
                        334301.98 3204276.95 meters
                         -201.31 -1101.83) meters
                        334301.98 3204250.89 meters
                         -201.31 -1127.89) meters
Number of stacks to be processed: 20
          STACK
                       STACK COORDINATES
 STACK NAME BASE HEIGHT
 BLR4
           1.00 182.90 METERS
                  334665.27 3205401.84 meters
                   161.98
                             23.06) meters
 BLR5
           1.00 182.90 METERS
                  334665.27 3205310.43 meters
                    161.98
                            -68.35) meters
            1.00 122.00 METERS
 UNIT45
                  334776.80 3205393.42 meters
                   273.51
                             14.64) meters
           1.00 135.10 METERS
 CT4
                  334312.56 3205466.28 meters
                   -190.73
                            87.50) meters
           1.00 135.10 METERS
 CT5
                  334313.48 3205236.26 meters
                   -189.81 -142.52) meters
 HCT1
            1.00 16.20 METERS
                  333190.92 3204586.51 meters
                   -1312.37 -792.27) meters
            1.00 16.20 METERS
 HCT2
                  333375.38 3204573.64 meters
                ( -1127.91 -805.14) meters
 НСТ3
            1.00 16.20 METERS
                  333637.51 3204550.46 meters
                   -865.78 -828.32) meters
 HCT4
            1.00 16.20 METERS
                  333820.52 3204538.72 meters
                   -682.77 -840.06) meters
 CTWRPORT
                1.00 5.79 METERS
                  333014.94 3204595.01 meters
                   -1488.35 -783.77) meters
 UNIT1
            1.00 152.10 METERS
                  334319.40 3204230.21 meters
                   -183.89 -1148.57) meters
            1.00 153.00 METERS
 UNIT2
                  334260.58 3204230.21 meters
                   -242.71 -1148.57) meters
 FAT1
            1.00 9.15 METERS
                  334242.00 3204264.00 meters
                   -261.29 -1114.78) meters
             1.00 22.90 METERS
 FAS1&2
                  334000.00 3204264.00 meters
                   -503.29 -1114.78) meters
            1.00 9.15 METERS
 FAT2A
                   334242.00 3204264.00 meters
                   -261.29 -1114.78) meters
            1.00 9.15 METERS
 FAT2B
                   334242.00 3204264.00 meters
                   -261.29 -1114.78) meters
 BAS12
             1.00 23.80 METERS
                   334120.01 3204395.90 meters
                    -383.28 -982.88) meters
 LIM1234
             1.00 10.10 METERS
                   335081.37 3205560.73 meters
                    578.08
                             181.95) meters
 LIMSILO
             2.00 41.80 METERS
                   335085.72 3205425.85 meters
                    582.43
                              47.07) meters
```

CBO 2.00 28.40 METERS 334656.76 3205553.94 meters (153.47 175.16) meters

The following lists the stacks that have been identified as being atop the noted building-tiers.

BUILDING TIER STACK NAME NO. NAME NO. NO. HCT1 HCT12 10 6 HCT2 HCT12 10 7 1 **НСТ3** 8 HCT12 10 HCT4 HCT12 10 1

Overall GEP Summary Table (Units: meters)

StkNo: 1 Stk Name:BLR4 Stk Ht: 182.90 Prelim. GEP Stk.Ht: 211.02 GEP: BH: 84.40 PBW: 135.05 *Eqn1 Ht: 211.02 *adjusted for a Stack-Building elevation difference of -0.02 No. of Tiers affecting Stk: 2 Direction occurred: 42.75 Bldg-Tier nos. contributing to GEP: 1 2

StkNo: 2 Stk Name:BLR5 Stk Ht: 182.90 Prelim. GEP Stk.Ht: 211.02 GEP: BH: 84.40 PBW: 135.05 *Eqn1 Ht: 211.02 *adjusted for a Stack-Building elevation difference of -0.02 No. of Tiers affecting Stk: 2 Direction occurred: 137.25 Bldg-Tier nos. contributing to GEP: 1 2

StkNo: 3 Stk Name:UNIT45 Stk Ht: 122.00 Prelim. GEP Stk.Ht: 211.02 GEP: BH: 84.40 PBW: 137.85 *Eqn1 Ht: 211.02 *adjusted for a Stack-Building elevation difference of -0.02 No. of Tiers affecting Slk: 2 Direction occurred: 90.00 ldg-Tier nos. contributing to GEP: 1 2

StkNo: 4 Stk Name:CT4 Stk Ht: 135.10 Prelim. GEP Stk.Ht: 211.02 GEP: BH: 84.40 PBW: 139.34 *Eqn1 Ht: 211.02 *adjusted for a Stack-Building elevation difference of -0.02 No. of Tiers affecting Stk: 2 Direction occurred: 313.00 Bldg-Tier nos. contributing to GEP: 1 2

StkNo: 5 Stk Name:CT5 Stk Ht: 135.10 Prelim. GEP Stk.Ht: 211.02 GEP: BH: 84.40 PBW: 137.66 *Eqn1 Ht: 211.02 *adjusted for a Stack-Building elevation difference of -0.02 No. of Tiers affecting Stk: 2 Direction occurred: 225.25 Bldg-Tier nos. contributing to GEP: 1 2

StkNo: 6 Stk Name:HCT1 Stk Ht: 16.20 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 10.00 PBW: 15.47 *Eqn1 Ht: 25.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 1 Direction occurred: 94.00 Bldg-Tier nos. contributing to GEP: 10

StkNo: 7 Stk Name:HCT2 Stk Ht: 16.20 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 10.00 PBW: 15.47 *Eqn1 Ht: 25.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 1 Direction occurred: 94.00 Bldg-Tier nos. contributing to GEP: 10

StkNo: 8 Stk Name:HCT3 Stk Ht: 16.20 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 10.00 PBW: 15.47 *Eqn1 Ht: 25.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 1 Direction occurred: 94.00 Bldg-Tier nos. contributing to GEP: 10

*adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 1 Direction occurred: 94.00 Bldg-Tier nos. contributing to GEP: 10

StkNo: 10 Stk Name:CTWRPORT Stk Ht: 5.79 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 0.00 PBW: 0.00 *Eqn1 Ht: 0.00 No tiers affect this stack.

StkNo: 11 Stk Name:UNIT1 Stk Ht: 152.10 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 91.87 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 133.25

Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 12 Stk Name:UNIT2 Stk Ht: 153.00 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 84.75 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 236.00 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 13 Stk Name:FAT1 Stk Ht: 9.15 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 60.41 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 256.25 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 14 Stk Name:FAS1&2 Stk Ht: 22.90 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 60.41 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 256.25 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 15 Stk Name:FAT2A Stk Ht: 9.15 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 60.41 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 256.25 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 16 Stk Name:FAT2B Stk Ht: 9.15 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 60.41 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 256.25 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 17 Stk Name:BAS12 Stk Ht: 23.80 Prelim. GEP Stk.Ht: 151.00 GEP: BH: 60.40 PBW: 63.03 *Eqn1 Ht: 151.00 *adjusted for a Stack-Building elevation difference of 0.00 No. of Tiers affecting Stk: 2 Direction occurred: 286.25 Bldg-Tier nos. contributing to GEP: 11 12

StkNo: 18 Stk Name:LIM1234 Stk Ht: 10.10 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 0.00 PBW: 0.00 *Eqn1 Ht: 0.00 No tiers affect this stack.

StkNo: 19 Stk Name:LIMSILO Stk Ht: 41.80 Prelim. GEP Stk.Ht: 65.00 GEP: BH: 0.00 PBW: 0.00 *Eqn1 Ht: 0.00 No tiers affect this stack.

StkNo: 20 Stk Name:CBO Stk Ht: 28.40 Prelim. GEP Stk.Ht: 210.02 GEP: BH: 84.40 PBW: 100.22 *Eqn1 Ht: 210.02 *adjusted for a Stack-Building elevation difference of 0.98 No. of Tiers affecting Stk: 2 Direction occurred: 20.00 Bldg-Tier nos. contributing to GEP: 1 2

'D:\Projects\progress\Crystal River\Lakes\CRYSITE' TERS' 1.00000000 MY' 0.0000 'U4BOILER' 1 1.020 'UNIT 4 BOILER' 84.400 334503.290 3205378.780 3205425.250 334503.290 334559.770 3205425.250 334559.770 3205378,780 'U5BOILER' 1 1.000 'UNIT 5 BOILER' 84.400 334503.290 3205287.396 334503.290 3205333.866 334559.770 3205333.866 334559.770 3205287.396 'TUBINE' 1 1.000 'TURBINE ROOM' 29.500 334471.945 3205268.856 334471.945 3205443.696 334503.939 3205443.696 334503.939 3205268.856 1.850 'BOILER 4 PRECIPITATOR' 'U4PRECIP' 1 27.800 334598.034 3205370.813 334598.034 3205432.991 334633.994 3205432.991 334633.994 3205370.813 'U5PRECIP' 1 1.000 'BOILER 5 PRECIPITATOR' 27.800 3205279.156 334598.000 334598.000 3205341.333 334633.960 3205341.333 334633.960 3205279.156 'SCR4' 1 1.890 'BLR4 SCR' 65.300 334572.623 3205386.556 334572.623 3205416.945 334594.329 3205416.945 3205386.556 334594.329 'BLR5SCR' 1 1.220 'BLR5 SCR' 65.300 334572.600 3205295.271 334572.600 3205325.659 334594.306 3205325.659 334594.306 3205295.271 'ABSORB4' 1 1.000 'Absorber Unit 4' 38.000 334713.100 3205403.392 334713.100 3205430.492 334753.500 3205430.492 334753.500 3205403.392 'ABSORB5' 1 1.000 'Absorber Unit 5' 38.000 334713.140 3205282.970 334713.140 3205310.030 334753.560 3205310.030 334753.560 3205282.970 'HCT12' 1 1.000 10.000 333110.362 3204585.631 3204601.068 333111.441 333900.023 3204545.925 333898.944 3204530.488 'UN2 BLDG' 1 1.000 'UNIT 2 BUILDING' 63.400 334254.267 3204291.127 3204327.727 334254.267 334290.867 3204327.727 334290.867 3204291.127 'UN1 BLDG' 1 1.000 'UNIT 1 BUILDING' 60.400 334317.297 3204288.327 3204329.637 334317.297 334347.407 3204329.637 334347.407 3204288.327

'BLD_13' 1

1.000

4	3.700	
	334171.999	3204353.360
	334171.999	3204388.021
	334206.660	3204388.021
IDI DO	334206.660	3204353.360
BLDG		.000
4	22,900 334239,750	3204326.580
	334239.750	3204350.210
	334368,940	3204350.210
	334368.940	3204326.580
TANK	(NW' 1	1.000
32	12.200	
	333937.224	3204420.220
	333930.240	3204419.532
	333923.524	3204417.495
	333917,334	3204414.187
	333911.910 333907.457	3204409.734 3204404.310
	333904,149	3204398.120
	333902,112	3204391.404
	333901,424	3204384.420
	333902,112	3204377.436
	333904.149	3204370.720
	333907.457	3204364.531
	333911.910	3204359.106
	333917,334	3204354.654
	333923,524	3204351.346
	333930,240	3204349.308
	333937.224 333944.208	3204348.621 3204349.308
	333950.924	3204351.346
	333957,113	3204354.654
	333962.538	3204359.106
	333966.990	3204364.531
	333970.298	3204370.720
	333972.336	3204377.436
	333973.024	3204384.420
	333972.336 333970.298	3204391.404
	333966.990	3204398.120 3204404.310
	333962,538	3204409.734
	333957.113	3204414.187
	333950.924	3204417.495
	333944.208	3204419.532
	(SW' 1	1.000
32	12.200	
	333935,052	3204323.602
	333928.068	3204322.914
	333921.352 333915.163	3204320.877 3204317.569
	333909.738	3204313.116
	333905.286	3204307.692
	333901.978	3204301.502
	333899.941	3204294.786
	333899.253	3204287.802
	333899.941	3204280.818
	333901.978	3204274.102
	333905.286	3204267.913
	333909.738	3204262.488
	333915.163 333921.352	3204258.036 3204254.728
	333928.068	3204252.690
	333935.052	3204252.002
	333942.037	3204252.690
	333948.752	3204254.728
	333954.942	3204258.036
	333960.367	3204262.488
	333964.819	3204267.913
	333968.127	3204274.102
	333970.164	3204280.818
	333970.852 333970.164	3204287.802 3204294.786
	333968.127	3204301.502
	333964.819	3204307.692
	333960.367	3204313.116
	333954.942	3204317.569
	333948.752	3204320.877

333942.037 3204322.914 'TANKNE' 1 1.000 32 12.200 334041.441 3204387.316 3204386.760 334035.793 334030.362 3204385.112 334025.357 3204382.437 3204378.837 334020.970 334017.370 3204374.450 334014.695 3204369.445 334013.047 3204364.014 334012.491 3204358.366 334013.047 3204352.718 3204347.287 334014.695 334017.370 3204342.282 334020.970 3204337.895 334025.357 3204334.295 334030.362 3204331.620 334035.793 3204329.972 334041.441 3204329,416 334047.089 3204329.972 334052.520 3204331.620 334057.525 3204334.295 334061.912 3204337.895 3204342 282 334065.512 334068.187 3204347.287 334069.835 3204352.718 3204358.366 334070.391 334069.835 3204364.014 3204369.445 334068.187 334065.512 3204374.450 334061.912 3204378.837 334057.525 3204382.437 3204385.112 334052.520 334047.089 3204386.760 'TANKSE' 1 1.000 12.200 32 334040.355 3204309.153 334034.707 3204308.597 3204306.949 334029.277 334024.272 3204304.274 334019.885 3204300.674 334016.284 3204296.287 334013.609 3204291.282 334011.962 3204285.851 334011.405 3204280.203 334011.962 3204274.555 334013.609 3204269.124 3204264.119 334016.284 334019.885 3204259.732 334024.272 3204256.132 334029.277 3204253.457 334034.707 3204251.809 334040.355 3204251.253 3204251.809 334046.003 334051.434 3204253.457 334056.439 3204256.132 334060.826 3204259,732 334064.426 3204264.119 334067.102 3204269.124 334068.749 3204274.555 334069.305 3204280.203 3204285.851 334068.749 334067.102 3204291.282 334064.426 3204296.287 334060.826 3204300.674 334056,439 3204304.274 334051.434 3204306.949 3204308.597 334046.003 'PRECIP2A' 1 1.000 12.200 3204249.806 334182.568 334182.568 3204275.861 334232.506 3204275.861 334232.506 3204249.806 'PRECIP2B' 1 1.000 12.200 334249.875 3204250.892

334	249.875	3204276.946			
		3204276.946			
334		3204250.892			
20		1200.002			
'BLR4'	1.000	182.900	334665.270	3205401.840	
'BLR5'	1.000	182,900	334665.270	3205310,430	
'UNIT45'	1.000	122.000	334776.800	3205393,420	
'CT4'	1.000			3205466.280	
'CT5'	1.000		334313.480	3205236.260	
'HCT1'	1.000	16.200	333190.920	3204586.510	
'HCT2'	1,000	16.200	333375.380	3204573.640	
'HCT3'	1.000	16.200	333637.510	3204550.460	
'HCT4'	1.000	16.200	333820.520	3204538.720	
'CTWRPO	RT' 1	1.000 5	.791 333014	.940 3204595.01	0 'PORTABLE COOLING TOWER'
'UNIT1'	1.000	152.100	334319.400	3204230.210	
'UNIT2'	1.000	153.000	334260.580	3204230.210	
'FAT1'	1.000	9.150	334242.000	3204264.000	
'FAS1&2'	1.000	22.900	334000.000	3204264.000	
'FAT2A'	1.000	9.150	334242.000	3204264.000	
'FAT2B'	1.000	9.150	334242.000	3204264.000	
'BA\$12'	1.000	23.800	334120.010	3204395.900	
'LIM1234'	1.000	10.100	335081.37	0 3205560.730	
'LIMSILO'	2.00	41.800	335085.72	0 3205425.850	
'CBO'	2.000	28.400	334656.760	3205553.940 'CBO	Unit'

D:\Projects\progress\Crystal River\Lakes\CRYSITE

BPIP (Dated: 04274)

TE: 8/15/2006 ME: 12:27:41

D:\Projects\progress\Crystal River\Lakes\CRYSITE

BPIP PROCESSING INFORMATION:

The P flag has been set for preparing downwash related data for a model run utilizing the PRIME algorithm.

Inputs entered in METERS will be converted to meters using a conversion factor of 1.0000. Output will be in meters.

The UTMP variable is set to UTMY. The input is assumed to be in UTM coordinates. BPIP will move the UTM origin to the first pair of UTM coordinates read. The UTM coordinates of the new origin will be subtracted from all the other UTM coordinates entered to form this new local coordinate system.

Plant north is set to 0.00 degrees with respect to True North.

D:\Projects\progress\Crystal River\Lakes\CRYSITE

PRELIMINARY* GEP STACK HEIGHT RESULTS TABLE (Output Units: meters)

	Stac	k-Building	Prelimir	nary*
Stack Name	Stack Height			GEP Stack Height Value

BLR4	182.90	-0.02	211.02	211.02
BLR5	182.90	-0.02	211.02	211.02
UNIT45	122.00	-0.02	211.02	211.02
CT4	135.10	-0.02	211.02	211.02
CT5	135.10	-0.02	211.02	211.02
HCT1	16.20	0.00	25.00	65.00
HCT2	16.20	0.00	25.00	65.00
НСТ3	16.20	0.00	25.00	65.00
HCT4	16.20	0.00	25.00	65.00
CTWRP	ORT 5.7	9 N/	'A 0.00	65.00
UNIT1	152.10	0.00	151.00	151.00
UNIT2	153.00	0.00	151.00	151.00
FAT1	9.15	0.00	151.00	151.00
FAS1&2	22.90	0.00	151.00	151.00
FAT2A	9.15	0.00	151.00	151.00
FAT2B	9.15	0.00	151.00	151.00
BAS12	23.80	0.00	151.00	151.00
LIM1234	10.10	N/A	0.00	65.00
LIMSILO	41.80	N/A	0.00	65.00
CBO	28.40	0.98	210.02	210.02

- * Results are based on Determinants 1 & 2 on pages 1 & 2 of the GEP Technical Support Document. Determinant 3 may be investigated for additional stack height credit. Final values result after Determinant 3 has been taken into consideration.
- ** Results were derived from Equation 1 on page 6 of GEP Technical Support Document. Values have been adjusted for any stack-building base elevation differences.

Note: Criteria for determining stack heights for modeling emission limitations for a source can be found in Table 3.1 of the GEP Technical Support Document.

BPIP (Dated: 04274)

DATE: 8/15/2006 TIME: 12:27:41

D:\Projects\progress\Crystal River\Lakes\CRYSITE

BPIP output is in meters

SO BUILDHGT BLR4 27.80 65.30 84.40 84.40 84.40 84.40 SO BUILDHGT BLR4 84.40 84.40 84.40 84.40 84.40 84.40 SO BUILDHGT BLR4 27.80 27.80 27.80 0.00 0.00 0.00 SO BUILDHGT BLR4 0.00 65.30 84.40 84.40 84.40 84.40 SO BUILDHGT BLR4 84.40 84.40 84.40 84.40 84.40 84.40 SO BUILDHGT BLR4 38.00 38.00 38.00 38.00 0.00 0.00 SO BUILDWID BLR4 138.19 129.98 117.84 131.88 141.91 147.63 SO BUILDWID BLR4 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR4 125.54 134.97 140.30 0.00 0.00 0.00 SO BUILDWID BLR4 0.00 129.98 117.84 131.88 141.91 147.63 SO BUILDWID BLR4 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR4 46.71 48.36 48.53 47.24 0.00 0.00 SO BUILDLEN BLR4 75.81 148.86 147.63 141.91 131.88 117.84 SO BUILDLEN BLR4 100.22 79.56 56.48 79.56 100.22 117.84 SO BUILDLEN BLR4 135.12 125.72 112.50 0.00 0.00 0.00 SO BUILDLEN BLR4 0.00 148.86 147.63 141.91 131.88 117.84 100.22 79.56 56.48 79.56 100.22 117.84 SO BUILDLEN BLR4 SO BUILDLEN BLR4 48.36 46.71 43.64 39.25 0.00 0.00 SO XBADJ BLR4 -140.83 -162.94 -180.10 -191.79 -197.65 -197.50 SO XBADJ BLR4 -191.35 -179.39 -161.98 -163.58 -160.22 -151.98 SO XBADJ BLR4 -139.13 -122.05 -101.26 0.00 0.00 0.00 0.00 14.08 32.48 49.88 65.77 79.66 BLR4 SO XBADJ 91.13 99.83 105.50 84.02 60.00 34.14 SO XBADJ BLR4 SO XBADJ BLR4 -144.04 -147.81 -147.09 -141.90 0.00 0.00 BLR4 SO YBADJ 78.62 95.23 93.06 73.19 51.10 27.45 SO YBADJ BLR4 2.97 -21.60 -45.52 -68.05 -88.51 -106.29 SO YBADJ BLR4 -59.01 -71.42 -81.66 0.00 0.00 0.00 SO YBADJ BLR4 0.00 -95.23 -93.06 -73.19 -51.10 -27.45 BLR4 SO YBADJ -2.97 21.60 45.52 68.05 88.51 106.29 SO YBADJ BLR4 36.93 15.56 -6.29 -27.95 0.00

SO BUILDHGT BLR5 0.00 0.00 27.80 27.80 27.80 84.40 SO BUILDHGT BLR5 84.40 84.40 84.40 84.40 84.40 84.40 SO BUILDHGT BLR5 84.40 84.40 84.40 65.30 27.80 0.00 SO BUILDHGT BLR5 0.00 38.00 38.00 38.00 38.00 84.40 SO BUILDHGT BLR5 84.40 84.40 84.40 84.40 84.40 84.40 SO BUILDHGT BLR5 84.40 84.40 84.40 65.30 0.00 0.00 SO BUILDWID BLR5 0.00 0.00 140.52 135.27 125.90 147.63 SO BUILDWID BLR5 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR5 141.91 131.88 117.84 129.86 138.13 0.00 SO BUILDWID BLR5 0.00 47.23 48.54 48.37 46.73 147.63 SO BUILDWID BLR5 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR5 141.91 131.88 117.84 129.86 0.00 0.00 SO BUILDLEN BLR5 0.00 0.00 112.05 125.31 134.77 117.84 100.22 79.56 56.48 79.56 100.22 117.84 SO BUILDLEN BLR5 SO BUILDLEN BLR5 131.88 141.91 147.63 148.86 76.31 0.00 SO BUILDLEN BLR5 0.00 39.28 43.67 46.73 48.37 117.84 SO BUILDLEN BLR5 100.22 79.56 56.48 79.56 100.22 117.84 SO BUILDLEN BLR5 131.88 141.91 147.63 148.86 0.00 0.00 0.00 0.00 -100.94 -121.76 -138.89 -151.80 SO XBADJ BLR5 -160.09 -163.52 -161.98 -179.46 -191.48 -197.69 BLR5 SO XBADJ SO XBADJ BLR5 -197.89 -192.08 -180.43 -163.30 -141.20 0.00 BLR5 SO XBADJ 0.00 -143.00 -148.09 -148.69 -144.76 33.96 BLR5 SO XBADJ 59.87 83.96 105.50 99.90 91.26 79.85 SO XBADJ BLR5 66.01 50.17 32.80 14.44 0.00 0.00 BLR5 0.00 81.74 71.52 59.12 106.61 SO YBADJ 0.00 BLR5 SO YBADJ 88.87 68.42 45.89 21.97 -2.62 -27.13 SO YBADJ BLR5 -50.81 -72.95 -92.88 -95.16 -78.58 SO YBADJ BLR5 0.00 27.50 5.66 -16.35 -37.86 -106.61 BLR5 -88.87 -68.42 -45.89 -21.97 2.62 27.13 SO YBADJ SO YBADJ BLR5 50.81 72.95 92.88 95.16 0.00 0.00

SO BUILDHGT UNIT45 38.00 38.00 38.00 38.00 0.00 84.40 SO BLILDHGT UNIT45 84.40 84.40 84.40 84.40 38.00 38.00 SO BUILDHGT UNIT45 38.00 38.00 38.00 38.00 38.00 0.00 SO BUILDHGT UNIT45 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT UNIT45 38.00 38.00 38.00 38.00 38.00 38.00 SO BUILDHGT UNIT45 38.00 38.00 38.00 38.00 38.00 0.00 SO BUILDWID UNIT45 44.50 47.24 48.53 48.36 0.00 147.63

SO BUILDWID UNIT45 148.86 145.57 137.85 145.57 39.28 43.67 SO BUILDWID UNIT45 46.73 48.37 48.54 47.23 44.49 0.00 SO BUILDWID UNIT45 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID UNIT45 39.28 33.70 27.10 33.70 39.28 43.67 SO BUILDWID UNIT45 46.73 48.37 48.54 47.23 44.49 0.00 SO BUILDLEN UNIT45 0.00 117.84 33.67 39.25 43.64 46.71 SO BUILDLEN UNIT45 100.22 79.56 56.48 79.56 47.23 48.54 SO BUILDLEN UNIT45 48.37 46.73 43.67 39.28 33.70 0.00 SO BUILDLEN UNIT45 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN UNIT45 47.23 44.49 40.40 44.49 47.23 48.54 SO BUILDLEN UNIT45 48.37 46.73 43.67 39.28 33.70 0.00 UNIT45 -119.83 -125.56 -127.48 -125.53 0.00 -289.88 SO XBADJ SO XBADJ UNIT45 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70 UNIT45 SO XBADJ -72.63 -69.34 -63.96 -56.62 -47.57 0.00 **UNIT45** 0.00 SO XBADJ 0.00 0.00 0.00 0.00 0.00 24.68 25.31 25.16 SO XBADJ UNIT45 16.51 23.30 9,22 SO XBADJ UNIT45 24.26 22.62 20.29 17.34 13.87 0.00 IINIT45 SO YBADJ 25.96 7.68 -10.83 -29.01 0.00 90.51 49.03 SO YBADJ UNIT45 6.06 -37.10 -79.127.23 -1.38 UNIT45 SO YBADJ -9.94 -18.20 -25.91 -32.83 -38.75 0.00 SO YBADJ UNIT45 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ UNIT45 -36.98 -30.72 -23.52 -15.61 -7.23 SO YBADJ UNIT45 9.94 18.20 25.91 32.83 38.75 0.00

SO BUILDHGT CT4 SO BUILDWID CT4 SO BUILDLEN CT4 SO XBADJ CT4 CT4 SO XBADJ SO XBADJ CT4 CT4 SO XBADJ CT4 SO XBADJ SO XBADJ CT4 SO YBADJ CT4 CT4 SO YBADJ SO YBADJ CT4

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 84.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 84.40 84.40 84.40 84.40 0.00 84.40 84.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 131.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 137.85 145.57 148.86 147.63 0.00 131.88 0.00 0.00 0.00 141.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 141.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.48 79.56 100.22 117.84 0.00 0.00 131.88 141.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 154.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -247.21 -274.52 -293.48 -303.53 -304.36 -295.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 109.96 70.26 28.43 -14.26 -56.52 -97.06 0.00 0.00 0.00 0.00

SO BUILDHGT CT5 SO BUILDWID CT5 SO BUILDWID CT5 SO BUILDWID CT5 SO BUILDWID CT5 SO BLIILDWID CT5 SO BUILDWID CT5 SO BUILDLEN CT5 SO XBADJ CT5 SO XBADJ CT5

SO XBADJ

CT5

SO YBADJ

SO YBADJ

SO YBADJ

CT4

CT4

CT4

0.00 0.00 0.00 84.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 84.40 84.40 84.40 84.40 84.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 131.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 131.88 141.91 147.63 145.57 148.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 141.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 141.91 131.88 117.84 100.22 79.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 161.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SO XBADJ CT5 0.00 0.00 0.00 -303.09 -310.15 -307.79 SO XBADJ CT5 -296.08 -275.37 0.00 0.00 0.00 0.00 0.00 SO XBADJ CT5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CT5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CT5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CT5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CT5 -38.24 -80.38 0.00 0.00 0.00 0.00 SO YBADJ CT5 0.00 0.00 0.00 0.00 0.00 0.00
SO BUILDHGT HCT1 SO BUILDWID HCT1 SO BUILDLEN HCT1 SO SBADJ HCT1 SO XBADJ HCT1 SO YBADJ HCT1 S
SO BUILDHGT HCT2 SO BUILDWID HCT2 SO BUILDLEN HCT2 SO SBADJ HCT2 SO XBADJ HCT2 SO YBADJ HCT2 SO Y
SO BUILDHGT HCT3 10.00

SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDWID HCT3 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT3 335.67 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT3 477.17 579.39 664.01 728.46 770.77 789.66 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT3 SO BUILDWID HCT3 335.66 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT3 477.17 579.39 664.01 728.46 770.77 789.66 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT3 SO BUILDLEN HCT3 728.46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT3 648.63 560.26 454.88 335.67 206.26 70.58 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT3 SO BUILDLEN HCT3 728.46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT3 648.63 560.26 454.88 335.66 206.26 70.58 -56.90 -147.25 -233.11 -311.90 -381.21 -438.94 SO XBADJ HCT3 SO XBADJ **НСТ3** -483.33 -513.03 -527.15 -526.86 -511.65 -480.89 SO XBADJ **НСТ3** -435.52 -376.92 -306.86 -227.48 -141.19 -50.61 -41.12 -85.52 -127.33 -165.27 -198.18 -225.08 SO XBADJ **НСТ3** SO XBADJ **НСТ3** -245.13 -257.74 -262.51 -260.93 -252.50 -236.39 SO XBADJ **НСТ3** -213.11 -183.35 -148.01 -108.18 -65.07 -19.97 SO YBADJ **НСТ3** 132.97 129.58 122.25 111.21 96.79 79.42 SO YBADJ 59.65 38.06 15.32 -7.89 -30.86 -52.89 **НСТ3** SO YBADJ **НСТ3** -73.32 -91.51 -106.93 -119.10 -127.65 -132.32 **НСТ**3 SO YBADJ -132.97 -129.58 -122.25 -111.21 -96.79 -79.42 SO YBADJ **НСТ3** -59.65 -38.06 -15.32 7.89 30.86 52.89 **НСТ3** SO YBADJ 73.32 91.51 106.93 119.10 127.65 132.32

SO BUILDHGT HCT4 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT4 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT4 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT4 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT4 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT4 10.00 10.00 10.00 SO BUILDWID HCT4 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT4 335.67 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT4 477.17 579.39 664.01 728.46 770.77 789.66 SO BUILDWID HCT4 787.80 764.15 717.29 648.63 560.26 454.88 98.02 232.77 360.44 SO BUILDWID HCT4 335.66 206.26 70.58 SO BUILDWID HCT4 477.17 579.39 664.01 728.46 770.77 789.66 SO BUILDLEN HCT4 98.02 232.77 360.44 477.17 579.39 664.01 728.46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT4 SO BUILDLEN HCT4 648.63 560.26 454.88 335.67 206.26 70.58 SO BUILDLEN HCT4 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT4 728.46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT4 648.63 560.26 454.88 335.66 206.26 70.58 SO XBADJ HCT4 -77.12 -198.81 -314.45 -420.54 -513.86 -591.56 -651.29 -691.22 -710.16 -709.13 -687.64 -645.25 SO XBADJ HCT4 SO XBADJ HCT4 -583.26 -503.55 -408.53 -301.11 -184.53 -62.35 -20.90 -33.96 -45.99 -56.62 -65.53 -72.45 -77.17 -79.55 -79.50 -78.66 -76.51 -72.03 SO XBADJ HCT4 SO XBADJ HCT4 SO XBADJ HCT4 -65.37 -56.72 -46.34 -34.56 -21.73 -8.23 SO YBADJ HCT4 315.24 305.57 286.61 258.95 223.42 181.10 133.27 81.40 27.06 -28.11 -82.42 -134.23 SO YBADJ HCT4 SO YBADJ HCT4 -181.96 -224.16 -259.55 -287.06 -305.84 -315.33 SO YBADJ HCT4 -315.24 -305.57 -286.61 -258.95 -223.42 -181.10 -133.27 -81.40 -27.06 28.11 82.42 134.23 SO YBADJ HCT4 SO YBADJ HCT4 181.96 224.16 259.55 287.06 305.84 315.33

SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BLIILDWID CTWRPORT 0.00 0.00 0.00 0.000.00 SO BUILDWID CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00

SO BUILDLEN CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 **CTW RPORT** 0.00 0.00 0.00 0.00 SO XBADJ 0.00 0.00 **CTWRPORT** 0.00 SO XBADJ 0.00 0.00 0.00 0.00 0.00 CTWRPORT SO XRAD.I 0.00 0.00 0.00 0.00 በ በበ 0.00 SO XBADJ **CTWRPORT** 0.00 0.00 0.00 0.00 0.00 0.00 **CTWRPORT** SO XBADJ 0.00 0.00 0.00 0.00 0.00 0.00 **CTWRPORT** 0.00 SO XBADJ 0.00 0.00 0.00 0.00 0.00 SO YBADJ **CTWRPORT** 0.00 0.00 0.00 0.00 0.00 0.00 **CTWRPORT** SO YBADJ 0.00 0.00 0.00 0.00 0.00 0.00 **CTWRPORT** 0.00 SO YBADJ 0.00 0.00 0.00 0.00 0.00 SO YBADJ **CTWRPORT** 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CTWRPORT 0.00 0.00 0.00 0.00 0.00 0.00 **CTWRPORT** SO YBADJI 0.00 0.00 0.00 0.00 0.00 0.00

SO BUILDHGT UNIT1 60.40 60.40 60.40 60.40 60.40 0.00 SO BUILDHGT UNIT1 0.00 0.00 0.00 12.20 60.40 0.00 SO BUILDHGT UNIT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT1 60.40 60.40 60.40 60.40 60.40 0.00 0.00 0.00 0.00 12.20 60.40 SO BUILDHGT UNIT1 0.00 SO BUILDHGT UNIT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID UNIT1 98.57 101.00 100.36 96.68 90.05 0.00 SO BUILDWID UNIT1 0.00 0.00 0.00 0.00 42.31 79.92 96.10 99.92 100.69 98.41 93.14 SO BUILDWID UNIT1 89.37 SO BUILDWID UNIT1 98.57 101.00 100.36 96.68 90.05 0.00 0.00 0.00 0.00 42.31 79.92 SO BUILDWID UNIT1 0.00 SO BUILDWID UNIT1 96.10 99.92 100.69 98.41 93.14 89.37 SO BUILDLEN UNIT1 54.10 68.04 79.92 89.37 96.10 0.00 0.00 0.00 57.88 100.36 SO BUILDLEN UNIT1 0.00 0.00 90.05 80.69 68.88 54.97 41.31 SO BUILDLEN UNIT1 96.68 SO BUILDLEN UNIT1 54.10 68.04 79.92 89.37 96.10 0.00 SO BUILDLEN UNIT1 0.00 0.00 0.00 0.00 57.88 100.36 SO BUILDLEN UNIT1 96.68 90.05 80.69 68.88 54.97 41.31 SO XBADJ UNIT1 48.68 34.97 20.19 4.80 -10.74 0.00 SO XBADJ UNIT₁ 0.00 0.00 0.00 0.00 -81.32 -105.17 -112.58 -116.57 -117.02 -113.91 -107.35 -99.43 UNIT1 SO XBADJ SO XBADJ UNIT1 -102.78 -103.01 -100.11 -94.17 -85.36 0.00 UNIT1 SO XBADJ 0.00 0.00 0.00 0.00 23.44 4.80 UNIT1 26.52 36.33 45.03 52.37 58.12 SO XBADJ 15.90 SO YBADJ UNIT₁ 31.79 44.06 54.98 64.24 71.54 0.00 SO YBADJ UNIT1 0.00 0.00 0.00 0.00 16.81 60.15 SO YBADJ UNIT1 49.48 37.31 24.01 9.98 -4.36 -18.56 SO YBADJ UNIT1 -31.79 -44.06 -54.98 -64.24 -71.54 0.00 0.00 0.00 -16.81 -60.15 SO YBADJ UNIT₁ 0.00 0.00 -49.48 -37.31 -24.01 -9.98 4.36 18.56 SO YBADJ UNIT₁

SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 12.20 12.20 12.20 SO BUILDHGT UNIT2 12.20 12.20 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT UNIT2 0.00 12.20 60.40 60.40 60.40 60.40 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 34.33 41.56 47.53 SO BUILDWID UNIT2 52.06 55.00 99.92 100.69 98.41 93.14 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 0.00 0.00 0.00 SO BUILDWID UNIT2 0.00 56.66 99.92 100.69 98.41 93.14 SO BUILDLEN UNIT2 96.10 99.92 54.10 68.04 79.92 89.37 SO BUILDLEN UNIT2 100.69 0.00 0.00 53.70 55.84 56.28 SO BUILDLEN UNIT2 55.00 52.06 80.69 68.88 54.97 41.31 54.10 SO BUILDLEN UNIT2 68.04 79.92 96.10 99.92 89.37 SO BUILDLEN UNIT2 100.69 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN UNIT2 0.00 53.45 80.69 68.88 54.97 41.31 58.90 55.08 SO XBADJ UNIT2 49.60 42.61 34.32 24.99 SO XBADJ UNIT2 14.90 0.00 0.00 -84.75 -88.92 -90.39 SO XBADJ UNIT2 -89.10 -85.12 -87.61 -93.80 -97.13 -99.43 SO XBADJ UNIT2 -112.99 -123.13 -129.52 -131.98 -130.42 -124.91 SO XBADJ UNIT2 -115.60 0.00 0.00 0.00 0.00 0.00 0.00 -10.77 SO XBADJ LINIT2 6.92 24.92 42.16 58.12 SO YBADJ UNIT2 -26.13 -11.21 4.04 19.18 33.73 47.26 SO YBADJ UNIT2 59.36 0.00 0.00 22.92 12.51 1.73 HNIT2 -9.10 -19.66 74.95 65.25 53.57 40.26 SO YBADJ SO YBADJ UNIT2 26.13 11.21 -4.04 -19.18 -33.73 -47.26 SO YBADJ UNIT2 0.00 0.00 0.00 0.00 0.00 -59.36UNIT2 0.00 -33.43 -74.95 -65.25 -53.57 -40.26 SO YBADJ

SO BUILDHGT FAT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT1 60.40 60.40 12.20 12 20 60.40 60.40 SO BUILDHGT FAT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT1 60.40 12 20 12.20 60 40 60 40 60.40 SO BUILDHGT FAT1 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID FAT1 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT1 54.98 26.05 34.33 68.04 68.88 79.92 SO BUILDWID FAT1 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDWID FAT1 98.57 101.00 100.36 96.68 90.05 80.69 26.05 34.33 SO BUILDWID FAT1 68.88 54.98 68.04 79.92 SO BUILDWID FAT1 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDLEN FAT1 54.10 68.04 79.92 89.37 96.10 99.92 53.70 101.00 100.36 SO BUILDLEN FAT1 100.69 98.41 52.11 SO BUILDLEN FAT1 90.05 80.69 96.68 68.88 54.97 41.31 SO BUILDLEN FAT1 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT1 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT1 90.05 80.69 68.88 54.97 41.31 96.68 SO XBADJ FAT1 28.85 29.69 29.63 28.67 26.83 24.19 20.81 16.79 SO XBADJ 7.88 -60.59 -10.27 -21.24 FAT1 SO XBADJ FAT1 -40.93 -49.06 -55.69 -60.63 -65.64 -31.57 SO XBADJ FAT1 -82.94 -97.73 -109.55 -118.04 -122.94 -124.10 SO XBADJ FAT1 -121.50 -115.20 -59.98 6.88 -90.73 -79.12 SO XBADJ FAT1 -65.11 -49.12 -31.64 -13.19 5.65 24.33 SO YBADJ FAT1 -50.30 -40.23 -28.94 -16.77 -4.09 8.71 SO YBADJ FAT1 21.25 -0.08 -7.13 63.71 69 59 33.14 SO YBADJ FAT1 73.35 74.89 74.15 71.15 66.00 58.84 SO YBADJ FAT1 50.30 40.23 28.94 16.77 4.09 -8.71 0.08 SO YBADJ FAT1 -21.25 -33.14 7.13 -63.71 -69.59 SO YBADJ FAT1 -73.35 -74.89 -74.15 -71.15 -66.00 -58.84

SO BUILDHGT FAS1&2 0.00 12.20 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 12.20 12.20 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 12.20 12.20 0.00 0.00 0.00 0.00 SO BUILDHGT FAS1&2 0.00 12.20 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 60.40 60.40 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 0.00 12.20 0.00 0.00 0.00 0.00 SO BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 57.89 SO BUILDWID FAS1&2 57.84 57.89 57.90 57.84 57.78 SO BUILDWID FAS1&2 71.33 71.33 0.00 0.00 0.00 0.00 SO BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 SO BUILDWID FAS1&2 68.88 54.98 57.90 57.89 57.84 57.78 SO BUILDWID FAS1&2 71.33 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 57.85 57.89 57.90 57.89 57.85 57.78 0.00 0.00 0.00 0.00 SO BUILDLEN FAS1&2 71.33 71.33 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 100.69 98.41 57.90 57.89 57.85 57.78 SO BUILDLEN FAS1&2 0.00 71.33 0.00 0.00 0.00 0.00 SO XBADJ FAS1&2 0.00 0.11 5.32 9.51 12.49 14.16 13.61 11.40 7.99 SO XBADJ FAS1&2 14.54 3.46 -2.04 SO XBADJ FAS1&2 -100.72 -95.64 0.00 0.00 0.00 0.00 SO XBADJ FAS1&2 0.00 -57.95 -63.10 -67.19 -70.17 -71.94 SO XBADJ FAS1&2 -348.91 -353.53 -69.31 -65.87 -61.30 -55.74 SO XBADJ FAS1&2 0.00 24.32 0.00 0.00 0.00 0.00 SO YBADJ FAS1&2 0.00 -32.38-26.85 -20.50 -13.53 -6.15 FAS1&2 SO YBADJ 1.42 8.95 16.20 22.96 29.03 34.21 SO YBADJ FAS1&2 -34.450.00 0.00 0.00 0.00 -23.51 SO YBADJ FAS1&2 0.00 32.38 26.85 20.50 13.53 6.15 SO YBADJ FAS1&2 61.52 8.88 -16.20 -22.96 -29.03 -34.21 SO YBADJ FAS1&2 0.00 34.45 0.00 0.00 0.00 0.00

SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 60.40 12.20 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 100.36 SO BUILDWID FAT2A 98.57 101.00 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 98.41 SO BUILDWID FAT2A 89.37 96.10 99.92 100.69 93.14 SO BUILDWID FAT2A 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2A 96.10 99.92 100.69 98.41 89.37 93.14 SO BUILDLEN FAT2A 54.10 68.04 79.92 89.37 96.10 99.92

96.68

90.05

100.69 98.41 52.11 53.70 101.00 100.36

68.88

54.97 41.31

80.69

SO BUILDLEN FAT2A

SO BUILDLEN FAT2A

SO BUILDLEN FAT2A 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT2A 100.69 98 41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2A 80.69 96.68 90.05 68.88 54.97 41.31 SO XBADJ FAT2A 28.85 29.69 29.63 28.67 26.83 24.19 SO XBADJ 7.88 -60.59 -10.27 -21.24 FAT2A 20.81 16.79 SO XBADJ FAT2A -31.57 -40.93 -49.06 -55.69 -60.63 -65.64 SO XBADJ FAT2A -82.94 -97.73 -109.55 -118.04 -122.94 -124.10 SO XBADJ FAT2A -121.50 -115.20 -59.98 6.88 -90.73 -79.12 SO XBADJ FAT2A -65.11 -49.12 -31.64 -13.19 5.65 24.33 SO YBADJ -28.94 -16.77 FAT2A -50.30 -40.23 -4.09 8.71 SO YBADJ FAT2A 21.25 33.14 -0.08 -7.13 63.71 69.59 SO YBADJ FAT2A 73.35 74.89 74.15 71.15 66.00 58.84 SO YBADJ 28.94 FAT2A 50.30 40.23 16.77 4.09 -8.71 SO YBADJ FAT2A -21.25 -33.14 0.08 7.13 -63.71 -69.59 SO YBADJ FAT2A -73.35 -74.89 -74.15 -71.15 -66.00 -58.84 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 12.20 12.20 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 12 20 60.40 60.40 12.20 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID FAT2B 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2B 34.33 68.04 68.88 54.98 26.05 79.92 SO BUILDWID FAT2B 99.92 100.69 89.37 96.10 98.41 93.14 SO BUILDWID FAT2B 98 57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2B 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2B 99.92 100.69 89.37 96.10 98.41 93.14 SO BUILDLEN FAT2B 79.92 68.04 89.37 96.10 99.92 54.10 SO BUILDLEN FAT2B 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2B 96.68 90.05 80.69 68.88 54.97 41.31 SO BUILDLEN FAT2B 79.92 89.37 96.10 99.92 54.10 68.04 SO BUILDLEN FAT2B 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2B 96.68 90.05 80.69 68.88 54.97 41.31 SO XBADJ 28.85 29.69 29.63 28.67 26.83 24.19 FAT2B 7.88 -60.59 -10.27 -21.24 SO XBADJ FAT2B 20.81 16.79 SO XBADJ FAT2B -31.57 -40.93 -49.06 -55.69 -60.63 -65.64 SO XBADJ FAT2B -82.94 -97.73 -109.55 -118.04 -122.94 -124.10 SO XBADJ FAT2B -121.50 -115.20 -59.98 6.88 -90.73 -79.12 SO XBADJ FAT2B -65.11 -49.12 -31.64 -13.19 5.65 24.33 FAT2B SO YBADJ -4.09 -50.30 -40.23 -28.94 -16.77 8.71 SO YBADJ FAT2B 21.25 33.14 -0.08 -7.13 63.71 69.59 SO YBADJ FAT2B 73.35 74.89 74.15 71.15 66.00 58.84 SO YBADJ 28.94 4.09 FAT2R 50.30 40.23 16.77 -8 71 SO YBADJ FAT2B -21.25 -33.14 0.08 7.13 -63.71 -69.59 SO YBADJ -74.15 -71.15 -66.00 -58.84 FAT2B -73.35 -74.89 SO BUILDHGT BAS12 0.00 12.20 12.20 0.00 0.00 0.00 SO BUILDHGT BAS12 12.20 12.20 0.00 0.00 0.00 0.00 SO BUILDHGT BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT BAS12 0.00 0.00 60.40 60.40 60.40 0.00 SO BUILDHGT BAS12 60.40 0.00 0.00 0.00 0.00 0.00 SO BUILDWID BAS12 0.00 0.00 0.00 0.00 57.68 57.78 SO BUILDWID BAS12 57.84 0.00 0.00 0.00 57.89 0.00 SO BUILDWID BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID BAS12 0.00 68.04 0.00 0.00 79.92 54.10 SO BUILDWID BAS12 89.37 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN BAS12 0.00 0.00 0.00 0.00 57.68 57.78 SO BUILDLEN BAS12 57.84 0.00 57.89 0.00 0.00 0.00 SO BUILDLEN BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN BAS12 0.00 0.00 0.00 98.57 101.00 100.36 SO BUILDLEN BAS12 96.68 0.00 0.00 0.00 0.00 0.00 SO XBADJ BAS12 0.00 0.00 0.00 0.00 -113.15 -115.70 SO XBADJ BAS12 -115.59 -112.84 0.00 0.00 0.00 0.00 SO XBADJ BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ BAS12 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ BAS12 0.00 0.00 -242.62 -250.48 -250.72 0.00 SO XBADJ BAS12 -243.34 0.00 0.00 0.00 0.00 0.00 SO YBADJ BAS12 0.00 0.00 0.00 0.00 21.75 6.78 SO YBADJ BAS12 -8.40-23.320.00 0.00 0.00 0.00 SO YBADJ BAS12 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

0.00

-50.72

0.00

0.00

0.00 0.00

0.00 52.82

0.00

0.00

0.00 0.00

18.51 -16.35

0.00 0.00

BAS12

BAS12

BAS12

SO YBADJ

SO YBADJ

SO YBADJ

SO YBADJ

LIM1234

0.00

							•
SO BUILDE	HGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDH	HGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDH	IGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	HGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDH	HGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDH	HGT LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDY	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDY	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDY	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	VID LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDL	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDL	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO BUILDL	EN LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO XBADJ	LIM1234		0.00	0.00	0.00	0.00	0.00
SO YBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO YBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO YBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO YBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00
SO YBADJ	LIM1234	0.00	0.00	0.00	0.00	0.00	0.00

0.00 0.00

0.00

0.00

0.00

SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.000.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00 LIMSILO SO YBADJ 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ LIMSILO 0.00 0.00 0.00 0.00 0.00 0.00

SO BUILDHGT CBO 65.30 84.40 84.40 84.40 84.40 84.40 SO BUILDHGT CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CBO 84.40 84.40 84.40 84.40 0.00 84.40 SO BUILDHGT CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT CBO 0.00 38.00 38.00 38.00 0.00 0.00 SO BUILDWID CBO 96.38 100.22 117.84 131.88 141.91 147.63 SO BUILDWID CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CBO 0.00 0.00 0.00 0.00 0.00 0.00

SO BUILDWID CBO 0.00 100.22 117.84 131.88 141.91 147.63 SO BUILDWID CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID CBO 0.00 48.37 48.54 47.23 0.00 0.00 SO BUILDLEN CBO 145.57 148.86 147.63 141.91 131.88 117.84 SO BUILDLEN CBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN CBO 0.00 148.86 147.63 141.91 131.88 117.84 SO BUILDLEN CBO SO BUILDLEN CBO SO BUILDLEN CBO -289.14 -302.96 -307.57 -302.83 -288.90 -266.18 SO XBADJ CBO SO XBADJ CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ CBO 0.00 154.10 159.94 160.93 157.02 148.34 SO XBADJ CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO XBADJ CBO 0.00 -177.51 -178.75 -174.56 0.00 0.00 80.60 50.09 9.64 -31.09 -70.89 -108.53 SO YBADJ CBO SO YBADJ CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CBO 0.00 0.00 0.00 0.00 0.00 0.00 SO YBADJ CBO 0.00 -50.09 -9.64 31.09 70.89 108.53 0.00 0.00 0.00 0.00 2.21 -25.07 0.00 0.00 SO YBADJ CBO 0.00 0.00 SO YBADJ CBO 0.00 29.43

APPENDIX F

MODEL SUMMARY AND INPUT FILES

```
CO STARTING
 TITLEONE 2001 PGN CRYSTAL RIVER NEW STACK UNIT 4&5 LOAD ANALYSIS HS= 550 ft 8/12/06
    LETWO TAMPA/RUSKIN METDATA 2001-05
   DELOPT DEAULT CONC
  AVERTIME PERIOD 24 8 3 1
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
******
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
  LOCATION U45075 POINT 334776.800 3205393.420 1.000
 LOCATION U45050 POINT 334776.800 3205393.420 1.000
** Source Parameters **
 SRCPARAM U45100 1 167.7 328.000 15.30000 9.300 SRCPARAM U45075 1 167.7 327.000 11.20000 9.300
  SRCPARAM U45050 1 167.7 327.000 7.50000 9.300
** Building Downwash **
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45050-U45100
                             87.60 87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 38.00 38.00 0.00
SO BUILDHGT U45050-U45100
                                   0.00 0.00 0.00 0.00 87.60
                             0.00
                             38.00 38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45050-U45100
SO BUILDHGT U45050-U45100
                             38.00
                                   38.00 38.00 38.00 38.00
                                                            0.00
SO BUILDWID U45050-U45100
                             44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45050-U45100
                             148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45050-U45100
                             46.73 48.37 48.54 47.23 44.49 0.00
   BUILDWID U45050-U45100
                             0.00 0.00 0.00 0.00 0.00 147.63
    BUILDWID U45050-U45100
                             39.28 33.70 27.10 33.70 39.28 43.67
   BUILDWID U45050-U45100
                             46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDLEN U45050-U45100
                             33.67 39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45050-U45100
                             100.22 79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45050-U45100
                             48.37 46.73 43.67 39.28 33.70 0.00
                             0.00 0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45050-U45100
SO.BUILDLEN U45050-U45100
                             47.23
                                  44.49 40.40 44.49 47.23 48.54
                             48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45050-U45100
SO XBADJ
           U45050-U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
SO XBADJ
           U45050-U45100
                           -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
                           -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
          U45050-U45100
SO XBADJ
           U45050-U45100
                            0.00 0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45050-U45100
                            9.22 16.51
                                       23.30 24.68 25.31 25.16
           U45050-U45100
                            24.26 22.62 20.29 17.34 13.87
SO XBADJ
SO YBADJ
           U45050-U45100
                            25.96
                                 7.68 -10.83 -29.01 76.77 90.51
SO YBADJ
           U45050-U45100
                            49.03 6.06 -37.10 -79.12
                                                    7.23 -1.38
SO YBADJ
           U45050-U45100
                            -9.94 -18.20 -25.91 -32.83 -38.75 0.00
SO YRADJ
           U45050-U45100
                            0.00 0.00 0.00 0.00 -90.51
SO YBADJ
           U45050-U45100
                           -36.98 -30.72 -23.52 -15.61 -7.23 1.38
           U45050-U45100
                            9.94 18.20 25.91 32.83 38.75 0.00
SO YBADJ
  SRCGROUP U45100 U45100
  SRCGROUP U45075 U45075
  SRCGROUP U45050 U45050
SO FINISHED
.......
** AERMOD Receptor Pathway
****************
RE STARTING
  INCLUDED CRAUG06A.ROU
   FINISHED
 ** AERMOD Meteorology Pathway
```

ME STARTING
SURFFILE C:\amodmet\TAMPA_2001.SFC
PROFFILE C:\amodmet\TAMPA_2001.PFL
SURFDATA 12842 2001 TAMPA/INT'L_ARPT
UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
PROFBASE 19 FEET
ME FINISHED

AERMOD Output Pathway

OU STARTING
RECTABLE ALLAVE FIRST

OU FINISHED

AERMOD OUTPUT FILE NUMBER 1:355045.001
ERMOD OUTPUT FILE NUMBER 2:355045.002
ERMOD OUTPUT FILE NUMBER 3:355045.003
AERMOD OUTPUT FILE NUMBER 4:355045.004
AERMOD OUTPUT FILE NUMBER 5:355045.005

First title for last output file is: 2001 PGN CRYSTAL RIVER NEW STACK UNIT 4&5 LOAD ANALYSIS HS= 550 ft 8/12/06

Second title for last output file is: TAMPA/RUSKIN METDATA 2001-05

AVERAGING T	TIME YEAR (ug/m3)		m) (YYMM	Y PERIOD ENDING
SOURCE GRO	OUP ID: U451	00		
200	0.00687	336500.	3205200.	01123124
200		333434.		02123124
200	0.00691	336400.	3205100.	03123124
200	0.00712	336400.	3205100.	04123124
200	0.00730	336400.	3205100.	05123124
HIGH 24-Hour				
200		336700.		01052624
200		333800.		02060524
200		336800.		03053024
200		336600.		04052724
200	0.09672	336500.	3205000.	05052424
HIGH 8-Hour		000000	0005000	04074040
	0.20828	336800.		01071216
200		333800.	3205700.	02060516
200		333800.		03083016
200 200		333677. 336400.		04051416 05052416
HIGH 3-Hour	J5 U.Z 1269	336400.	3205000.	00002410
200	0.31307	336700.	3205600.	01071215
200		336700.		
200		336700.		03030915
200		336600.		
200		336500.		05052418
GH 1-Hour				
200	0.36401	336600.	3205500.	01071214
200	0.35944	336600.	3205500.	02061514
200	0.39254	338050.	3205650.	03050712
200	0.37057	336400.		04060115
200		336500.	3205700.	05081214
SOURCE GRO	OUP ID: U450	75		
200	0.00968	336600.	3205500.	01123124
200	0.00916	333579.	3205678.	02123124
200	0.00935	336500.	3205400.	03123124
200		336300.		
200		336300.	3205200.	05123124
HIGH 24-Hour				
200				
200				
200		336600.		
200 200		336400. 336300.		04052724 05052424
HIGH 8-Hour	0.12030	336300.	3203100.	05052424
20	01 0.27992	336700.	3205600.	01071216
20		333900.		
20		336500.		03053016
20		333774.		04051416
20		336300.		05052416
HIGH 3-Hour				
20	01 0.38662	336600.	3205600.	01071215
20		336600.		02051718
20	03 0.37399	336600.		03030915
20	04 0.40940	336500.	. 3205600.	04060215
20	05 0.370 58	336400.	. 3205100.	05052418
HIGH 1-Hour				
20		336400.		01061414
20				
20				03030414
20				04060115
20			. 3205700.	05081214
SOURCE GR	JUP ID: U450	J50		

Annual

2001	0.01537	33 6 500.	3205600.	01123124	
2002	0.01406	336500.	3205700.	02123124	
2003	0.01441	336400.	3205500.	03123124	
2004	0.01544	336500.	3205700.	04123124	
2005	0.01505	336500.	3205600.	05123124	
HIGH 24-Hour					
2001	0.14145	336400.	3205400.	01052624	
2002	0.11262	333900.	3205700.	02060524	
2003	0.15359	336400.	3205500.	03053024	
2004	0.14560	336300.	3205400.	04052724	
2005	0.16703	33 62 00.	3205100.	05052424	
HIGH 8-Hour					
2001	0.39391	336500.	3205500.	01071216	
2002	0.27382	333968.	3205673.	02060516	
2003	0.27388	336400.	3205500.	03060216	
2004	0.32182	336500.	3205800.	04081916	
2005	0.41795	336500.	3205500.	05061716	
HIGH 3-Hour					
2001	0.49074	336300.	3205500.	01071215	
2002	0.49432	336600.	3205900.	02082115	
2003	0.46826	336400.	3205900.	03030915	
2004	0.53313	336300.	3205600.	04060215	
2005	0.47862	336600.	3205500.	05112415	
HIGH 1-Hour					
2001	0.99431	336600.	3206200.	01072911	
2002	0.80038	336600.	3206200.	02073112	
2003	0.65245	336700.	3206100.	03061012	
2004	0.89131	336700.	3206100.	04101714	
2005	0.84531	336800.	3205800.	05080512	
All receptor comp		orted with re	spect to a us	er-specified origi	n
GRID 0.00					
DISCRETE (0.00	00			

```
CO STARTING
 TITLEONE 2001 PGN CR NEW STACK UNIT 4&5 LOAD ANALYSIS CLASS I 550 ft 8/16/06
    ILETWO TAMPA/RUSKIN METDATA 2001-05
    DELOPT DEAULT CONC
  VERTIME PERIOD 24 8 3 1
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
** AERMOD Source Pathway
**
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
 LOCATION U45075 POINT 334776.800 3205393.420 1.000
 LOCATION U45050 POINT 334776.800 3205393.420 1.000
** Source Parameters *
  SRCPARAM U45100 1 167.7 328.000 15.30000 9.300
  SRCPARAM U45075 1 167.7 327.000 11.20000 9.300
 SRCPARAM U45050 1 167.7 327.000 7.50000 9.300
** Building Downwash **
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45050-U45100
                             87.60 87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 38.00 38.00 0.00
SO BUILDHGT U45050-U45100
                              0.00 0.00 0.00 0.00 0.00 87.60
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45050-U45100
                             38.00 38.00 38.00 38.00 38.00
SO BUILDWID U45050-U45100
                             44.50 47.24 48.53 48.36 144.98 147.63
                             148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45050-U45100
SO BUILDWID U45050-U45100
                             46.73 48.37 48.54 47.23 44.49 0.00
    BUILDWID U45050-U45100
                             0.00 0.00 0.00 0.00 0.00 147.63
    BUILDWID U45050-U45100
                             39.28 33.70 27.10 33.70 39.28 43.67
   BUILDWID U45050-U45100
                             46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDLEN U45050-U45100
                             33.67 39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45050-U45100
                             100.22 79.56 56.48 79.56 47.23 48.54
                             48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45050-U45100
SO BUILDLEN U45050-U45100
                              0.00 0.00 0.00 0.00 0.00 117.84
                             47.23 44.49 40.40 44.49 47.23 48.54
48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45050-U45100
SO BUILDLEN U45050-U45100
SO XBADJ U45050-U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
SO XBADJ
           U45050-U45100
                          -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
                           -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
           U45050-U45100
SO XBADJ U45050-U45100
                            0.00 0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45050-U45100
                            9.22 16.51 23.30 24.68 25.31 25.16
                            24.26 22.62 20.29 17.34 13.87
SO XBADJ
          U45050-U45100
                                                          0.00
                            25.96
                                 7.68 -10.83 -29.01 76.77 90.51
SO YBADJ
          U45050-U45100
SO YBADJ
           U45050-U45100
                            49.03
                                  6.06 -37.10 -79.12
                                                   7.23 -1.38
SO YBADJ
           U45050-U45100
                            -9.94 -18.20 -25.91 -32.83 -38.75 0.00
           U45050-U45100
                            0.00 0.00 0.00 0.00 -90.51
SO YBADJ
SO YBADJ
           U45050-U45100
                            -36.98 -30.72 -23.52 -15.61 -7.23 1.38
SO YBADJ U45050-U45100
                            9.94 18.20 25.91 32.83 38.75 0.00
  SRCGROUP U45100 U45100
  SRCGROUP U45075 U45075
  SRCGROUP U45050 U45050
SO FINISHED
** AERMOD Receptor Pathway
RE STARTING
  INCLUDED CHASS.ROU
    FINISHED
  AERMOD Meteorology Pathway
```

ME STARTING
SURFFILE C:\amodmet\TAMPA_2001.SFC
PROFFILE C:\amodmet\TAMPA_2001.PFL
SURFDATA 12842 2001 TAMPA/INT'L_ARPT
UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
PROFBASE 19 FEET
ME FINISHED

** AERMOD Output Pathway

OU STARTING
RECTABLE ALLAVE FIRST
OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :G55045C1.O01 RMOD OUTPUT FILE NUMBER 2:G55045C1.O02 RMOD OUTPUT FILE NUMBER 3:G55045C1.O03 AERMOD OUTPUT FILE NUMBER 4:G55045C1.004 AERMOD OUTPUT FILE NUMBER 5:G55045C1.005

First title for last output file is: 2001 PGN CR NEW STACK UNIT 4&5 LOAD ANALYSIS CLASS I 550 ft 8/16/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-05

AVENAGI		E YEAR (ug/m3) (i	CONC m) (r	n) (YYMMI	Y PERIOD ENDING DDHH)
SOURCE Annual	GROUF	P ID: U45100			
	2001	0.00066	334447.	3183601.	01123124
	2002	0.00075	334447.	3183601.	02123124
	2003	0.00066	334447.		03123124
	2004	0.00066	334447.		04123124
.	2005	0.00074	331926.	3178095 <i>.</i>	05123124
HIGH 24-I					
	2001	0.00827	335260.		01111624
	2002	0.00683	331926.		02110724
	2003	0.00821	331926.	3178095.	03112024
	2004	0.00860	334447.		04110624
шен о н	2005	0.00933	335260.	3183589.	05090824
HIGH 8-F	2001	0.01844	226074	2102570	01111000
	2001	0.01844	336074. 336074.		01111608
	2002	0.01490	331926.		02112724
	2003	0.01258	335260.		03112008
	2005	0.01230	336074.		04122408 05122108
HIGH 3-F		0.01732	330074.	3103370.	03122106
ilian 54	2001	0.02434	334447.	3183601.	01101621
	2002	0.02833	338515.	3183544.	02052909
	2003	0.02004	331926.	3178095.	03092909
	2004	0.02287	336074.	3183578.	04022703
	2005	0.02233	338515.	3183544.	05112924
HIGH 1-H		0.02200	0000701	0.00014.	OUTTEGET
	2001	0.05170	342483.	3176101.	01033109
	2002	0.08462	338515.		02052908
	2003	0.05980	331926.		03092908
	2004	0.04989		3176101.	04110809
	2005	0.04385	331926.		05072407
SOURCE Annual	GROUP	P ID: U45075			
	2001	0.00078	334447.	3183601.	01123124
	2002	0.00090	334447.	3183601.	02123124
	2003	0.00077	334447.	3183601.	03123124
	2004	0.00077	334447.		04123124
	2005	0.00085	334447.	3183601.	05123124
HIGH 24-	Hour				
	2001	0.00939	335260.	3183589.	01111624
	2002	0.00815	334447.	3183601.	02021324
	2003	0.00938	331926.	3178095.	03112024
	2004	0.00975	334447.	3183601.	04110624
	2005	0.00996	335260.	3183589.	05122124
HIGH 8-F	Hour				
	2001	0.0211 1	336074.	3183578.	01111608
	2002	0.01780	336074.	3183578.	02112724
	2003	0.01547	334447.	3183601.	03011108
	2004	0.01652	335260.	3183589.	04122408
	2005	0.02021	336074.	3183578.	05122108
HIGH 3-F					
	2001	0.02766	334447.	3183601.	01101621
	2002	0.03082	338515.	3183544.	02052909
	2003	0.02481	335260.	3183589.	03022521
	2004	0.02465	33 6074.	3183578.	04022703
	2005	0.02601	338515.	3183544.	05112924
HIGH 1-					
	2001	0.05747	342483.	3176101.	01033109
	2002	0.0 9 205	338515.	3183544.	02052908
	2003	0.06576	331926.	3178095.	03092908
	2004	0.05475	342483.	3176101.	04110809
	2005	0.04759 P ID: U 450 50	331926.	3178095.	05072407

Annual

2001	0.00094	334447.	3183601.	01123124	
2002	0.00108	334447.	3183601.	02123124	
2003	0.00091	334447.	3183601.	03123124	
2004	0.00089	334447.	3183601.	04123124	
2005	0.00101	334447.	3183601.	05123124	
HIGH 24-Hour					
2001	0.01059	335260.	3183589.	01111624	
2002	0.01011	334447.	3183601.	02021324	
2003	0.01082	331926.	3178095.	03112024	
2004	0.01083	334447.	3183601.	04110624	
2005	0.01212	334447.	3183601.	05122124	
HIGH 8-Hour					
2001	0.02408	336074.	3183578.	01111608	
2002	0.02253	334447.	3183601.	02021308	
2003	0.01970	334447.	3183601.	03011108	
2004	0.02098	335260.	3183589.	04122408	
2005	0.02211	336074.	3183578.	05122108	
HIGH 3-Hour					
2001	0.03438	334447.	3183601.	01042524	
2002	0.03380	335260.	3183589.	02112721	
2003	0.02964	334447.	3183601.	03011106	
2004	0.03466	336074.	3183578.	04011221	
2005	0.03613	334447.	3183601.	05122121	
HIGH 1-Hour					
2001	0.06419	342483.	3176101.	01033109	
2002	0.09999	338515.	3183544.	02052908	
2003	0.07254	331926.	3178095.	03092908	
2004	0.06020	342483.	3176101.	04110809	
2005	0.05352	331926.	3178095.	05072407	
All receptor con	nputations rep	orted with re	spect to a us	er-specified origin	1
GRID 0.					
DISCRETE	0.00 0.	00			

```
CO STARTING
 TITLEONE 2001 PGN CR PROJECT 550 FT NO2 0.50 LB/MMBTU 8/16/06
  ITLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
  AVERTIME PERIOD
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
***********
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
  LOCATION U45100 POINT 334776.800 3205393.420 1.000
  LOCATION BLR4 POINT 334665,270 3205401.840 1.000
  LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.50 LB/MMBTU X 7200= 3600 LB/HR PER UNIT
  SRCPARAM U45100 907.2 167.700 328.000 15.300 9.300
  SRCPARAM BLR4 -419.9 178.200 300.000 21.00000 7.770
  SRCPARAM BLR5 -419.9 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100
                      38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                                 87.60 87.60 38.00 38.00
                      87.60
                            87.60
  BUILDHGT U45100
                      38.00
                            38.00 38.00 38.00 38.00
                                                    0.00
   BUILDHGT U45100
                      0.00
                            0.00 0.00 0.00 0.00 87.60
   BUILDHGT U45100
                            38.00
                                 38.00 38.00 38.00 38.00
                      38.00
SO BUILDHGT U45100
                      38.00
                            38.00
                                  38.00 38.00 38.00 0.00
SO BUILDWID U45100
                                  48.53 48.36 144.98 147.63
                      44.50
                            47.24
SO BUILDWID U45100
                     148.86 145.57 137.85 145.57 39.28 43.67
                      46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                            0.00 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                      0.00
                            33.70 27.10 33.70 39.28 43.67
SO BUILDWID U45100
                      39.28
                                  48.54 47.23 44.49
SO BUILDWID U45100
                      46.73
                            48.37
                                                     0.00
SO BUILDLEN U45100
                            39.25
                                  43.64 46.71 126.46 117.84
                      33.67
SO BUILDLEN U45100
                     100.22 79.56 56.48 79.56 47.23
                                                    48.54
SO BUILDLEN U45100
                            46.73 43.67 39.28 33.70
                                                    0.00
                      48.37
SO BUILDLEN U45100
                      0.00
                            0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100
                            44.49
                                 40.40 44.49 47.23 48.54
                      47.23
SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70
                                                    0.00
SO XBADJ
           U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
SO XBADJ
            U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
SO XBADJ
            U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
                          0.00 0.00 0.00 0.00 172.04
SO XBADJ
            U45100
                     0.00
SO XBADJ
            U45100
                                23.30 24.68 25.31 25.16
                     9.22
                          16.51
 SO XBADJ
            U45100
                    24.26
                          22.62 20.29
                                      17.34 13.87
                                                   0.00
SO YBADJ
            U45100
                           7.68 -10.83 -29.01 76.77 90.51
                    25.96
 SO YBADJ
            U45100
                           6.06 -37.10 -79.12
                                            7.23 -1.38
                     49.03
 SO YBADJ
            U45100
                     -9.94 -18.20 -25.91 -32.83 -38.75 0.00
            1145100
                          0.00 0.00 0.00 0.00 -90.51
 SO YBADJ
                     0.00
 SO YBADJ
            U45100
                    -36.98 -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
            U45100
                     9.94 18.20 25.91 32.83 38.75 0.00
 SO BUILDHGT BLR4
                      27.80 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84.40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      27.80 27.80 27.80
                                        0.00
                                              0.00
                                                    0.00
 SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84.40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      38.00 38.00 38.00 38.00
                                              0.00 0.00
 SO BUILDWID BLR4
                     138.19 129.98 117.84 131.88 141.91 147.63
    BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
    BUILDWID BLR4
                      125.54 134.97 140.30 0.00 0.00 0.00
 SO BUILDWID BLR4
                      0.00 129.98 117.84 131.88 141.91 147.63
 SO BUILDWID BLR4
                      148.86 145.57 137.85 145.57 148.86 147.63
```

46.71 48.36 48.53 47.24 0.00

SO BUILDWID BLR4

0.00

```
SO BUILDLEN BLR4
                    75.81 148.86 147.63 141.91 131.88 117.84
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
SO BUILDLEN BLR4
                    135.12 125.72 112.50 0.00 0.00 0.00
SO BUILDLEN BLR4
                     0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                     48.36 46.71 43.64 39.25 0.00 0.00
SO XBADJ
           BLR4
                  -140.83 -162.94 -180.10 -191.79 -197.65 -197.50
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
SO XBADJ
           BLR4
SO XBADJ
           BLR4
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
SO XBADJ
           BLR4
                    0.00 14.08 32.48 49.88 65.77 79.66
                   91.13 99.83 105.50 84.02 60.00 34.14
SO XBADJ
           BLR4
SO XBADJ
           BLR4
                  -144.04 -147.81 -147.09 -141.90 0.00 0.00
SO YBADJ
           BLR4
                   78.62 95.23 93.06 73.19 51.10 27.45
                    2.97 -21.60 -45.52 -68.05 -88.51 -106.29
SO YBADJ
           BLR4
SO YBADJ
           BLR4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
                    -2.97 21.60 45.52 68.05 88.51 106.29
SO YBADJ
           RI R4
SO YBADJ
           BLR4
                    36.93 15.56
                               -6.29 -27.95
                                            0.00 0.00
SO BUILDHGT BLR5
                      0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40 84.40
                     84.40 84.40 84.40 65.30 27.80
SO BUILDHGT BLR5
                                                    0.00
SO BUILDHGT BLR5
                      0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 0.00 0.00
                      0.00 0.00 140.52 135.27 125.90 147.63
SO BUILDWID BLR5
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
                     141.91 131.88 117.84 129.86 138.13 0.00
SO BUILDWID BLR5
SO BUILDWID BLR5
                      0.00 47.23 48.54 48.37 46.73 147.63
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
                     141.91 131.88 117.84 129.86 0.00 0.00
SO BUILDWID BLR5
                      0.00 0.00 112.05 125.31 134.77 117.84
SO BUILDI EN BLR5
SO BUILDLEN BLR5
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 76.31 0.00
                      0.00 \ \ 39.28 \ \ 43.67 \ \ 46.73 \ \ 48.37 \ \ 117.84
SO BUILDLEN BLR5
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 0.00 0.00
SO XBADJ
           BLR5
                    0.00 0.00 -100.94 -121.76 -138.89 -151.80
SO XBADJ
                   -160.09 -163.52 -161.98 -179.46 -191.48 -197.69
           BLR5
 SO XBADJ
            BLR5
                   -197.89 -192.08 -180.43 -163.30 -141.20 0.00
SO XBADJ
            BLR5
                    0.00 -143.00 -148.09 -148.69 -144.76 33.96
                    59.87 83.96 105.50 99.90 91.26 79.85
SO XBADJ
            BLR5
 SO XBADJ
            BLR5
                    66.01 50.17 32.80 14.44 0.00 0.00
 SO YBADJ
            BLR5
                    0.00 0.00 81.74 71.52 59.12 106.61
            BLR5
                    88.87 68.42 45.89 21.97 -2.62 -27.13
SO YBADJ
                    -50.81 -72.95 -92.88 -95.16 -78.58 0.00
 SO YBADJ
            BLR5
 SO YBADJ
            BLR5
                     0.00 27.50 5.66 -16.35 -37.86 -106.61
 SO YBADJ
            BLR5
                    -88.87 -68.42 -45.89 -21.97 2.62 27.13
            BLR5
                    50.81 72.95 92.88 95.16 0.00 0.00
 SO YBADJ
  SRCGROUP U45100 U45100
  SRCGROUP ALL
 SO FINISHED
 ********
 ** AERMOD Receptor Pathway
 RE STARTING
   INCLUDED CRAUGO6A.ROU
 RE FINISHED
 ************
 ** AERMOD Meteorology Pathway
 ME STARTING
   SURFFILE C:\amodmet\TAMPA_2001.SFC
   PROFFILE C:\amodmet\TAMPA_2001.PFL
   SURFDATA 12842 2001 TAMPA/INT'L ARPT
   UAIRDATA 12842 2001 TAMPA/INT'L ARPT
   PROFBASE 19 FEET
 ME FINISHED
```

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :PRN55.O01 AERMOD OUTPUT FILE NUMBER 2 :PRN55.O02

AERMOD OUTPUT FILE NUMBER 3 :PRN55.O03
AERMOD OUTPUT FILE NUMBER 4 :PRN55.O04
AERMOD OUTPUT FILE NUMBER 5 :PRN55.O05

First title for last output file is: 2001 PGN CR PROJECT 550 FT NO2 0.50 LB/MMBTU 8/16/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM (_	CONC (m		Y PERIOD ENDING DDHH)
SOURCE GROUP	ID: U45100			
Annual				
2001	6.23129	336500.	3205200.	01123124
2002	6.60185	333434.	3205679.	02123124
2003	6.26973	336400.	3205100.	03123124
2004	6.46338	336400.	3205100.	04123124
2005	6.62295	336400.	3205100.	05123124
SOURCE GROUP	PID: ALL			
Annual				
2001	0.19699	334360.	3205667.	01123124
2002	0.27090	334360.	3205667.	02123124
2003	0.22416	334360.	3205667.	03123124
2004	0.24927	334311.	3205667.	04123124
2005	0.11051	334360.	3205667.	05123124
All receptor comp	outations repo	orted with re	spect to a us	er-specified origin
GRID 0.00	0.00			
DISCRETE	0.0 0.0	0		

```
CO STARTING
 TITLEONE 2001 PGN CR PROJECT 550 FT NO2 0.50 LB/MMBTU CLASS I 8/16/06
   ITLETWO TAMPA/RUSKIN METDATA 2001-2005
  ODELOPT DFAULT CONC
 AVERTIME PERIOD
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
  LOCATION BLR4 POINT 334665.270 3205401.840 1.000
 LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.50 LB/MMBTU X 7200= 3600 LB/HR PER UNIT
 SRCPARAM U45100 907.2 167.700 328.000 15.300 9.300
  SRCPARAM BLR4 -419.9 178.200 300.000 21.00000 7.770
 SRCPARAM BLR5 -419.9 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100 38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                     87.60 87.60 87.60 87.60 38.00 38.00
  BUILDHGT U45100
                     38.00 38.00 38.00 38.00 0.00
   BUILDHGT U45100
                      0.00
                           0.00 0.00 0.00 0.00 87.60
  BUILDHGT U45100
                     38.00 38.00
                                 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 0.00
SO BUILDWID U45100
                     44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100
                     148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                     0.00
                           0.00 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                     39.28
                           33.70 27.10 33.70 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDLEN U45100
                     33.67 39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45100
                    100.22
                           79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45100
                     0.00 0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100
                     47.23
                           44.49 40.40 44.49 47.23 48.54
SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00
SO XBADJ
           U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
SO XBADJ
SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
           U45100
                    0.00 0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45100
                    9.22
                         16.51 23.30 24.68 25.31 25.16
SO XBADJ
           U45100
                    24.26 22.62 20.29 17.34 13.87 0.00
SO YBADJ
           U45100
                    25.96
                          7.68 -10.83 -29.01 76.77 90.51
SO YBADJ
           U45100
                    49.03
                          6.06 -37.10 -79.12
                                            7.23 -1.38
SO YBADJ
           U45100
                    -9.94 -18.20 -25.91 -32.83 -38.75 0.00
SO YBADJ
           U45100
                    0.00 0.00 0.00 0.00 0.00 -90.51
SO YBADJ
           U45100
                   -36.98 -30.72 -23.52 -15.61 -7.23 1.38
SO YBADJ
           U45100
                    9.94 18.20 25.91 32.83 38.75 0.00
SO BUILDHGT BLR4
                     27.80 65.30 84.40 84.40 84.40 84.40
SO BUILDHGT BLR4
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR4
                     27.80 27.80 27.80 0.00
                                             0.00 0.00
SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40
                                                   84.40
SO BUILDHGT BLR4
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR4
                     38.00 38.00 38.00 38.00 0.00 0.00
 O BUILDWID BLR4
                     138.19 129.98 117.84 131.88 141.91 147.63
    BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
   BUILDWID BLR4
                     125.54 134.97 140.30 0.00 0.00 0.00
SO BUILDWID BLR4
                     0.00 129.98 117.84 131.88 141.91 147.63
SO BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
```

46.71 48.36 48.53 47.24 0.00 0.00

SO BUILDWID BLR4

```
75.81 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                    135.12 125.72 112.50 0.00 0.00 0.00
SO BUILDLEN BLR4
                     0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
                     48.36 46.71 43.64 39.25 0.00 0.00
SO BUILDLEN BLR4
SO XBADJ
           BLR4
                  -140.83 -162.94 -180.10 -191.79 -197.65 -197.50
SO XBADJ
           BLR4
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
SO XBADJ
           BLR4
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
SO XBADJ
           BLR4
                   0.00 14.08 32.48 49.88 65.77 79.66
SO XBADJ
           BLR4
                   91.13 99.83 105.50 84.02 60.00 34.14
SO XBADJ
                  -144.04 -147.81 -147.09 -141.90 0.00 0.00
           BLR4
SO YBADJ
           BLR4
                   78.62 95.23 93.06 73.19 51.10 27.45
SO YBADJ
                    2.97 -21.60 -45.52 -68.05 -88.51 -106.29
           BLR4
SO YBADJ
           RI R4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
SO YBADJ
           BLR4
                   -2.97 21.60 45.52 68.05 88.51 106.29
SO YBADJ BLR4
                   36.93 15.56 -6.29 -27.95
                                           0.00 0.00
SO BUILDHGT BLR5
                     0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
                     84.40 84.40 84.40 65.30 27.80 0.00
SO BUILDHGT BLR5
SO BUILDHGT BLR5
                     0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 0.00 0.00
SO BUILDWID BLR5
                     0.00 0.00 140.52 135.27 125.90 147.63
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 138.13 0.00
                     0.00 47.23 48.54 48.37 46.73 147.63 148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
SO BUILDWID BLR5
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 0.00 0.00
SO BUILDLEN BLR5
                     0.00 0.00 112.05 125.31 134.77 117.84
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 76.31 0.00
SO BUILDLEN BLR5
                     0.00 39.28 43.67 46.73 48.37 117.84
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 0.00 0.00
SO XBADJ BLR5
                    SO XBADJ
           BI R5
                   -160.09 -163.52 -161.98 -179.46 -191.48 -197.69
 SO XBADJ
           BLR5
                   -197.89 -192.08 -180.43 -163.30 -141.20 0.00
 SO XBADJ
           BLR5
                    0.00 -143.00 -148.09 -148.69 -144.76 33.96
SO XBADJ
           BLR5
                    59.87 83.96 105.50 99.90 91.26 79.85
 SO XBADJ
           BLR5
                    66.01 50.17 32.80 14.44 0.00 0.00
 SO YBADJ
           BLR5
                    0.00 0.00 81.74 71.52 59.12 106.61
                    88.87 68.42 45.89 21.97 -2.62 -27.13
 SO YBADJ
           BLR5
 SO YBADJ
            BLR5
                    -50.81 -72.95 -92.88 -95.16 -78.58 0.00
 SO YBADJ
            BLR5
                    0.00 27.50 5.66 -16.35 -37.86 -106.61
                    -88.87 -68.42 -45.89 -21.97 2.62 27.13
 SO YBADJ
            BLR5
 SO YBADJ
           BLR5
                    50.81 72.95 92.88 95.16 0.00 0.00
  SRCGROUP U45100 U45100
  SRCGROUP ALL
 SO FINISHED
 ***********
 ** AERMOD Receptor Pathway
 BE STARTING
   INCLUDED CHASS.ROU
 RE FINISHED
 ***********
 ** AERMOD Meteorology Pathway
 MF STARTING
   SURFFILE C:\amodmet\TAMPA_2001.SFC
   PROFFILE C:\amodmet\TAMPA 2001.PFL
   SURFDATA 12842 2001 TAMPA/INT'L_ARPT
   UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
   PROFBASE 19 FEET
 ME FINISHED
```

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :PRN55C1.O01

AERMOD OUTPUT FILE NUMBER 2:PRN55C1.O02

AERMOD OUTPUT FILE NUMBER 3 :PRN55C1.O03

AERMOD OUTPUT FILE NUMBER 4 :PRN55C1.004
AERMOD OUTPUT FILE NUMBER 5 :PRN55C1.005

First title for last output file is: 2001 PGN CR PROJECT 550 FT NO2 0.50 LB/MMBTU CLASS I 8/16/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM (CONC (m) (Y	Y YMMDI	
SOURCE GROUP	D: U45100				
2001	0.59661	334447.	3183	601.	01123124
2002	0.68244	334447.	3183	601.	02123124
2003	0.59914	334447.	3183	601.	03123124
2004	0.59816	334447.	3183	601.	04123124
2005	0.66733	331926.	3178	095.	05123124
SOURCE GROUP	D: ALL			•	
Annual					
2001	0.00000	0.	0.	01123	124
2002	0.00000	0.	0.	02123	124
2003	0.00000	O.	0.	03123	124
2004	0.00000	0.	0.	04123	
2005	0.00000	0.	0.	05123	· - ·
All receptor comp					
GRID 0.00					p
	0.0 0.0	0			

```
CO STARTING
 TITLEONE 2001 PGN CR AAQS PROPOSED 550 FT NOX 0.50 LB/MMBTU 8/12/06
  ITLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
  AVERTIME PERIOD
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
*****************
** AERMOD Source Pathway
••
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
 LOCATION UNIT1 POINT 334319.400 3204230.210 1.0
  LOCATION UNIT2 POINT 334260.580 3204230.210 1.0
********* OTHER NOX SOURCES
** CEMEX
SO LOCATION
              CEMEX3 POINT 355900 3169100 30.5
SO LOCATION CEMEX14 POINT 355900 3169100 30.5
     Florida Crushed Stone - Brooksville Cement And Power Plants
SO LOCATION FCS18 POINT 360000 3162500 39.6
SO LOCATION FCS20 POINT 360000 3162500 39.6
SO LOCATION FCS44 POINT 360000 3162500 39.6
     Shady Hills Generating Station
 LOCATION
               SHILLGS1 POINT 347000 3139000 15.2
   LOCATION
                SHILLGS2 POINT 347000 3139000 15.2
               SHILLGS3 POINT 347000 3139000 15.2
  LOCATION
     Pasco County Resource Recovery Facility
SO LOCATION PCRRF1 POINT 348810 3138770 15.2
                PCRRF2 POINT 348810 3138770 15.2
SO LOCATION
SO LOCATION
                PCRRF3 POINT 348810 3138770 15.2
SO LOCATION PCRRF5 POINT 348810 3138770 15.2
     Florida Rock Industries - Thompson S. Baker Cement Plant
SO LOCATION FRBCP3 POINT 348350 3287040 39.6
SO LOCATION FRBCP10 POINT 348350 3287040 39.6
     Progress Energy-Anclote Power Plant
SO LOCATION FPCANC1 POINT 327400 3120700 4.6
SO LOCATION FPCANC2 POINT 327400 3120700 4.6
     Florida Gas Transmission Company
SO LOCATION FGTC1 POINT 418800 3240900 4.6
                FGTC2 POINT 418800 3240900 4.6
SO LOCATION
SO LOCATION
                FGTC3 POINT 418800 3240900 4.6
SO LOCATION
                FGTC4 POINT 418800 3240900 4.6
SO LOCATION
                FGTC5 POINT 418800 3240900 4.6
SO LOCATION FGTC8 POINT 418800 3240900 4.6
     GRU Deerhaven Generating Station
                GRUDGS3 POINT 365700 3292600 54.9
GRUDGS5 POINT 365700 3292600 54.9
SO LOCATION
SO LOCATION
SO LOCATION
                GRUDGS6 POINT 365700 3292600 54.9
 ** Source Parameters **
 ** PROP. 0.50 LB/MMBTU X 7200= 3600 LB/HR PER UNIT
  SRCPARAM U45100 907.2 167.700 328.000 15.300 9.300
   RCPARAM UNIT1 283.5 152.100 417.000 40.500 4.570
  SRCPARAM UNIT2 362.5 153.000 422.000 48.800 4.880
```

```
SRCID (q/s) (m) (K) (m/s) (m)
    CEMEX
SO SRCPARAM
               CEMEX3 37.92 45.72 414
                                        10.36 3.96
SO SRCPARAM CEMEX14 32.51 32.00 394 9.75 4.27
    Florida Crushed Stone - Brooksville Cement And Power Plants
SO SRCPARAM FCS18 106.60 97.54 422 21.21 4.88
SO SRCPARAM
               FCS20 45.22 91.44 378
                                       14.33 4.88
SO SRCPARAM
               FCS44 45.90 97.54 561
                                       12.22 4.27
    Shady Hills Generating Station
SO SRCPÁRAM
               SHILLGS1 7.25 18.29 874
                                         35.36 6.71
               SHILLGS2 7.25 18.29 874
SO SECPARAM
                                         35.36 6.71
SO SRCPARAM
               SHILLGS3 7.25 18.29 874
                                         35.36 6.71
    Pasco County Resource Recovery Facility
SO SRCPARAM
               PCRRF1 9.65 83.82 394
                                        24.96 1.43
               PCRRF2 9.65 83.82 394
SO SRCPARAM
                                        24.96
                                             1.43
SO SRCPARAM
               PCRRF3 9.65 83.82 394
                                        24.96
                                             1.43
SO SRCPARAM
               PCRRF5 0.038 9.14 450
                                        5.82 0.30
    Florida Rock Industries - Thompson S. Baker Cement Plant
SO SRCPARAM FRBCP3 28.19 76.20 453 14.57 2.87
SO SRCPARAM FRBCP10 30.71 96.01 453 16.03 2.87
    Progress Energy-Anclote Power Plant
SO SRCPARAM FPCANC1 195.98 152.10 433 18.90 7.32
SO SRCPARAM FPCANC2 191.48 152.10 433 18.90 7.32
    Florida Gas Transmission Company
               FGTC1 6.11 8.53 741 44.81 0.40
SO SRCPARAM
SO SRCPARAM
                FGTC2 6.11 8.53
                                 741 44.81 0.40
SO SRCPARAM
                FGTC3 6.11 8.53
                                 741 44.81 0.40
SO SRCPARAM
                FGTC4 4.45 8.53 741 44.81 0.40
                FGTC5 1.33 12.19 641 54.86 0.40
SO SRCPARAM
SO SRCPARAM
                FGTC8 1.78 18.59 761 24.11 2.32
     GRU Deerhaven Generating Station
SO SRCPARAM GRUDGS3 33.21 91.44 400 14.33 3.35
SO SRCPARAM
                GRUDGS5 214.15 106.68 408 15.24 5.64
                GRUDGS6 6.88 15.85 866 51.21 4.30
SO SRCPARAM
** Building Downwash **
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                     87.60 87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 0.00
                     0.00
SO BUILDHGT U45100
                           0.00 0.00 0.00 0.00 87.60
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 0.00
 SO BUILDWID U45100
                     44.50 47.24 48.53 48.36 144.98 147.63
 SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67
 SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
 SO BUILDWID U45100
                     0.00 0.00 0.00 0.00 0.00 147.63
                     39.28 33.70 27.10 33.70 39.28 43.67
 SO BUILDWID U45100
 SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
 SO BUILDLEN U45100
                     33.67 39.25 43.64 46.71 126.46 117.84
 SO BUILDLEN U45100 100.22 79.56 56.48 79.56 47.23 48.54
 SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00
 SO BUILDLEN U45100
                     0.00 0.00 0.00 0.00 0.00 117.84
 SO BUILDLEN U45100 47.23 44.49 40.40 44.49 47.23 48.54
 SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00
 SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
 SO XBADJ
 SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
 SO XBADJ
           U45100 0.00 0.00 0.00 0.00 0.00 172.04
 SO XBADJ
           U45100
                   9.22 16.51 23.30 24.68 25.31 25.16
 SO XBADJ
            U45100 24.26 22.62 20.29 17.34 13.87 0.00
 SO YBADJ
            U45100
                    25.96
                          7.68 -10.83 -29.01 76.77 90.51
 SO YBADJ
            U45100
                    49.03 6.06 -37.10 -79.12 7.23 -1.38
 SO YBADJ
            U45100
                    -9.94 -18.20 -25.91 -32.83 -38.75 0.00
 SO YBADJ
            U45100
                    0.00 0.00 0.00 0.00 0.00 -90.51
            U45100 -36.98 -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
 SO YBADJ
           U45100
                   9.94 18.20 25.91 32.83 38.75 0.00
 SO BUILDHGT UNIT1
                     60.40 60.40 60.40 60.40 60.40 0.00
 SO BUILDHGT UNIT1
                      0.00 0.00 0.00 0.00 12.20 60.40
 SO BUILDHGT UNIT1
                      60.40 60.40 60.40 60.40 60.40 60.40
```

```
60.40 60.40 60.40 60.40 60.40 0.00
SO BUILDHGT UNIT1
SO BUILDHGT UNIT1
                                 0.00 0.00 12.20 60.40
                      0.00 0.00
   BUILDHGT UNIT1
                     60,40 60,40 60,40 60,40 60,40 60,40
   BUILDWID UNIT1
                     98.57 101.00 100.36 96.68 90.05 0.00
BUILDWID UNIT1
                           0.00 0.00 0.00 42.31 79.92
                     0.00
SO BUILDWID UNIT1
                           96.10 99.92 100.69 98.41 93.14
                     89.37
SO BUILDWID UNIT1
                     98.57 101.00 100.36 96.68 90.05 0.00
SO BUILDWID UNIT1
                           0.00 0.00 0.00 42.31 79.92
                     0.00
SO BUILDWID UNIT1
                     89.37
                           96.10 99.92 100.69 98.41 93.14
SO BUILDLEN UNIT1
                     54.10
                           68.04 79.92 89.37 96.10 0.00
SO BUILDLEN UNIT1
                     0.00
                           0.00 0.00 0.00 57.88 100.36
SO BUILDLEN UNIT1
                           90.05 80.69 68.88 54.97 41.31
                     96.68
SO BUILDLEN UNIT1
                     54.10
                           68.04 79.92 89.37 96.10 0.00
SO BUILDLEN UNIT1
                           0.00
                                 0.00 0.00 57.88 100.36
                     0.00
SO BUILDLEN UNIT1
                     96.68 90.05 80.69 68.88 54.97 41.31
SO XBADJ
           UNIT1
                   48.68 34.97 20.19 4.80 -10.74 0.00
SO XBADJ
                    0.00 0.00 0.00 0.00 -81.32 -105.17
           UNIT1
SO XBADJ
           UNIT1
                  -112.58 -116.57 -117.02 -113.91 -107.35 -99.43
SO XBADJ
                  -102.78 -103.01 -100.11 -94.17 -85.36 0.00
           UNIT1
SO XBADJ
           UNIT1
                    0.00 0.00 0.00 0.00 23.44 4.80
SO XBADJ
           UNIT1
                    15.90 26.52 36.33 45.03 52.37 58.12
           UNIT1
                    31.79 44.06 54.98 64.24 71.54 0.00
SO YBADJ
SO YBADJ
           UNIT1
                    0.00
                          0.00 0.00 0.00 16.81 60.15
SO YBADJ
           UNIT1
                    49.48 37.31 24.01 9.98 -4.36 -18.56
SO YBADJ
           UNIT1
                   -31.79 -44.06 -54.98 -64.24 -71.54 0.00
SO YBADJ
           UNIT1
                    0.00
                          0.00 0.00 0.00 -16.81 -60.15
                   -49.48 -37.31 -24.01 -9.98 4.36 18.56
SO YBADJ
           UNIT<sub>1</sub>
```

SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 12.20 12.20 12.20 SO BUILDHGT UNIT2 12.20 12.20 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT UNIT2 0.00 12.20 60.40 60.40 60.40 60.40 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 34.33 41.56 47.53 BUILDWID UNITS 52.06 55.00 99.92 100.69 98.41 93.14 BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 BUILDWID UNIT2 68.88 0.00 0.00 0.00 0.00 0.00 SO BUILDWID UNIT2 0.00 56.66 99.92 100.69 98.41 93.14 SO BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN UNIT2 100.69 0.00 0.00 53.70 55.84 56.28 SO BUILDLEN UNIT2 55.00 52.06 80.69 68.88 54.97 41.31 SO BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN UNIT2 100.69 0.00 0.00 0.00 0.00 0.00 0.00 53.45 80.69 68.88 54.97 41.31 SO BUILDLEN UNIT2 SO XBAD.1 UNIT2 58.90 55.08 49.60 42.61 34.32 24.99 SO XBADJ UNIT2 14.90 0.00 0.00 -84.75 -88.92 -90.39 -89.10 -85.12 -87.61 -93.80 -97.13 -99.43 SO XBADJ UNIT2 SO XBADJ UNIT2 -112.99 -123.13 -129.52 -131.98 -130.42 -124.91 SO XBADJ UNIT2 -115.60 0.00 0.00 0.00 0.00 0.00 SO XBADJ UNIT2 0.00 -10.77 6.92 24.92 42.16 58.12 SO YBADJ UNIT2 -26.13 -11.21 4.04 19.18 33.73 47.26 SO YBADJ UNIT2 59.36 0.00 0.00 22.92 12.51 1.73 SO YBADJ UNIT2 -9.10 -19.66 74.95 65.25 53.57 40.26 UNIT2 26.13 11.21 -4.04 -19.18 -33.73 -47.26 SO YBADJ SO YBADJ UNIT2 -59.36 0.00 0.00 0.00 0.00 0.00 SO YBADJ UNIT2 0.00 -33.43 -74.95 -65.25 -53.57 -40.26

SRCGROUP U45100 U45100 SRCGROUP ALL

SO FINISHED "AERMOD Receptor Pathway "BE STARTING NCLUDED CRAUG06A.ROU FINISHED

ME STARTING
SURFFILE C:\amodmet\TAMPA_2001.SFC
PROFFILE C:\amodmet\TAMPA_2001.PFL
SURFDATA 12842 2001 TAMPA/INT'L_ARPT
UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
PROFBASE 19 FEET
ME FINISHED

"AERMOD Output Pathway

"OU STARTING
RECTABLE ALLAVE FIRST SECOND
OU FINISHED

AERMOD OUTPUT FILE NUMBER 1: AQN55.001 RMOD OUTPUT FILE NUMBER 2:AQN55.002 MOD OUTPUT FILE NUMBER 3:AQN55.003 REMOD OUTPUT FILE NUMBER 4 :AQN55.004 AERMOD OUTPUT FILE NUMBER 5 :AQN55.005

First title for last output file is: 2001 PGN CR AAQS PROPOSED 550 FT NOX 0.50 LB/MMBTU 8/12/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM	IE YEAR	CONC	X	Y PERIOD ENDING
((ug/m3) (m) (m	n) (YYMME	DDHH)
SOURCE GROUP	PID: U45100)		
Annual				
2001	6.23129	336500.	3205200.	01123124
2002	6.60185	333434.	3205679.	02123124
2003	6.26973	336400.	3205100.	03123124
2004	6.46338	336400.	3205100.	04123124
2005	6.62295	336400.	3205100.	05123124
SOURCE GROUP	PID: ALL			
Annual				
2001	7.32874	336500.	3205200.	01123124
2002	9.10786	333336.	3205681.	02123124
2003	7.70489	333600.	3206100.	03123124
2004	7.82926	333385.	3205680.	04123124
2005	7.70086	336500.	3205100.	05123124
All receptor comp	outations repo	orted with re	spect to a us	er-specified origin
GRID 0.00	0.00		•	
DISCRETE (0.00 0.0	00		

```
CO STARTING
 TITLEONE 2001 PGN CR PSD CLASS II PROPOSED 550 FT NOX 0,50 LB/MMBTU 8/12/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-2005
 MODELOPT DFAULT CONC
 AVERTIME PERIOD
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
*****************
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
  LOCATION U45100 POINT 334776.800 3205393.420 1.000
****** PSD CLASS II CONSUMING
     Florida Crushed Stone - Brooksville Cement And Power Plants
SO LOCATION FCS44 POINT 360000 3162500 39.6
     Shady Hills Generating Station
SO LOCATION
                SHILLGS1 POINT 347000 3139000 15.2
                SHILLGS2 POINT 347000 3139000 15.2
SO LOCATION
                SHILLGS3 POINT 347000 3139000 15.2
SO LOCATION
     Pasco County Resource Recovery Facility
                PCRRF1 POINT 348810 3138770 15.2
PCRRF2 POINT 348810 3138770 15.2
SO LOCATION
SO LOCATION
SO LOCATION
                PCRRF3 POINT 348810 3138770 15.2
                PCRRF5 POINT 348810 3138770 15.2
SO LOCATION
** Florida Rock Industries - Thompson S. Baker Cement Plant SO LOCATION FRBCP3 POINT 348350 3287040 39.6 SO LOCATION FRBCP10 POINT 348350 3287040 39.6
     Florida Gas Transmission Company
SO LOCATION
                FGTC1 POINT 418800 3240900 4.6
SO LOCATION
                FGTC2 POINT 418800 3240900 4.6
SO LOCATION
                FGTC3 POINT 418800 3240900 4.6
                FGTC4 POINT 418800 3240900 4.6
SO LOCATION
SO LOCATION
                FGTC5 POINT 418800 3240900 4.6
SO LOCATION
                FGTC8 POINT 418800 3240900 4.6
     GRU Deerhaven Generating Station
 SO LOCATION GRUDGS6 POINT 365700 3292600 54.9
 ** Source Parameters **
 ** PROP. 0.50 LB/MMBTU X 7200= 3600 LB/HR PER UNIT
  SRCPARAM U45100 907.2 167.700 328.000 15.300 9.300
                                          D
              Short OH
                                                 Modeled in
        SRCID (g/s)
                            (K)
                                   (m/s) (m)
                                                 AAQS Class II
                     (m)
     Florida Crushed Stone - Brooksville Cement And Power Plants
 SO SRCPARAM FCS44 45.90 97.54 561 12.22 4.27
     Shady Hills Generating Station
 SO SRCPARAM
                                 18.29 874
                 SHILLGS1 7.25
                                              35.36 6.71
 SO SRCPARAM
                  SHILLGS2 7.25
                                 18.29 874
                                              35.36 6.71
 SO SRCPARAM
                  SHILLGS3 7.25
                                 18.29 874
                                              35.36 6.71
      Pasco County Resource Recovery Facility
 SO SRCPARAM
                 PCRRF1 9.65 83.82 394
                                             24.96 1.43
 SO SRCPARAM
                  PCRRF2 9.65
                                 83.82 394
                                             24.96 1.43
 SO SRCPARAM
                  PCRRF3 9.65
                                 83.82 394
                                             24.96 1.43
 SO SRCPARAM
                  PCRRF5 0.038 9.14 450
                                             5.82 0.30
      Florida Rock Industries - Thompson S. Baker Cement Plant
```

SO SRCPARAM FRBCP3 28.19 76.20 453 14.57 2.87

SO SRCPARAM FRBCP10 30.71 96.01 453 16.03 2.87

```
Florida Gas Transmission Company
   SRCPARAM
               FGTC1 6.11
                            8.53
                                 741
                                       44.81 0.40
 SRCPARAM
               FGTC2 6.11
                                  741
                            8.53
                                       44.81 0.40
SO SRCPARAM
                                 741
               FGTC3 6.11
                            8.53
                                       44.81 0.40
SO SRCPARAM
                FGTC4 4.45
                            8.53
                                 741
                                       44.81 0.40
SO SRCPARAM
               FGTC5
                      1.33
                            12.19 641
                                       54.86 0.40
SO SRCPARAM
               FGTC8 1.78
                            18.59 761
                                       24.11 2.32
```

** GRU Deerhaven Generating Station SO SRCPARAM GRUDGS6 6.88 15.85 866 51.21 4.30

** Building Downwash ** SO BUILDHGT U45100 38.00 38.00 38.00 38.00 31.10 87.60 SO BUILDHGT U45100 87.60 87.60 87.60 87.60 38.00 38.00 SO BUILDHGT U45100 38.00 38.00 38.00 38.00 38.00 0.00 SO BUILDHGT U45100 0.00 0.00 0.00 0.00 0.00 87.60 SO BUILDHGT U45100 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 0.00 SO BUILDHGT U45100 SO BUILDWID U45100 44.50 47.24 48.53 48.36 144.98 147.63 SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67 SO BUILDWID U45100 46.73 48.37 48.54 47.23 44.49 0.00 SO BUILDWID U45100 0.00 0.00 0.00 0.00 0.00 147.63 33.70 27.10 33.70 39.28 43.67 SO BUILDWID U45100 39.28 SO BUILDWID U45100 48.37 48.54 47.23 44.49 0.00 46.73 SO BUILDLEN U45100 33.67 39.25 43.64 46.71 126.46 117.84 SO BUILDLEN U45100 100.22 79.56 56.48 79.56 47.23 48.54 48.37 46.73 43.67 39.28 33.70 0.00 SO BUILDLEN U45100 SO BUILDLEN U45100 0.00 0.00 0.00 0.00 0.00 117.84 SO BUILDLEN U45100 47.23 44.49 40.40 44.49 47.23 48.54 SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00 SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88 SO XBADJ U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70 SO XBADJ U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00 SO XBADJ U45100 0.00 0.00 0.00 0.00 0.00 172.04 XBADJ U45100 9.22 16.51 23.30 24.68 25.31 25.16 U45100 24.26 22.62 20.29 17.34 13.87 XBADJ 0.00 YBADJ U45100 25.96 7.68 -10.83 -29.01 76.77 90.51 SO YBADJ U45100 49.03 6.06 -37.10 -79.12 7.23 -1.38 SO YBADJ U45100 -9.94 -18.20 -25.91 -32.83 -38.75 0.00 0.00 0.00 0.00 0.00 0.00 -90.51 **SO YBADJ** U45100 -36.98 -30.72 -23.52 -15.61 -7.23 SO YBADJ U45100 SO YBADJ U45100 9.94 18.20 25.91 32.83 38.75 0.00

SRCGROUP U45100 U45100 SRCGROUP ALL

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST SECOND OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :C2N55.O01
RMOD OUTPUT FILE NUMBER 2 :C2N55.O02
MOD OUTPUT FILE NUMBER 3 :C2N55.O03

ARMOD OUTPUT FILE NUMBER 4:C2N55.004 AERMOD OUTPUT FILE NUMBER 5:C2N55.005

First title for last output file is: 2001 PGN CR PSD CLASS II PROPOSED 550 FT NOX 0.50 LB/MMBTU 8/12/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM	IE YEAR	CONC	X	Y PERIOD ENDING
	(ug/m3) (m) (m) (YYMME	DDHH)
				´
SOURCE GROUP	P ID: U45100)		
Annual				
2001	6.23129	336500.	3205200.	01123124
2002	6.60185	333434.	3205679.	02123124
2003	6.26973	336400.	3205100.	03123124
2004	6.46338	336400.	3205100.	04123124
2005	6.62295	336400.	3205100.	05123124
SOURCE GROUP	PID: ALL			
Annual				
2001	6.30314	336500.	3205200.	01123124
2002	6.67538	333434.	3205679.	02123124
2003	6.36092	336400.	3205100.	03123124
2004	6.54585	336400.	3205100.	04123124
2005	6.70012	336400.	3205100.	05123124
All receptor comp	outations repo	orted with re	spect to a us	er-specified origin
GRID 0.00	0.00		-	
DISCRETE	0.00	00		

```
CO STARTING
 TITLEONE 2001 PGN CR PROJECT 550 FT PM 0.05 LB/MMBTU 8/16/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-2005
 MODELOPT DEAULT CONC
 AVERTIME PERIOD 24
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
*****
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
 LOCATION BLR4 POINT 334665.270 3205401.840 1.000
 LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.05 LB/MMBTU X 7200= 360 LB/HR PER UNIT
  SRCPARAM U45100 90.8 167.700 328.000 15.300 9.300
  SRCPARAM BLR4 -84.0 178.200 300.000 21.00000 7.770
  SRCPARAM BLR5 -84.0 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100
                     38.00
                           38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                     87.60
                           87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45100
                                 38.00 38.00 38.00
                     38.00
                           38.00
                                                   0.00
SO BUILDHGT U45100
                      0.00
                           0.00
                                 0.00 0.00 0.00 87.60
                           38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00
                                                    0.00
SO BUILDWID U45100
                     44.50
                           47.24
                                 48.53 48.36 144.98 147.63
SO BUILDWID U45100
                     148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                           48.37 48.54 47.23 44.49 0.00
                     46.73
SO BUILDWID U45100
                     0.00
                           0.00 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                           33.70 27.10 33.70 39.28 43.67
                     39.28
SO BUILDWID U45100
                     46.73
                           48.37 48.54 47.23 44.49
                                                    0.00
SO BUILDLEN U45100
                     33.67
                           39.25 43.64
                                       46.71 126.46 117.84
SO BUILDLEN U45100
                     100.22 79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                     48.37
                           46.73 43.67 39.28 33.70
                                                    0.00
SO BUILDLEN U45100
                     0.00
                           0.00 0.00 0.00 0.00 117.84
 SO BUILDLEN U45100
                     47.23
                           44.49 40.40 44.49 47.23 48.54
 SO BUILDLEN U45100
                     48.37
                           46.73 43.67 39.28 33.70 0.00
SO XBADJI
           U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
 SO XBADJ
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
 SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
 SO XBADJ
           U45100
                          0.00 0.00 0.00 0.00 172.04
                    0.00
 SO XBADJ
           U45100
                    9.22 16.51 23.30 24.68 25.31 25.16
 SO XBADJ
            U45100
                    24.26 22.62 20.29 17.34 13.87
                                                   0.00
 SO YBADJ
            U45100
                    25.96
                          7.68 -10.83 -29.01 76.77 90.51
 SO YBADJ
            U45100
                    49.03
                           6.06 -37.10 -79.12 7.23 -1.38
                                                  0.00
 SO YBADJ
            U45100
                    -9.94 -18.20 -25.91 -32.83 -38.75
 SO YBADJ
            U45100
                     0.00
                          0.00 0.00 0.00 0.00 -90.51
 SO YBADJ
            U45100
                    -36.98
                          -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
            U45100
                     9.94 18.20 25.91 32.83 38.75 0.00
 SO BUILDHGT BLR4
                      27.80 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84.40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      27.80 27.80 27.80
                                        0.00
                                              0.00
                                                    0.00
 SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84,40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      38.00 38.00 38.00 0.00 0.00
 SO BUILDWID BLR4
                     138.19 129.98 117.84 131.88 141.91 147.63
 SO BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
 SO BUILDWID BLR4
                     125.54 134.97 140.30 0.00 0.00 0.00
 SO BUILDWID BLR4
                      0.00 129.98 117.84 131.88 141.91 147.63
 SO BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
```

46.71 48.36 48.53 47.24 0.00

SO BUILDWID BLR4

0.00

```
SO BUILDLEN BLR4
                     75.81 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
   BUILDLEN BLR4
                    135.12 125.72 112.50 0.00 0.00 0.00
                     0.00 148.86 147.63 141.91 131.88 117.84
   BUILDLEN BLR4
  BUILDLEN BLR4
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                     48.36 46.71 43.64 39.25 0.00 0.00
SO XBADJ
                  -140.83 -162.94 -180.10 -191.79 -197.65 -197.50
           BLR4
SO XBADJ
           BLR4
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
SO XBADJ
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
           BLR4
SO XBADJ
           BLR4
                    0.00 14.08 32.48 49.88 65.77 79.66
                    91.13 99.83 105.50 84.02 60.00 34.14
SO XBADJ
           BIR4
                  -144.04 -147.81 -147.09 -141.90 0.00 0.00
SO XBADJ
           BLR4
SO YBADJ
           BLR4
                    78.62 95.23 93.06 73.19 51.10 27.45
SO YBADJ
           BLR4
                    2.97 -21.60 -45.52 -68.05 -88.51 -106.29
           BLR4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
SO YBADJ
SO YBADJ
           BLR4
                    -2.97 21.60 45.52 68.05 88.51 106.29
                    36.93 15.56 -6.29 -27.95
SO YBADJ
           BLR4
                                            0.00 0.00
SO BUILDHGT BLR5
                      0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 27.80 0.00
                      0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 0.00 0.00
                     0.00 0.00 140.52 135.27 125.90 147.63
SO BUILDWID BLR5
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
                     141.91 131.88 117.84 129.86 138.13 0.00
SO BUILDWID BLR5
                     0.00 47.23 48.54 48.37 46.73 147.63 148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
SO BUILDWID BLR5
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 0.00 0.00
SO BUILDLEN BLR5
                     0.00 0.00 112.05 125.31 134.77 117.84
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 76.31 0.00
SO BUILDLEN BLR5
                      0.00 39.28 43.67 46.73 48.37 117.84
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
  O BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 0.00 0.00
                    0.00 0.00 -100.94 -121.76 -138.89 -151.80
   XBADJ BLR5
                   -160.09 -163.52 -161.98 -179.46 -191.48 -197.69
   XBADJ
           BLR5
SO XBADJ
           BLR5
                   -197.89 -192.08 -180.43 -163.30 -141.20 0.00
SO XBADJ
           BLR5
                    0.00 -143.00 -148.09 -148.69 -144.76 33.96
                    59.87 83.96 105.50 99.90 91.26 79.85
SO XBADJ
           BIR5
SO XBADJ
           BLR5
                    66.01 50.17 32.80 14.44 0.00 0.00
SO YBADJ
           BLR5
                    0.00 0.00 81.74 71.52 59.12 106.61
                    88.87 68.42 45.89 21.97 -2.62 -27.13
SO YBADJ
           BLR5
           BLR5
                    -50.81 -72.95 -92.88 -95.16 -78.58 0.00
SO YBADJ
SO YBADJ
           BLR5
                    0.00 27.50 5.66 -16.35 -37.86 -106.61
                    -88.87 -68.42 -45.89 -21.97 2.62 27.13
SO YBADJ
           BLR5
                    50.81 72.95 92.88 95.16 0.00 0.00
           BLR5
SO YBADJ
  SRCGROUP U45100 U45100
  SRCGROUP ALL
SO FINISHED
************
** AERMOD Receptor Pathway
RE STARTING
  INCLUDED CRAUG06A.ROU
RE FINISHED
***********
** AERMOD Meteorology Pathway
ME STARTING
  SURFFILE C:\amodmet\TAMPA_2001.SFC
```

PROFFILE C:\amodmet\TAMPA_2001.PFL URFDATA 12842 2001 TAMPA/INT'L_ARPT AIRDATA 12842 2001 TAMPA/INT'L_ARPT

PROFBASE 19 FEET

ME FINISHED

** AERMOD Output Pathway

**

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1:PRPM55.001

RMOD OUTPUT FILE NUMBER 2:PRPM55.002 RMOD OUTPUT FILE NUMBER 3:PRPM55.003

RMOD OUTPUT FILE NUMBER 4 :PRPM55.004

AERMOD OUTPUT FILE NUMBER 5 : PRPM55.005
First title for last output file is: 2001 PGN CR PROJECT 550 FT PM 0.05 LB/MMBTU 8/16/06
Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING T	FIME YEAR (ug/m3)	CONC (m) (m	X n) (YYMM	Y PERIOD ENDING DDHH)
SOURCE GRO	OLID ID: 11451	 nn		
Annual	701 ID. 0431	50		
200	0.62368	3 3 6500.	3205200.	01123124
200	0.66077	333434.	3205679.	02123124
200	0.62753	336400.	3205100.	03123124
200	0.64691	336400.	3205100.	04123124
200	0.66288	336400.	3205100.	05123124
HIGH 24-Hour				
200	01 6.54195	336700.	3205400.	01052624
200	02 6.57633	333800.	3205800.	02060524
200	03 6.22382	336800.	3205500.	03053024
200	7.53380	336600.	3205400.	04052724
200		336500.	3205000.	05052424
SOURCE GRO	DUP ID: ALL			
Annual				
200	0.00000	0.	0. 011	23124
200	0.00000	0.	0. 021	23124
200	0.00000	0.	0. 031	23124
200	0.00000	0.	0. 041	23124
200	0.00000	0.	0. 051	23124
HIGH 24-Hour				
200	01 0.84249	343800.	3211400.	01070624
200	02 1.09255	344800.	3210400.	
200	0.65691	340800.	3214400.	03060924
20		334262.	3205668.	
20	05 0.62422	334065.	3205671.	05061024
			spect to a us	ser-specified origin
	0.00			
DISCRETE	0.00	0.00		

```
CO STARTING
 TITLEONE 2001 PGN CR PROJECT 550 FT PM 0.05 LB/MMBTU CLASS I 8/16/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-2005
 MODELOPT DFAULT CONC
 AVERTIME PERIOD 24
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
******************
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
  LOCATION U45100 POINT 334776.800 3205393.420 1.000
  LOCATION BLR4 POINT 334665,270 3205401,840 1,000
  LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.05 LB/MMBTU X 7200= 360 LB/HR PER UNIT
  SRCPARAM U45100 90.8 167.700 328.000 15.300 9.300
  SRCPARAM BLR4
                    -84.0 178.200 300.000 21.00000 7.770
  SRCPARAM BLR5
                   -84.0 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100
                      38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                      87,60
                            87.60 87.60 87.60 38.00
                                                    38.00
SO BUILDHGT U45100
                      38.00
                            38.00 38.00 38.00 38.00
                                                     0.00
SO BUILDHGT U45100
                      0.00
                            0.00
                                  0.00 0.00 0.00 87.60
SO BLILDHGT U45100
                      38.00
                            38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                      38.00 38.00 38.00 38.00 38.00
                                                    0.00
SO BUILDWID U45100
                      44.50
                            47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100
                     148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                      0.00
                            0.00 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                     39.28
                            33.70 27.10 33.70 39.28 43.67
SO BUILDWID U45100
                            48.37 48.54 47.23 44.49
                     46.73
                                                     0.00
SO BUILDLEN U45100
                     33.67
                            39.25
                                  43.64 46.71 126.46 117.84
                     100.22
SO BUILDLEN U45100
                            79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45100
                      0.00
                            0.00 0.00 0.00 0.00 117.84
 SO BUILDLEN U45100
                            44.49 40.40 44.49 47.23 48.54
                      47.23
 SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
 SO XBADJ
           U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
            U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
 SO XBADJ
            U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
 SO XBADJ
 SO XBADJ
            U45100
                     0.00
                          0.00 0.00 0.00 0.00 172.04
 SO XBADJ
            U45100
                     9.22
                          16.51 23.30 24.68 25.31 25.16
 SO XBADJ
            U45100
                    24.26 22.62 20.29 17.34 13.87
                                                   0.00
 SO YBADJ
            U45100
                    25.96
                           7.68 -10.83 -29.01 76.77 90.51
 SO YBADJ
            U45100
                    49.03
                           6.06 -37.10 -79.12
                                            7.23 -1.38
 SO YBADJ
            U45100
                     -9.94 -18.20 -25.91 -32.83 -38.75 0.00
 SO YBADJ
            U45100
                     0.00
                          0.00
                                0.00 0.00 0.00 -90.51
                    -36.98 -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
            U45100
                     9.94 18.20 25.91 32.83 38.75 0.00
 SO YBADJ U45100
 SO BUILDHGT BLR4
                      27.80 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84.40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      27.80 27.80
                                  27.80
                                        0.00
                                              0.00
                                                    0.00
 SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                      38.00 38.00 38.00 38.00 0.00 0.00
 SO BUILDWID BLR4
                     138.19 129.98 117.84 131.88 141.91 147.63
 SO BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
 SO BUILDWID BLR4
                      125.54 134.97 140.30 0.00 0.00 0.00
 SO BUILDWID BLR4
                      0.00 129.98 117.84 131.88 141.91 147.63
 SO BUILDWID BLR4
                      148.86 145.57 137.85 145.57 148.86 147.63
```

46.71 48.36 48.53 47.24 0.00

SO BUILDWID BLR4

```
SO BUILDLEN BLR4
                     75.81 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
   BUILDLEN BLR4
                    135.12 125.72 112.50 0.00 0.00 0.00
   BUILDLEN BLR4
                     0.00 148.86 147.63 141.91 131.88 117.84
 BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                     48.36 46.71 43.64 39.25 0.00 0.00
SO XBADJ BLR4
                  -140.83 -162.94 -180.10 -191.79 -197.65 -197.50
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
SO XBADJ
          BLR4
          BLR4
SO XBADJ
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
SO XBADJ
           BLR4
                   0.00 14.08 32.48 49.88 65.77 79.66
                   91.13 99.83 105.50 84.02 60.00 34.14
SO XBADJ
          BLR4
           BLR4
SO XBADJ
                  -144.04 -147.81 -147.09 -141.90 0.00 0.00
SO YBADJ
           BLR4
                   78.62 95.23 93.06 73.19 51.10 27.45
SO YBADJ
           BLR4
                   2.97 -21.60 -45.52 -68.05 -88.51 -106.29
SO YBADJ
           BLR4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
                   -2.97 21.60 45.52 68.05 88.51 106.29
SO YBADJ
          BLR4
          BLR4
SO YBADJ
                   36.93 15.56 -6.29 -27.95
                                           0.00 0.00
SO BUILDHGT BLR5
                     0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 27.80 0.00
SO BUILDHGT BLR5
                     0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 0.00 0.00
SO BUILDWID BLR5
SO BUILDWID BLR5
```

0.00 0.00 140.52 135.27 125.90 147.63 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR5 141.91 131.88 117.84 129.86 138.13 0.00 SO BUILDWID BLR5 0.00 47.23 48.54 48.37 46.73 147.63 SO BUILDWID BLR5 148.86 145.57 137.85 145.57 148.86 147.63 SO BUILDWID BLR5 141.91 131.88 117.84 129.86 0.00 0.00 0.00 0.00 112.05 125.31 134.77 117.84 SO BUILDLEN BLR5 SO BUILDLEN BLR5 100.22 79.56 56.48 79.56 100.22 117.84 SO BUILDLEN BLR5 131.88 141.91 147.63 148.86 76.31 0.00 SO BUILDLEN BLR5 0.00 39.28 43.67 46.73 48.37 117.84 SO BUILDLEN BLR5 100.22 79.56 56.48 79.56 100.22 117.84 BUILDLEN BLR5 131.88 141.91 147.63 148.86 0.00 0.00 BLR5 XBADJ XBADJ BLR5 -160.09 -163.52 -161.98 -179.46 -191.48 -197.69 BLR5 SO XBADJ -197.89 -192.08 -180.43 -163.30 -141.20 0.00 SO XBADJ BLR5 0.00 -143.00 -148.09 -148.69 -144.76 33.96 BLR5 SO XBADJ 59.87 83.96 105.50 99.90 91.26 79.85 BLR₅ SO XBADJ 66.01 50.17 32.80 14.44 0.00 0.00 SO YBADJ BLR5 0.00 0.00 81.74 71.52 59.12 106.61 BLR5 SO YBADJ 88.87 68.42 45.89 21.97 -2.62 -27.13 SO YBADJ BLR5 -50.81 -72.95 -92.88 -95.16 -78.58 0.00 SO YBADJ BLR5 0.00 27.50 5.66 -16.35 -37.86 -106.61 BLR5 SO YBADJ -88.87 -68.42 -45.89 -21.97 2.62 27.13 BLR5 SO YBADJ 50.81 72.95 92.88 95.16 0.00 0.00

SRCGROUP U45100 U45100 SRCGROUP ALL

```
*** AERMOD Receptor Pathway

*** AERMOD Receptor Pathway

***

*** RE STARTING
    INCLUDED CHASS.ROU
    RE FINISHED

***

*** AERMOD Meteorology Pathway

***

*** ME STARTING
    SURFFILE C:\amodmet\TAMPA_2001.SFC
    PROFFILE C:\amodmet\TAMPA_2001.PFL
    URFDATA 12842 2001 TAMPA/INT'L_ARPT
    JAIRDATA 12842 2001 TAMPA/INT'L_ARPT
    PROFBASE 19 FEET

ME FINISHED
```

** AERMOD Output Pathway

**

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1: PRPM55C1.O01

RMOD OUTPUT FILE NUMBER 2 :PRPM55C1.O02

MOD OUTPUT FILE NUMBER 3 :PRPM55C1.003

RERMOD OUTPUT FILE NUMBER 4 :PRPM55C1.004

AERMOD OUTPUT FILE NUMBER 5 :PRPM55C1.005

First title for last output file is: 2001 PGN CR PROJECT 550 FT PM 0.05 LB/MMBTU CLASS I 8/16/06

Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM	E YEAR	CONC	Х	Y PERIOD ENDING
(ug/m3)	(m) (n	n) (Y'	YMMDDHH)
		-	·	
SOURCE GROUP	1D: U4510	D		
Annual				
2001	0.05971	334447.	31836	
2002	0.06830	334447.	31836	
2003				601. 03123124
2004				601. 04123124
2005	0.06679	331926.	31780	095. 05123124
HIGH 24-Hour				
2001	0.75112	335260.	3183	
2002	0.62018	331926.	31780	
20 0 3		331926.		095. 03112 02 4
2004	•	334447.		601. 04110624
2005	0.84730	335260.	3183	589. 05090824
SOURCE GROUP	PID: ALL			
Annual				
2001	0.00000	0.	0.	01123124
2002	0.00000	0.	0.	02123124
2003	0.00000	0.	0.	03123124
2004	0.00000	0.	0.	04123124
2005	0.00000	0.	0.	05123124
HIGH 24-Hour				
2001	0.00000	0.	0.	00000000
2002	0.00000	0.	0.	0000000
2003	0.00000	0.	0.	00000000
2004	0.00000	0.	0.	00000000
2005	0.00000	0.	0.	00000000
All receptor comp	outations rep	orted with re	spect to	o a user-specified origin
GRID 0.00	0.00		-	-
DISCRETE	0.00 0.	00		

```
CO STARTING
 TITLEONE 2001 PGN CR, PM10 AAQS ANALYSIS - CR+BACKGROUND SOURCES 8/18/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-05 (GOLDER SURFACE PARAMETERS)
 MODELOPT DFAULT CONC
 AVERTIME PERIOD 24
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
** AERMOD Source Pathway
**
SO STARTING
 LOCATION U45100 POINT 334776.80 3205393.42 1.0
   COOLING TOWERS FOR UNITS 4 & 5 MODELED SEPARATELY
   DUE TO INCORRECT USE OF STACK-TIP DOWNWASH
   LOCATION CT4 POINT 334312.560 3205466.280 1.000
   LOCATION CT5 POINT 334313.480 3205236.260 1.000
 LOCATION HCT1 POINT 333190.920 3204586.510 1.0
 LOCATION HCT2 POINT 333375.380 3204573.640 1.0
 LOCATION HCT3 POINT 333637.510 3204550.460 1.0
 LOCATION HCT4 POINT 333820.520 3204538.720 1.0
 LOCATION CTWRPORT POINT 333014.940 3204595.010 1.0
** DESCRSRC PORTABLE COOLING TOWER
 LOCATION UNIT1 POINT 334319.400 3204230.210 1.0
 LOCATION UNIT2 POINT 334260.580 3204230.210 1.0
 LOCATION FAT1 POINT 334242.000 3204264.000 1.0
 LOCATION FAS1&2 POINT 334000.000 3204264.000 1.0
 LOCATION FAT2A POINT 334242.000 3204264.000 1.0
 LOCATION FAT2B POINT 334242.000 3204264.000 1.0
 LOCATION BAS 12 POINT 334120.010 3204395.900 1.0
 LOCATION LIM1234 POINT 335081.370 3205560.730 1.0
  LOCATION LIMSILO POINT 335085.720 3205425.850 2.0
  LOCATION CBO POINT 334656.760 3205553.940 2.000
 LOCATION VOLA VOLUME 334116.030 3204084.070 1.0
  LOCATION VOLB VOLUME 334185.650 3204082.870 1.0
 LOCATION VOLC VOLUME 334314.680 3204022.260 1.0
   LOCATION VOLD VOLUME 334120.830 3203977.250 1.0
  LOCATION VOLE VOLUME 334308.680 3204091.880 1.0
 LOCATION VOLF VOLUME 334425.400 3204037.260 1.0
  LOCATION VOLG VOLUME 334880.910 3204184.900 1.0
  LOCATION VOLH VOLUME 334888.110 3205023.900 1.0
  LOCATION VOLI VOLUME 334889.910 3205173.330 1.0
  LOCATION PIL12 VOLUME 334186.780 3203919.580 1.0
  LOCATION PIL45 VOLUME 335095.630 3205080.280 1.0
  LOCATION PILGYP VOLUME 336471.50 3203967.17 0.0
  LOCATION VOLM VOLUME 334428.44 3203986.80 1.0
  LOCATION VOLP12 VOLUME 334315.01 3204249.97 1.0
  LOCATION VOLRAIL VOLUME 334533.81 3203987.81 1.0
  LOCATION VOLC45 VOLUME 334894.28 3205366.67 1.0
  LOCATION VOLP45 VOLUME 334611.45 3205366.16 1.0
  LOCATION PIL12TR VOLUME 334186.78 3203919.58 1.0
  LOCATION PIL45TR VOLUME 335095.63 3205080.28 1.0
 ** _____
 ** LINE Source ID = ENTRY
 ** DESCRSRC New Entrance Road (90 ft buffer)
 ** Length of Side = 10.00
 ** Emission Rate = 10
 ** Vertical Dimension = 4.57
 ** SZINIT = 2.13
 ** Nodes = 2
 ** 335779.42, 3204815.23, 2.00, 2.29, 0.0
 ** 340609.00, 3204735.67, 2.00, 2.29, 9.26
 ** ------
 ** No. of Volumes = 243
```

LOCATION ENTRY001 VOLUME 335784.406 3204815.168 2.00

LOCATION ENTRY002 VOLUME 335804.321 3204814.840 2.00 LOCATION ENTRY003 VOLUME 335824.237 3204814.512 2.00 LOCATION ENTRY004 VOLUME 335844,153 3204814,184 2.00 LOCATION ENTRY005 VOLUME 335864.068 3204813.856 2.00 **LOCATION ENTRY006** VOLUME 335883.984 3204813.529 2.00 **LOCATION ENTRY007** VOLUME 335903.900 3204813.201 2.00 VOLUME 335923.815 3204812.873 2.00 LOCATION ENTRY008 **LOCATION ENTRY009** VOLUME 335943.731 3204812.545 2.00 LOCATION ENTRY010 VOLUME 335963.647 3204812.217 2.00 LOCATION ENTRY011 VOLUME 335983.562 3204811.889 2.00 LOCATION ENTRY012 VOLUME 336003.478 3204811.562 2.00 VOLUME 336023.394 3204811.234 2.00 LOCATION ENTRY013 LOCATION ENTRY014 VOLUME 336043.309 3204810.906 2.00 **LOCATION ENTRY015** VOLUME 336063.225 3204810.578 2.00 VOLUME 336083.141 3204810.250 2.00 LOCATION ENTRY016 **LOCATION ENTRY017** VOLUME 336103.057 3204809.922 2.00 VOLUME 336122.972 3204809.595 2.00 **LOCATION ENTRY018** VOLUME 336142.888 3204809,267 2.00 **LOCATION ENTRY019** LOCATION ENTRY020 VOLUME 336162.804 3204808.939 2.00 VOLUME 336182.719 3204808.611 2.00 **LOCATION ENTRY021** VOLUME 336202.635 3204808.283 2.00 LOCATION ENTRY022 LOCATION ENTRY023 VOLUME 336222.551 3204807.955 2.00 LOCATION ENTRY024 VOLUME 336242.466 3204807.628 2.00 VOLUME 336262.382 3204807.300 2.00 **LOCATION ENTRY025 LOCATION ENTRY026** VOLUME 336282.298 3204806.972 2.00 **LOCATION ENTRY027** VOLUME 336302.214 3204806.644 2.00 VOLUME 336322.129 3204806.316 2.00 LOCATION ENTRY028 **LOCATION ENTRY029** VOLUME 336342.045 3204805.988 2.00 **LOCATION ENTRY030** VOLUME 336361.961 3204805.661 2.00 VOLUME 336381.876 3204805.333 2.00 LOCATION ENTRY031 LOCATION ENTRY032 VOLUME 336401.792 3204805.005 2.00 **LOCATION ENTRY033** VOLUME 336421.708 3204804.677 2.00 LOCATION ENTRY034 VOLUME 336441.623 3204804.349 2.00 LOCATION ENTRY035 VOLUME 336461.539 3204804.021 2.00 LOCATION ENTRY036 VOLUME 336481.455 3204803.694 2.00 VOLUME 336501.371 3204803.366 2.00 **LOCATION ENTRY037** LOCATION ENTRY038 VOLUME 336521.286 3204803.038 2.00 OCATION ENTRY039 VOLUME 336541.202 3204802.710 2.00 VOLUME 336561.118 3204802.382 2.00 LOCATION ENTRY040 LOCATION ENTRY041 VOLUME 336581.033 3204802.054 2.00 LOCATION ENTRY042 VOLUME 336600.949 3204801.727 2.00 VOLUME 336620.865 3204801.399 2.00 LOCATION ENTRY043 LOCATION ENTRY044 VOLUME 336640.780 3204801.071 2.00 VOLUME 336660.696 3204800.743 2.00 **LOCATION ENTRY045** VOLUME 336680.612 3204800.415 2.00 **LOCATION ENTRY046 LOCATION ENTRY047** VOLUME 336700.527 3204800.087 2.00 VOLUME 336720.443 3204799.760 2.00 **LOCATION ENTRY048** VOLUME 336740.359 3204799.432 2.00 **LOCATION ENTRY049 LOCATION ENTRY050** VOLUME 336760.275 3204799.104 2.00 VOLUME 336780.190 3204798.776 2.00 LOCATION ENTRY051 VOLUME 336800.106 3204798.448 2.00 LOCATION ENTRY052 VOLUME 336820.022 3204798.120 2.00 **LOCATION ENTRY053** VOLUME 336839.937 3204797.793 2.00 **LOCATION ENTRY054** VOLUME 336859.853 3204797.465 2.00 LOCATION ENTRY055 **LOCATION ENTRY056** VOLUME 336879.769 3204797.137 2.00 LOCATION ENTRY057 VOLUME 336899.684 3204796.809 2.00 VOLUME 336919.600 3204796.481 2.00 LOCATION ENTRY058 **LOCATION ENTRY059** VOLUME 336939.515 3204796.153 2.00 VOLUME 336959.431 3204795.826 2.00 **LOCATION ENTRY060** LOCATION ENTRY061 VOLUME 336979.347 3204795.498 2.00 LOCATION ENTRY062 VOLUME 336999.262 3204795.170 2.00 VOLUME 337019.178 3204794.842 2.00 **LOCATION ENTRY063** VOLUME 337039.094 3204794.514 2.00 LOCATION ENTRY064 **LOCATION ENTRY065** VOLUME 337059.009 3204794.186 2.00 VOLUME 337078.925 3204793.859 2.00 LOCATION ENTRY066 VOLUME 337098.841 3204793.531 2.00 LOCATION ENTRY067 VOLUME 337118.756 3204793.203 2.00 **LOCATION ENTRY068** VOLUME 337138.672 3204792.875 2.00 LOCATION ENTRY069 LOCATION ENTRY070 VOLUME 337158.587 3204792.547 2.00 LOCATION ENTRY071 VOLUME 337178.503 3204792.219 2.00 VOLUME 337198.419 3204791.892 2.00 LOCATION ENTRY072 LOCATION ENTRY073 VOLUME 337218.334 3204791.564 2.00 OCATION ENTRY074 VOLUME 337238.250 3204791.236 2.00 OCATION ENTRY075 VOLUME 337258.166 3204790.908 2.00 **LOCATION ENTRY076** VOLUME 337278.081 3204790.580 2.00 **LOCATION ENTRY077** VOLUME 337297.997 3204790.252 2.00 **LOCATION ENTRY078** VOLUME 337317.913 3204789.925 2.00 VOLUME 337337.828 3204789.597 2.00 LOCATION ENTRY079

LOCATION ENTRY080 VOLUME 337357.744 3204789.269 2.00 LOCATION ENTRY081 VOLUME 337377.659 3204788.941 2.00 **LOCATION ENTRY082** VOLUME 337397.575 3204788.613 2.00 **LOCATION ENTRY083** VOLUME 337417.491 3204788.285 2.00 LOCATION ENTRY084 VOLUME 337437.406 3204787.958 2.00 **LOCATION ENTRY085** VOLUME 337457.322 3204787.630 2.00 LOCATION ENTRY086 VOLUME 337477.238 3204787.302 2.00 LOCATION ENTRY087 VOLUME 337497.153 3204786.974 2.00 **LOCATION ENTRY088** VOLUME 337517.069 3204786.646 2.00 LOCATION ENTRY089 VOLUME 337536.985 3204786.318 2.00 LOCATION ENTRY090 VOLUME 337556.900 3204785.991 2.00 LOCATION ENTRY091 VOLUME 337576.816 3204785.663 2.00 LOCATION ENTRY092 VOLUME 337596.731 3204785.335 2.00 **LOCATION ENTRY093** VOLUME 337616.647 3204785.007 2.00 VOLUME 337636.563 3204784.679 2.00 **LOCATION ENTRY094** LOCATION ENTRY095 VOLUME 337656.478 3204784.351 2.00 **LOCATION ENTRY096** VOLUME 337676.394 3204784.024 2.00 **LOCATION ENTRY097** VOLUME 337696.310 3204783.696 2.00 LOCATION ENTRY098 VOLUME 337716.225 3204783.368 2.00 LOCATION ENTRY099 VOLUME 337736.141 3204783.040 2.00 LOCATION ENTRY100 VOLUME 337756.057 3204782.712 2.00 LOCATION ENTRY101 VOLUME 337775.972 3204782.385 2.00 LOCATION ENTRY102 VOLUME 337795.888 3204782.057 2.00 LOCATION ENTRY 103 VOLUME 337815.803 3204781.729 2.00 **LOCATION ENTRY104** VOLUME 337835.719 3204781.401 2.00 LOCATION ENTRY105 VOLUME 337855.635 3204781.073 2.00 LOCATION ENTRY106 VOLUME 337875.551 3204780.745 2.00 LOCATION ENTRY107 VOLUME 337895.466 3204780.418 2.00 LOCATION ENTRY108 VOLUME 337915.382 3204780.090 2.00 LOCATION ENTRY109 VOLUME 337935.298 3204779.762 2.00 LOCATION ENTRY110 VOLUME 337955.214 3204779.434 2.00 LOCATION ENTRY111 VOLUME 337975.130 3204779.106 2.00 LOCATION ENTRY112 VOLUME 337995.045 3204778.778 2.00 LOCATION ENTRY113 VOLUME 338014.961 3204778.451 2.00 LOCATION ENTRY114 VOLUME 338034.877 3204778.123 2.00 LOCATION ENTRY115 VOLUME 338054.793 3204777.795 2.00 LOCATION ENTRY116 VOLUME 338074.708 3204777.467 2.00 LOCATION ENTRY117 VOLUME 338094.624 3204777.139 2.00 LOCATION ENTRY118 VOLUME 338114.540 3204776.811 2.00 LOCATION ENTRY119 VOLUME 338134.456 3204776.484 2.00 LOCATION ENTRY120 VOLUME 338154.371 3204776.156 2.00 LOCATION ENTRY121 VOLUME 338174.287 3204775.828 2.00 LOCATION ENTRY122 VOLUME 338194.203 3204775.500 2.00 LOCATION ENTRY123 VOLUME 338214.119 3204775.172 2.00 LOCATION ENTRY124 VOLUME 338234.034 3204774.844 2.00 LOCATION ENTRY 125 VOLUME 338253.950 3204774.517 2.00 **LOCATION ENTRY 126** VOLUME 338273.866 3204774.189 2.00 VOLUME 338293.782 3204773.861 2.00 LOCATION ENTRY 127 LOCATION ENTRY128 VOLUME 338313.697 3204773.533 2.00 LOCATION ENTRY129 VOLUME 338333.613 3204773.205 2.00 LOCATION ENTRY130 VOLUME 338353.529 3204772.877 2.00 LOCATION ENTRY131 VOLUME 338373.445 3204772.550 2.00 LOCATION ENTRY132 VOLUME 338393.360 3204772.222 2.00 LOCATION ENTRY133 VOLUME 338413.276 3204771.894 2.00 LOCATION ENTRY134 VOLUME 338433.192 3204771.566 2.00 LOCATION ENTRY135 VOLUME 338453.108 3204771.238 2.00 LOCATION ENTRY136 VOLUME 338473.024 3204770.910 2.00 LOCATION ENTRY 137 VOLUME 338492.939 3204770.583 2.00 LOCATION ENTRY138 VOLUME 338512.855 3204770.255 2.00 LOCATION ENTRY139 VOLUME 338532.771 3204769.927 2.00 LOCATION ENTRY140 VOLUME 338552.687 3204769.599 2.00 LOCATION ENTRY141 VOLUME 338572.602 3204769.271 2.00 LOCATION ENTRY142 VOLUME 338592.518 3204768.943 2.00 LOCATION ENTRY143 VOLUME 338612.434 3204768.615 2.00 LOCATION ENTRY144 VOLUME 338632.350 3204768.288 2.00 LOCATION ENTRY145 VOLUME 338652.265 3204767.960 2.00 LOCATION ENTRY146 VOLUME 338672.181 3204767.632 2.00 LOCATION ENTRY147 VOLUME 338692.097 3204767.304 2.00 LOCATION ENTRY148 VOLUME 338712.013 3204766.976 2.00 LOCATION ENTRY149 VOLUME 338731.928 3204766.648 2.00 LOCATION ENTRY150 VOLUME 338751.844 3204766.321 2.00 LOCATION ENTRY151 VOLUME 338771.760 3204765.993 2.00 LOCATION ENTRY152 VOLUME 338791.676 3204765.665 2.00 LOCATION ENTRY153 VOLUME 338811.591 3204765.337 2.00 LOCATION ENTRY154 VOLUME 338831.507 3204765.009 2.00 LOCATION ENTRY155 VOLUME 338851.423 3204764.681 2.00 LOCATION ENTRY156 VOLUME 338871.339 3204764.354 2.00 LOCATION ENTRY157 VOLUME 338891.254 3204764.026 2.00 LOCATION ENTRY158 VOLUME 338911,170 3204763,698 2,00 LOCATION ENTRY159 VOLUME 338931.086 3204763.370 2.00 LOCATION ENTRY160 VOLUME 338951.002 3204763.042 2.00 LOCATION ENTRY161 VOLUME 338970.917 3204762.714 2.00 **LOCATION ENTRY162** VOLUME 338990.833 3204762.387 2.00 **LOCATION ENTRY163** VOLUME 339010.749 3204762.059 2.00 **LOCATION ENTRY164** VOLUME 339030.665 3204761.731 2.00 LOCATION ENTRY165 VOLUME 339050.581 3204761.403 2.00 **LOCATION ENTRY166** VOLUME 339070.496 3204761.075 2.00 **LOCATION ENTRY167** VOLUME 339090.412 3204760.747 2.00 LOCATION ENTRY168 VOLUME 339110.328 3204760.420 2.00 LOCATION ENTRY169 VOLUME 339130.244 3204760.092 2.00 **LOCATION ENTRY170** VOLUME 339150.159 3204759.764 2.00 VOLUME 339170.075 3204759.436 2.00 LOCATION ENTRY171 LOCATION ENTRY172 VOLUME 339189.991 3204759.108 2.00 LOCATION ENTRY173 VOLUME 339209.907 3204758.780 2.00 LOCATION ENTRY174 VOLUME 339229,822 3204758,453 2.00 LOCATION ENTRY175 VOLUME 339249.738 3204758.125 2.00 **LOCATION ENTRY176** VOLUME 339269.654 3204757.797 2.00 **LOCATION ENTRY177** VOLUME 339289.570 3204757.469 2.00 LOCATION ENTRY178 VOLUME 339309.485 3204757.141 2.00 LOCATION ENTRY179 VOLUME 339329.401 3204756.813 2.00 **LOCATION ENTRY180** VOLUME 339349.317 3204756.486 2.00 LOCATION ENTRY181 VOLUME 339369.233 3204756.158 2.00 **LOCATION ENTRY182** VOLUME 339389.148 3204755.830 2.00 VOLUME 339409.064 3204755.502 2.00 **LOCATION ENTRY 183** VOLUME 339428.980 3204755.174 2.00 LOCATION ENTRY184 **LOCATION ENTRY185** VOLUME 339448.896 3204754.846 2.00 **LOCATION ENTRY186** VOLUME 339468.811 3204754.519 2.00 VOLUME 339488.727 3204754.191 2.00 **LOCATION ENTRY187 LOCATION ENTRY188** VOLUME 339508.643 3204753.863 2.00 VOLUME 339528.559 3204753.535 2.00 LOCATION ENTRY189 VOLUME 339548.474 3204753.207 2.00 LOCATION ENTRY190 LOCATION ENTRY191 VOLUME 339568.390 3204752.879 2.00 **LOCATION ENTRY192** VOLUME 339588.306 3204752.552 2.00 VOLUME 339608.222 3204752.224 2.00 LOCATION ENTRY193 **LOCATION ENTRY194** VOLUME 339628.138 3204751.896 2.00 OCATION ENTRY195 VOLUME 339648.053 3204751.568 2.00 LOCATION ENTRY196 VOLUME 339667.969 3204751.240 2.00 **LOCATION ENTRY197** VOLUME 339687.885 3204750.912 2.00 **LOCATION ENTRY198** VOLUME 339707.801 3204750.585 2.00 VOLUME 339727.716 3204750.257 2.00 **LOCATION ENTRY199** LOCATION ENTRY200 VOLUME 339747.632 3204749.929 2.00 LOCATION ENTRY201 VOLUME 339767.548 3204749.601 2.00 **LOCATION ENTRY202** VOLUME 339787.464 3204749.273 2.00 **LOCATION ENTRY203** VOLUME 339807.379 3204748.945 2.00 **LOCATION ENTRY204** VOLUME 339827.295 3204748.618 2.00 **LOCATION ENTRY205** VOLUME 339847.211 3204748.290 2.00 **LOCATION ENTRY206** VOLUME 339867.127 3204747.962 2.00 **LOCATION ENTRY207** VOLUME 339887.042 3204747.634 2.00 VOLUME 339906.958 3204747.306 2.00 LOCATION ENTRY208 **LOCATION ENTRY209** VOLUME 339926.874 3204746.978 2.00 **LOCATION ENTRY210** VOLUME 339946.789 3204746.651 2.00 VOLUME 339966.705 3204746.323 2.00 LOCATION ENTRY211 **LOCATION ENTRY212** VOLUME 339986.621 3204745.995 2.00 **LOCATION ENTRY213** VOLUME 340006.537 3204745.667 2.00 LOCATION ENTRY214 VOLUME 340026.452 3204745.339 2.00 **LOCATION ENTRY215** VOLUME 340046.368 3204745.011 2.00 LOCATION ENTRY216 VOLUME 340066.284 3204744.684 2.00 VOLUME 340086.200 3204744.356 2.00 **LOCATION ENTRY217** LOCATION ENTRY218 VOLUME 340106.115 3204744.028 2.00 **LOCATION ENTRY219** VOLUME 340126.031 3204743.700 2.00 LOCATION ENTRY220 VOLUME 340145.947 3204743.372 2.00 **LOCATION ENTRY221** VOLUME 340165.863 3204743.044 2.00 **LOCATION ENTRY222** VOLUME 340185.779 3204742.717 2.00 LOCATION ENTRY223 VOLUME 340205.694 3204742.389 2.00 **LOCATION ENTRY224** VOLUME 340225.610 3204742.061 2.00 **LOCATION ENTRY225** VOLUME 340245.526 3204741.733 2.00 **LOCATION ENTRY226** VOLUME 340265.442 3204741.405 2.00 LOCATION ENTRY227 VOLUME 340285.357 3204741.077 2.00 **LOCATION ENTRY228** VOLUME 340305.273 3204740.750 2.00 LOCATION ENTRY229 VOLUME 340325.189 3204740.422 2.00 OCATION ENTRY230 VOLUME 340345.105 3204740.094 2.00 LOCATION ENTRY231 VOLUME 340365.020 3204739.766 2.00 **LOCATION ENTRY232** VOLUME 340384.936 3204739.438 2.00 **LOCATION ENTRY233** VOLUME 340404.852 3204739.110 2.00 LOCATION ENTRY234 VOLUME 340424.768 3204738.783 2.00 LOCATION ENTRY235 VOLUME 340444.683 3204738.455 2.00

```
LOCATION ENTRY236 VOLUME 340464.599 3204738.127 2.00
LOCATION ENTRY237 VOLUME 340484.515 3204737.799 2.00
LOCATION ENTRY238
                    VOLUME 340504.431 3204737.471 2.00
LOCATION ENTRY239
                    VOLUME 340524.346 3204737.143 2.00
LOCATION ENTRY240
                   VOLUME 340544.262 3204736.816 2.00
LOCATION ENTRY241
                    VOLUME 340564.178 3204736.488 2.00
LOCATION ENTRY242 VOLUME 340584.094 3204736.160 2.00
LOCATION ENTRY243 VOLUME 340604.009 3204735.832 2.00
```

** End of Line Source

- ** LINE Source ID = INTERA
- ** DESCRSRC Interior around coal pile
- ** Length of Side = 20.00
- ** Emission Rate = 10
- ** Vertical Dimension = 4.57
- ** SZINIT = 2.13
- ** Nodes = 4
- ** 335000.00, 3205500.00, 2.00, 0.00, 0.0
- ** 335090.00, 3205500.00, 2.00, 0.00, 16.28
- ** 335420.00, 3205370.00, 2.00, 0.00, 18.33
- ** 335410.00, 3204810.00, 2.00, 0.00, 17.37
- ** No. of Volumes = 89

LOCATION INTERA01 VOLUME 335010.000 3205500.000 2.00 LOCATION INTERA02 VOLUME 335045.000 3205500.000 2.00 LOCATION INTERA03 VOLUME 335080.000 3205500.000 2.00 LOCATION INTERA04 VOLUME 335117.363 3205489.221 2.00 LOCATION INTERA05 VOLUME 335154.029 3205474.776 2.00 LOCATION INTERA06 VOLUME 335190.696 3205460.332 2.00 LOCATION INTERA07 VOLUME 335227.363 3205445.887 2.00 LOCATION INTERA08 VOLUME 335264.029 3205431.443 2.00 LOCATION INTERA09 VOLUME 335300.696 3205416.999 2.00 LOCATION INTERA10 VOLUME 335337.363 3205402.554 2.00 LOCATION INTERA11 VOLUME 335374.029 3205388.110 2.00 LOCATION INTERA12 VOLUME 335410.696 3205373.665 2.00 LOCATION INTERA13 VOLUME 335419.512 3205342.665 2.00 LOCATION INTERA14 VOLUME 335418.845 3205305.332 2.00 LOCATION INTERA15 VOLUME 335418.179 3205267.998 2.00 LOCATION INTERA16 VOLUME 335417.512 3205230.665 2.00 LOCATION INTERA17 VOLUME 335416.845 3205193.332 2.00 LOCATION INTERA18 VOLUME 335416.179 3205155.998 2.00 LOCATION INTERA19 VOLUME 335415.512 3205118.665 2.00 LOCATION INTERA20 VOLUME 335414.845 3205081.332 2.00 LOCATION INTERA21 VOLUME 335414.179 3205043.998 2.00 LOCATION INTERA22 VOLUME 335413.512 3205006.665 2.00 LOCATION INTERA23 VOLUME 335412.845 3204969.332 2.00 LOCATION INTERA24 VOLUME 335412.179 3204931.998 2.00 LOCATION INTERA25 VOLUME 335411.512 3204894.665 2.00 LOCATION INTERA26 VOLUME 335410.845 3204857.332 2.00 LOCATION INTERA27 VOLUME 335410.179 3204819.998 2.00

- ** End of Line Source
- ** Line Source represented by Separated Volume Sources
- ** LINE Source ID = INTERB (FROM ENTRY ROAD)
- ** DESCRSRC Interior
- ** Length of Side = 20.00
- ** Emission Rate = 10
- ** Vertical Dimension = 4.57
- ** SZINIT = 2.13
- ** Nodes = 2
- ** 335410.00, 3204810.00, 2.00, 2.29, 0.0
- ** 335780.00, 3204740.00, 2.00, 2.29, 18.43
- ** No. of Volumes = 10

LOCATION INTERB01 VOLUME 335419.826 3204808.141 2.00 LOCATION INTERB02 VOLUME 335458.753 3204800.776 2.00 LOCATION INTERB03 VOLUME 335497.681 3204793.412 2.00 LOCATION INTERB04 VOLUME 335536.609 3204786.047 2.00 LOCATION INTERB05 VOLUME 335575.536 3204778.682 2.00 LOCATION INTERB06 VOLUME 335614.464 3204771.318 2.00 LOCATION INTERB07 VOLUME 335653.391 3204763.953 2.00 LOCATION INTERB08 VOLUME 335692.319 3204756.588 2.00 LOCATION INTERB09 VOLUME 335731.247 3204749.224 2.00 LOCATION INTERB10 VOLUME 335770.174 3204741.859 2.00

** End of Line Source

```
LINE Source ID = GYPWALL
  DESCRSRC Perimeter
** Length of Side = 10.00
** Emission Rate = 10
** Vertical Dimension = 6.10
** SZINIT = 2.84
** Nodes = 2
** 334990.00, 3205488.00, 2.00, 3.05, 0.0
** 334990.00, 3205638.00, 2.00, 3.05, 9.30
** No. of Volumes = 8
 LOCATION GYPWAL01 VOLUME 334990.000 3205493.000 2.00
 LOCATION GYPWAL02 VOLUME 334990.000 3205513.000 2.00
 LOCATION GYPWAL03 VOLUME 334990.000 3205533.000 2.00
 LOCATION GYPWAL04 VOLUME 334990.000 3205553.000 2.00
 LOCATION GYPWAL05 VOLUME 334990.000 3205573.000 2.00
 LOCATION GYPWAL06 VOLUME 334990.000 3205593.000 2.00 LOCATION GYPWAL07 VOLUME 334990.000 3205613.000 2.00
 LOCATION GYPWAL08 VOLUME 334990.000 3205633.000 2.00
** End of Line Source
** Background Sources
    Progress Materials, Inc.
**SO LOCATION
                PMINC1 POINT 334000 3204400 1.5
**SO LOCATION
                PMINC2 POINT 334000 3204400 1.5
**SO LOCATION
                PMINC3 POINT
                               334000 3204400 1.5
**SO LOCATION
                PMINC4 POINT
                               334000 3204400 1.5
**SO LOCATION
                PMINC5 POINT
                               334000 3204400 1.5
**SO LOCATION
                PMINC6 POINT
                               334000 3204400 1.5
               PMINCALL POINT 334000 3204400 1.5
SO LOCATION
    Holcim, Inc.
**SO LOCATION
                HOLCIM1 POINT 334400 3207500 1.5
    Cemex, Inc. - Inglis Mine (was 0750031)
                             POINT 337360 3210440 4.6
 SO LOCATION
                INGMINE1
    SMG, INC.
**SO LOCATION
                SMG1 POINT 347790 3203140 9.1
    Florida Crushed Stone - Brooksville Cement And Power Plants
**SO LOCATION
                FCS1 POINT 361340 3162370 39.6
"SO LOCATION
                FCS2 POINT 361340 3162370 39.6
               FCS4 POINT 361340 3162370 39.6
SO LOCATION
               FCS6 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
                FCS7
                       POINT 361340 3162370 39.6
**SO LOCATION
                FCS8
                       POINT
                              361340 3162370 39.6
                FCS9 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
                FCS10 POINT 361340 3162370 39.6
**SO LOCATION
                FCS11 POINT
                               361340 3162370 39.6
**SO LOCATION
                FCS12 POINT 361340 3162370 39.6
               FCS13 POINT 361340 3162370 39.6
SO LOCATION
**SO LOCATION
                FCS14 POINT 361340 3162370 39.6
                FCS15 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
                FCS17 POINT 361340 3162370 39.6
               FCS18 POINT 361340 3162370 39.6
SO LOCATION
               FCS19 POINT 361340 3162370 39.6
SO LOCATION
SO LOCATION
               FCS20 POINT 361340 3162370 39.6
**SO LOCATION
                FCS21 POINT 361340 3162370 39.6
                FCS22 POINT 361340 3162370 39.6
**SO LOCATION
"SO LOCATION
                FCS23 POINT 361340 3162370 39.6
"SO LOCATION
                FCS24 POINT
                               361340 3162370 39.6
                FCS25 POINT 361340 3162370 39.6
"SO LOCATION
SO LOCATION
               FCS28 POINT 361340 3162370 39.6
                FCS29 POINT 361340 3162370 39.6
FCS30 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
               FCS35 POINT 361340 3162370 39.6
SO LOCATION
"SO LOCATION
                FCS36 POINT 361340 3162370 39.6
"SO LOCATION
                FCS37 POINT 361340 3162370 39.6
**SO LOCATION
                FCS38 POINT 361340 3162370 39.6
                FCS39 POINT 361340 3162370 39.6
 SO LOCATION
  D LOCATION
               FCS40 POINT 361340 3162370 39.6
SO LOCATION
               FCS44 POINT 361340 3162370 39.6
               FCS45 POINT 361340 3162370 39.6
SO LOCATION
**SO LOCATION
                FCS46 POINT 361340 3162370 39.6
                FCS47 POINT 361340 3162370 39.6
**SO LOCATION
```

```
**SO LOCATION FCS48 POINT 361340 3162370 39.6
SO LOCATION FCS49 POINT 361340 3162370 39.6
**SO LOCATION FCS50 POINT 361340 3162370 39.6
**SO LOCATION FCS51 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
                 FCS52 POINT 361340 3162370 39.6
                 FCS53 POINT 361340 3162370 39.6
FCS54 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
SO LOCATION
               FCS55 POINT 361340 3162370 39.6
                 FCS56 POINT 361340 3162370 39.6
**SO LOCATION
**SO LOCATION
                 FCS57 POINT 361340 3162370 39.6
**SO LOCATION
                 FCS58 POINT 361340 3162370 39.6
**SO LOCATION
                 FCS59 POINT 361340 3162370 39.6
SO LOCATION FCS60 POINT 361340 3162370 39.6
**SO LOCATION FCS61 POINT 361340 3162370 39.6
    CEMEX
**SO LOCATION
                 CEMEX2 POINT 357470 3169190 30.5
               CEMEX3 POINT 357470 3169190 30.5
SO LOCATION
SO LOCATION
                CEMEX4 POINT 357470 3169190 30.5
SO LOCATION
               CEMEX5 POINT 357470 3169190 30.5
**SO LOCATION
                 CEMEX6 POINT 357470 3169190 30.5
SO LOCATION CEMEX9 POINT 357470 3169190 30.5
**SO LOCATION
                 CEMEX8 POINT 357470 3169190 30.5
                 CEMEX11 POINT 357470 3169190 30.5
CEMEX12 POINT 357470 3169190 30.5
**SO LOCATION
**SO LOCATION
SO LOCATION
                CEMEX13 POINT 357470 3169190 30.5
                CEMEX14 POINT 357470 3169190 30.5
CEMEX15 POINT 357470 3169190 30.5
SO LOCATION
SO LOCATION
SO LOCATION
                CEMEX16 POINT 357470 3169190 30.5
                 CEMEX17 POINT 357470 3169190 30.5
CEMEX18 POINT 357470 3169190 30.5
**SO LOCATION
**SO LOCATION
**SO LOCATION
                 CEMEX19 POINT 357470 3169190 30.5
                 CEMEX21 POINT 357470 3169190 30.5
CEMEX22 POINT 357470 3169190 30.5
**SO LOCATION
**SO LOCATION
SO LOCATION
                CEMEX23 POINT 357470 3169190 30.5
                 CEMEX24 POINT 357470 3169190 30.5
CEMEX25 POINT 357470 3169190 30.5
 SO LOCATION
**SO LOCATION
SO LOCATION
                CEMEX26 POINT 357470 3169190 30.5
SO LOCATION
                CEMEX27 POINT 357470 3169190 30.5
** PROP. 0.05 LB/MMBTU X 7200= 360 LB/HR PER UNIT
 SRCPARAM U45100 90.7 167.6 328.0 15.3 9.3
   SRCPARAM CT4
                     22.1 135.10 311.0 3.32 65.200
                     22.1 135.10 311.0 3.32 65.200
  SRCPARAM CT5
   SRCPARAM HCT1
                     6.75 16.200 298.0 7.93 10.500
   SRCPARAM HCT2
                      6.75 16.200 298.0 7.93 10.500
   SRCPARAM HCT3
                      6.75 16.200 298.0 7.93 10.500
** SRCPARAM HCT4
                      6.75 16.200 298.0 7.93 10.500
 SRCPARAM HCT1
```

```
0.71 16.2 298.0 7.93 10.5
                  0.71 16.2 298.0 7.93 10.5
SRCPARAM HCT2
SRCPARAM HCT3
                  0.71 16.2 298.0 7.93 10.5
SRCPARAM HCT4
                  0.71 16.2 298.0 7.93 10.5
SRCPARAM CTWRPORT 0.268 6.71 333.0 21.0 55.4
```

SRCPARAM UNIT1 59.1 152.1 417.0 40.5 4.57 SRCPARAM UNIT2 75.5 153.0 422.0 48.8 4.88

SRCPARAM FAT1 0.44 9.150 298.0 0.10 0.240 SRCPARAM FAS1&2 0.08 22.90 298.0 0.10 0.460 SRCPARAM FAT2A 0.28 9.150 298.0 0.10 0.250 SRCPARAM FAT2B 0.28 9.150 298.0 0.10 0.250 SRCPARAM BAS12 1.64 23.80 298.0 0.10 0.240

SRCPARAM CBO 0.161 28.400 298.150 0.01000 0.396

SRCPARAM VOLA 0.122 7.50 3.488 4.650 SRCPARAM VOLB 0.010 7.50 3.488 4.650 SRCPARAM VOLC 0.078 7.50 3.488 4.650 SRCPARAM VOLD 0.010 7.50 3.488 4.650 SRCPARAM VOLE 0.025 7.50 3.488 4.650 SRCPARAM VOLF 0.018 7.50 3.488 4.650 SRCPARAM VOLG 0.010 7.50 3.488 4.650 SRCPARAM VOLH 0.010 7.50 3.488 4.650 SRCPARAM VOLI 0.010 7.50 3.488 4.650 SRCPARAM VOLM 0.008 7.50 3.488 4.650 SRCPARAM VOLP12 0.011 7.50 3.488 4.650 SRCPARAM VOLRAIL 0.092 7.50 3.488 4.650 SRCPARAM VOLC45 0.038 7.50 3.488 4.650 SRCPARAM VOLP45 0.012 7.50 3.488 4.650

** PILE TRANSFERS & PILE TRAFFIC

** PILE TRAFFIC = 0.127 G/S SPLIT BETWEEN PILE 1&2 PILE 4&5

SRCPARAM PIL12TR 0.063 6.100 66.209 2.800 SRCPARAM PIL45TR 0.141 6.100 79.791 2.800

** WIND EROSION SRCPARAM PIL12 0.142 3.05 66.209 2.84 SRCPARAM PIL45 0.205 3.05 79.791 2.84 SRCPARAM PILGYP 0.050 5.60 42.5 5.25

** NEW LIM1234 VERTICAL RELEASE SRCPARAM LIM1234 0.24 13.70 298.0 16.2 0.30 SRCPARAM LIMSILO 0.14 41.80 298.0 11.2 0.25

** INCLUDES FLYASH TRUCKS FROM UNITS 1&2

** W/O FLYASH PM= 0.00203

** LINE Source ID = ENTRY SRCPARAM ENTRY001 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY002 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY003 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY004 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY005 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY006 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY007 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY008 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY009 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY010 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY011 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY012 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY013 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY014 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY015 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY016 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY017 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY018 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY019 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY020 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY021 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY022 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY023 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY024 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY025 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY026 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY027 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY028 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY029 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY030 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY031 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY032 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY033 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY034 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY035 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY036 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY037 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY038 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY039 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY040 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY041 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY042 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY043 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY044 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY045 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY046 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY047 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY048 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY049 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY050 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY051 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY052 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY053 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY054 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY055 0.00226 3.05 9.26 2.84 \$RCPARAM ENTRY056 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY057 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY058 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY059 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY060 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY061 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY062 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY063 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY064 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY065 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY066 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY067 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY068 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY069 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY070 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY071 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY072 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY073 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY074 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY075 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY076 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY077 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY078 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY079 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY080 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY081 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY082 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY083 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY084 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY085 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY086 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY087 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY088 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY089 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY090 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY091 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY092 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY093 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY094 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY095 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY096 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY097 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY098 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY099 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY100 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY101 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY102 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY103 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY104 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY105 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY106 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY107 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY108 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY109 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY110 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY111 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY112 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY113 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY114 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY115 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY116 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY117 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY118 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY119 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY120 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY121 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY122 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY123 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY124 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY125 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY126 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY127 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY128 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY129 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY130 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY131 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY132 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY133 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY134 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY135 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY136 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY137 0,00226 3,05 9,26 2,84 SRCPARAM ENTRY138 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY139 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY140 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY141 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY142 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY143 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY144 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY145 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY146 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY147 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY148 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY149 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY150 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY151 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY152 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY153 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY154 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY155 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY156 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY157 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY158 0,00226 3.05 9.26 2.84 SRCPARAM ENTRY159 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY160 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY161 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY162 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY163 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY164 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY165 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY166 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY167 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY168 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY169 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY170 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY171 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY172 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY173 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY174 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY175 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY176 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY177 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY178 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY179 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY180 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY181 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY182 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY183 0,00226 3,05 9,26 2,84 SRCPARAM ENTRY184 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY185 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY186 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY187 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY188 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY189 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY190 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY191 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY192 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY193 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY194 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY195 0,00226 3,05 9,26 2,84 SRCPARAM ENTRY196 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY197 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY198 0,00226 3,05 9,26 2,84 SRCPARAM ENTRY199 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY200 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY201 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY202 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY203 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY204 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY205 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY206 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY207 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY208 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY209 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY210 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY211 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY212 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY213 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY214 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY215 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY216 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY217 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY218 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY219 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY220 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY221 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY222 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY223 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY224 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY225 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY226 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY227 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY228 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY229 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY230 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY231 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY232 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY233 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY234 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY235 0.00226 2.29 9.26 2.13 SRCPARAM ENTRY236 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY237 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY238 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY239 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY240 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY241 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY242 0.00226 3.05 9.26 2.84 SRCPARAM ENTRY243 0.00226 3.05 9.26 2.84

** LINE Source ID = INTERA

SRCPARAM INTERA01 0.00442 3.05 16.28 2.84 SRCPARAM INTERA02 0.00442 3.05 16.28 2.84 SRCPARAM INTERA03 0.00442 3.05 16.28 2.84 SRCPARAM INTERA04 0.00442 3.05 18.33 2.84 SRCPARAM INTERA05 0.00442 3.05 18.33 2.84 SRCPARAM INTERA06 0.00442 3.05 18.33 2.84 SRCPARAM INTERA07 0.00442 3.05 18.33 2.84 SRCPARAM INTERA08 0.00442 3.05 18.33 2.84 SRCPARAM INTERA09 0.00442 3.05 18.33 2.84 SRCPARAM INTERA10 0.00442 3.05 18.33 2.84 SRCPARAM INTERA11 0.00442 3.05 18.33 2.84 SRCPARAM INTERA12 0.00442 3.05 18.33 2.84 SRCPARAM INTERA13 0.00442 3.05 17.37 2.84 SRCPARAM INTERA14 0.00442 3.05 17.37 2.84 SRCPARAM INTERA15 0.00442 3.05 17.37 2.84 SRCPARAM INTERA16 0.00442 3.05 17.37 2.84 SRCPARAM INTERA17 0.00442 3.05 17.37 2.84 SRCPARAM INTERA18 0.00442 3.05 17.37 2.84 SRCPARAM INTERA19 0.00442 3.05 17.37 2.84 SRCPARAM INTERA20 0.00442 3.05 17.37 2.84 SRCPARAM INTERA21 0.00442 3.05 17.37 2.84 SRCPARAM INTERA22 0.00442 3.05 17.37 2.84 SRCPARAM INTERA23 0.00442 3.05 17.37 2.84 SRCPARAM INTERA24 0.00442 3.05 17.37 2.84 SRCPARAM INTERA25 0.00442 3.05 17.37 2.84 SRCPARAM INTERA26 0.00442 3.05 17.37 2.84 SRCPARAM INTERA27 0.00442 3.05 17.37 2.84

- ** INCLUDES FLYASH TRUCKS FROM UNITS 1&2
- " W/O FLYASH PM= 0.00397
- " LINE Source ID ≈ INTERB

SRCPARAM INTERB01 0.00420 3.05 18.43 2.84 SRCPARAM INTERB02 0.00420 3.05 18.43 2.84 SRCPARAM INTERB03 0.00420 3.05 18.43 2.84 SRCPARAM INTERB04 0.00420 3.05 18.43 2.84 SRCPARAM INTERB05 0.00420 3.05 18.43 2.84 SRCPARAM INTERB06 0.00420 3.05 18.43 2.84 SRCPARAM INTERB07 0.00420 3.05 18.43 2.84 SRCPARAM INTERB08 0.00420 3.05 18.43 2.84 SRCPARAM INTERB08 0.00420 3.05 18.43 2.84 SRCPARAM INTERB09 0.00420 3.05 18.43 2.84 SRCPARAM INTERB09 0.00420 3.05 18.43 2.84 SRCPARAM INTERB09 0.00420 3.05 18.43 2.84

** LINE Source ID = GYPWALL SRCPARAM GYPWAL01 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL02 0.00093 3.05 9.30 2.84

```
SRCPARAM GYPWAL03 0.00093 3.05 9.30 2.84
 SRCPARAM GYPWAL04 0.00093 3.05 9.30 2.84
 SRCPARAM GYPWAL05 0.00093 3.05 9.30 2.84
 SRCPARAM GYPWAL06 0.00093 3.05 9.30 2.84
 SRCPARAM GYPWAL07 0.00093 3.05 9.30 2.84
 SRCPARAM GYPWAL08 0.00093 3.05 9.30 2.84
** Background Sources
                        Т
                             V
                                  D
               Q
                   н
********** SRCID (g/s) (m) (K) (m/s) (m)
    Progress Materials, Inc.
**SO SRCPARAM
                 PMINC1 0.019 18.3
                                          23.29 0.15
                                    298
"SO SRCPARAM
                 PMINC2 0.010
                                          11.64 0.15
                              18.3
                                    298
**SO SRCPARAM
                 PMINC3 0.010 18.3
                                    298
                                         11.64
                                               0.15
**SO SRCPARAM
                 PMINC4 0.010
                                    298
                                          11.64
                              18.3
                                               0.15
**SO SRCPARAM
                 PMINC5 0.021 18.3
                                    298
                                         25.87 0.15
**SO SRCPARAM
                PMINC6 0.135 18.3
                                    298
                                         11.64 0.15
SO SRCPARAM PMINCALL 0.21 18.3
                                    298
                                         11.64 0.15
    Holcim, Inc.
**SO SRCPARAM
                 HOLCIM1 0.403 22.86 298
                                         7.01 0.91
    Cemex, Inc. - Inglis Mine (was 0750031)
**SO SRCPARAM
                 INGMINE1
                             0.469 18.29 298
                                               6.40 1.19
    SMG, INC.
**SO SRCPARAM
                 SMG1 2.520 0.00 298
                                        0.00
    Florida Crushed Stone - Brooksville Cement And Power Plants
SO SRCPARAM
               FCS13 0.643 21.34 372
                                        10.06 1.52
SO SRCPARAM
               FCS18 3.150 97.54
                                  422
                                        21.21
                                              4.88
SO SRCPARAM
                                        14.33 4.88
               FCS20 6.237 91.44 378
SO SRCPARAM
               FCS28 1.620 37.49
                                  344
                                        10.06 2.62
SO SRCPARAM
               FCS44 3.629 97.54 561
                                        12.22 4.27
SO SRCPARAM
               FCS55 1.159 39.62 344
                                        14.78 2.29
 Units 6,10,15,22,25,29,36,45,50,& 57 modeled together using FCS45 parameters
 SO SRCPARAM
                                         8.84 1.07
                FCS6 0.277 73.15 355
*SO SRCPARAM
                 FCS10 0.038 60.96
                                   366
                                         7.32 0.46
**SO SRCPARAM
                 FCS15 0.126 60.96 355
                                         11.98 0.61
**SO SRCPARAM
                 FCS22 0.086 60.96
                                   355
                                         8.56 0.61
**SO SRCPARAM
                 FCS25
                        0.213 66.75
                                    355
                                          10.09
                                               1.01
**SO SRCPARAM
                 FCS29 0.178 61.87
                                    355
                                          10.58 0.64
**SO SRCPARAM
                 FCS36 0.178 60.96
                                   355
                                         31.61 0.46
**SO SRCPARAM
                 FCS45 0.144 59.13
                                   366
                                         8.96 0.52
**SO SRCPARAM
                 FCS50 0.032 61.87 389
                                         10.12 0.49
**SO SRCPARAM
                FCS57 0.105 61.87 355
                                         9.36 0.49
SO SRCPARAM FCS45 1.377 59.13 366
                                        8.96 0.52
**Units 1,2,11,12,38,49,& 52 modeled together using FCS49 parameters
**SO SRCPARAM
                 FCS1
                       0.088 38.10 298
                                         10.97 0.61
**SO SRCPARAM
                 FCS2
                       0.050 38.10 298
                                         6.71
**SO SRCPARAM
                 FCS11 0.076 41.15 366
                                         14.33 0.46
**SO SRCPARAM
                 FCS12 0.151 41.15 311
                                         9.14 0.76
**SO SRCPARAM
                 FCS38 0.097 45.72 311
                                          10.03 1.07
**SO SRCPARAM
                 FCS49 0.040 36.58 308
                                         10.12 0.49
**SO SRCPARAM
                 FCS52 0.291 39.62 373
                                         14.14 1.22
SO SRCPARAM FCS49 0.793 36.58 308
                                        10.12 0.49
**Units 4,23,& 24 modeled together using FCS4 parameters
**SO SRCPARAM FCS4 0.025 21.34 355
**SO SRCPARAM
                 FCS23 0.014 22.86 298
                                        8.53 0.24
**SO SRCPARAM
                 FCS24 0.130 24.38 298
                                         17.07 0.46
SO SRCPARAM
               FCS4 0.169 21.34 355
**Units 35 & 39 modeled together using FCS35 parameters
**SO SRCPARAM FCS35 0.139 30.48 294 10.88 0.76
**SO SRCPARAM
                FCS39 0.146 30.48 322 6.52 0.76
SO SRCPARAM
               FCS35 0.285 30.48 294
                                        10.88 0.76
**Units 7,14,17,21,30,53,54,56,60,& 61 modeled together using FCS60 parameters
 SO SRCPARAM
                 FCS7 0.101 15.24 366
                                         9.69 0.61
 SO SRCPARAM
                 FCS14 0.050 15.24
                                          9.14 0.46
                                   344
 *SO SRCPARAM
                 FCS17 0.063 15.54
                                   355
                                          10.36 0.46
**SO SRCPARAM
                 FCS21 0.163
                              15.24
                                    344
                                          28.65 0.46
"SO SRCPARAM
                              12.19
                 FCS30 0.238
                                    339
                                          10.21
                                               1.19
```

**SO SRCPARAM

FCS53 0.051 14.02

366

11.98 0.55

```
**SO SRCPARAM
                 FCS54 0.051 14.02 366
                                          11.98 0.55
**SO SRCPARAM
                 FCS56 0.051
                             14.02
                                   366
                                          11.98 0.55
"SO SRCPARAM
                 FCS60 0.202 12.19
                                    339
                                          9.36 1.19
"SO SRCPARAM
                FCS61 0.018 12.19 339
                                          10.70 0.34
SO SRCPARAM
               FCS60 0.988 12.19 339
                                        9.36
                                             1.19
**Units 19,37,46,47,48,58,& 59 modeled together using FCS19 parameters
**SO SRCPARAM
                FCS19 0.146 8.84
                                   303
                                         14.33 0.61
**SO SRCPARAM
                 FCS37 0.097 9.14
                                   339
                                         4.85
                                              0.61
**SO SRCPARAM
                 FCS46 0.033 9.14
                                   355
                                         9.91
                                              0.43
**SO SRCPARAM
                 FCS47
                       0.033 9.14
                                   355
                                         9.91
                                              0.43
"SO SRCPARAM
                 FCS48 0.024 9.75
                                   389
                                         7.59
                                              0.49
                 FCS58 0.026 9.14
**SO SRCPARAM
                                   355
                                         9.91
                                              0.43
**SO SRCPARAM
                FCS59 0.026 9.14
                                   355
                                         9.91
                                              0.43
SO SRCPARAM
               FCS19 0.385 8.84 303
                                        14.33 0.61
**Units 8,9,40,& 51 modeled together using FCS40 parameters
"SO SRCPARAM
                 FCS8 0.088 4.57 294
                                         9 45 0 61
"SO SRCPARAM
                                              0.30
                 FCS9
                       0.083 3.05
                                   394
                                         32.98
**SO SRCPARAM
                 FCS40 0.028 4.57
                                   298
                                         4.97
                                              0.46
"SO SRCPARAM
                 FCS51 0.105 4.57
                                   355
                                         14.66 0.70
               FCS40 0.304 4.57 298
SO SRCPARAM
                                        4.97
                                             0.46
    CEMEX
SO SRCPARAM
                CEMEX3 3.742 45.72 414
                                          10.36 3.96
SO SRCPARAM
                CEMEX4 1.877
                              15.24 444
                                          8.84 3.05
SO SRCPARAM
                CEMEX5 4.536 25.30
                                    364
                                          157.89 0.91
SO SRCPARAM
                CEMEX9 4.542 42.98
                                    303
                                          10.67 0.91
SO SRCPARAM
                CEMEX13 1.701
                              27.43
                                    328
                                          19.51 0.43
SO SRCPARAM
                CEMEX14 3.742
                              32.00
                                    394
                                          9.75 4.27
SO SRCPARAM
                CEMEX15 1.877
                              15.24
                                    478
                                          21.64 2.29
SO SRCPARAM
                CEMEX27 1.600 14.63
                                    255
                                          20.45 0.50
**Units 6,8,12,21,22,& 16 are modeled together using CEMEX16 parameters
"SO SRCPARAM
                 CEMEX6 0.183 44.20 299
                                           48.46 0.61
"SO SRCPARAM
                 CEMEX8 0.471 65.84 303
                                           24.08 0.61
"SO SRCPARAM
                 CEMEX12 0.247 67.06
                                     366
                                           18.90 0.85
"SO SRCPARAM
                 CEMEX16 0.183 45.72
                                      358
                                           7.01 0.85
**SO SRCPARAM
                 CEMEX21 0.126 64.01 336
                                            15.24 0.67
**SO SRCPARAM
                 CEMEX22 0.126 64.01 339
                                           15.54 0.46
                CEMEX16 1.336 45.72 358
SO SRCPARAM
                                          7.01 0.85
**Units 2,11,17,18,19,23,& 24 are modeled together using CEMEX23 parameters
**SO SRCPARAM
                 CEMEX2 0.129 22.86 303
                                           7.01
                                                0.91
"SO SRCPARAM
                 CEMEX11 0.271
                                24.38
                                      298
                                            15.24 0.76
"SO SRCPARAM
                 CEMEX17 0.064 22.86
                                      339
                                            19.20 0.30
"SO SRCPARAM
                                            7.01 0.85
                 CEMEX18 0.183 22.86
                                      333
"SO SRCPARAM
                 CEMEX19 0.504 22.86
                                     370
                                            18.90 1.01
**SO SRCPARAM
                 CEMEX23 0.063 21.34
                                     339
                                            15.54 0.46
"SO SRCPARAM
                 CEMEX24 0.076 24.69 315
                                           11.89 0.52
SO SRCPARAM
                CEMEX23 1.29 21.34 339 15.54 0.46
**Units 25 & 26 are modeled together using CEMEX26 parameters
**SO SRCPARAM
                 CEMEX25 0.001 9.75 294 24.08 0.61
**SO SRCPARAM
                 CEMEX26 0.076 7.32 319
                                          6.10 0.61
SO SRCPARAM CEMEX26 0.077 7.32 319
                                          6.10 0.61
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                     87.60 87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45100
                     38.00
                           38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     0.00
                           0.00 0.00 0.00 0.00 87.60
SO BUILDHGT U45100
                                38.00 38.00 38.00 38.00
                     38.00
                           38.00
                     38.00
                           38.00 38.00 38.00 38.00
SO BUILDHGT U45100
SO BUILDWID U45100
                     44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100
                    148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                           0.00 0.00 0.00 0.00 147.63
                     0.00
SO BUILDWID U45100
                     39.28
                           33.70
                                 27.10 33.70 39.28 43.67
SO BUILDWID U45100
                     46.73
                           48.37
                                 48.54 47.23 44.49
SO BUILDLEN U45100
                           39.25
                                 43.64 46.71 126.46 117.84
                     33.67
SO BUILDLEN U45100
                    100.22
                           79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45100
                     0.00
                          0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100
                     47.23 44.49
                                40.40 44.49 47.23 48.54
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
           U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
 SO XBADJ
 SO XBADJ
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
 SO XBADJ U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
```

```
SO XBADJ
           U45100
                    0.00 0.00
                                0.00 0.00 0.00 172.04
SO XBADJ
           U45100
                                23.30 24.68 25.31 25.16
                    9.22 16.51
 O XBADJ
           U45100
                    24.26
                          22.62
                                20.29
                                     17.34
                                            13.87
                                                   0.00
 O YBADJ
           U45100
                           7.68 -10.83 -29.01
                    25.96
                                            76.77
                                                   90.51
SO YBADJ
           U45100
                           6.06 -37.10 -79.12
                    49.03
                                             7.23 -1.38
SO YBADJ
           U45100
                    -9.94 -18.20 -25.91 -32.83 -38.75 0.00
SO YBADJ
           U45100
                    0.00
                          0.00 0.00 0.00 0.00 -90.51
SO YBADJ
           U45100
                   -36.98
                          -30.72 -23.52 -15.61 -7.23 1.38
SO YBADJ
           U45100
                    9.94 18.20 25.91 32.83 38.75
                                                  0.00
```

SO BUILDHGT UNIT1 SO BUILDWID UNIT1 SO BUILDLEN UNIT1 SO XBADJ UNIT1 SO YBADJ UNIT1

UNIT1

UNIT1

UNIT1

UNIT₁

UNIT1

SO YBADJ

SO YBADJ

O YBADJ

O YBADJ

SO YBADJ

60.40 60.40 60.40 60.40 60.40 0.00 0.00 0.00 0.00 0.00 12.20 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 0.00 0.00 0.00 0.00 0.00 12.20 60.40 60.40 60.40 60.40 60.40 60.40 60.40 98.57 101.00 100.36 96.68 90.05 0.00 0.00 0.00 0.00 0.00 42.31 79.92 96.10 99.92 100.69 98.41 93.14 89.37 101.00 100.36 96.68 90.05 0.00 98 57 0.00 0.00 0.00 0.00 42.31 79.92 96.10 99.92 100.69 98.41 93.14 89.37 68.04 79.92 89.37 96.10 0.00 54.10 0.00 0.00 0.00 0.00 57.88 100.36 80.69 68.88 54.97 41.31 96.68 90.05 68.04 79.92 89.37 96.10 0.00 54.10 0.00 0.00 0.00 0.00 57.88 100.36 96.68 90.05 80.69 68.88 54.97 41.31 48.68 34.97 20.19 4.80 -10.74 0.00 0.00 0.00 0.00 0.00 -81.32 -105.17 -112.58 -116.57 -117.02 -113.91 -107.35 -99.43 -102.78 -103.01 -100.11 -94.17 -85.36 0.00 0.00 0.00 0.00 0.00 23.44 4.80 15.90 26.52 36.33 45.03 52.37 58.12 44.06 54.98 64.24 71.54 0.00 31.79 0.00 0.00 0.00 0.00 16.81 60.15 49.48 37.31 24.01 9.98 -4.36 -18.56 -31.79 -44.06 -54.98 -64.24 -71.54 0.00 0.00 0.00 0.00 0.00 -16.81 -60.15 -49.48 -37.31 -24.01 -9.98 4.36 18.56

SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 12.20 12.20 12.20 SO BUILDHGT UNIT2 12.20 12.20 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT UNIT2 0.00 12 20 60.40 60.40 60.40 60.40 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 34.33 41.56 47.53 SO BUILDWID UNIT2 55.00 99.92 100.69 98.41 93.14 52.06 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 0.00 0.00 0.00 SO BUILDWID UNIT2 99.92 100.69 0.00 56.66 98.41 93.14 SO BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN UNIT2 100.69 0.00 0.00 53.70 55.84 56.28 SO BUILDLEN UNIT2 52.06 68.88 55.00 54.97 41.31 80.69 SO BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN UNIT2 100.69 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN UNIT2 0.00 53.45 80.69 68.88 54.97 41.31 SO XBADJ UNIT2 58.90 55.08 49.60 42.61 34.32 24.99 SO XBADJ UNIT2 14.90 0.00 0.00 -84.75 -88.92 -90.39 UNIT2 -89.10 -85.12 -87.61 -93.80 -97.13 -99.43 SO XBADJ SO XBADJ UNIT2 -112.99 -123.13 -129.52 -131.98 -130.42 -124.91 SO XBADJ UNIT2 -115.60 0.00 0.00 0.00 0.00 0.00 UNIT2 6.92 24.92 42.16 58.12 SO XBADJ 0.00 -10.77 UNIT2 SO YBADJ -26.13 -11.21 4.04 19.18 33.73 47.26 UNIT2 59.36 0.00 0.00 22.92 12.51 SO YBADJ 1.73 SO YBADJ UNIT2 -9.10 -19.66 74.95 65.25 53.57 40.26 SO YBADJ UNIT2 26.13 11.21 -4.04 -19.18 -33.73 -47.26 UNIT2 0.00 0.00 0.00 0.00 SO YBADJ -59.36 0.00 SO YBADJ UNIT2 0.00 -33.43 -74.95 -65.25 -53.57 -40.26

O BUILDHGT HCT1 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT1 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT1 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT1 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT1 10.00 10.00 10.00 10.00 10.00 10.00

```
SO BUILDHGT HCT1
                      10.00 10.00 10.00 10.00 10.00 10.00
SO BUILDWID HCT1
                     787.80 764.15 717.29 648.63 560.26 454.88
SO BUILDWID HCT1
                     335.67 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT1
                     477.17 579.39 664.01 728.46 770.77 789.66
SO BUILDWID HCT1
                     787.80 764.15 717.29 648.63 560.26 454.88
SO BUILDWID HCT1
                     335.66 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT1
                     477.17 579.39 664.01 728.46 770.77 789.66
                      98.02 232.77 360.44 477.17 579.39 664.01
SO BUILDLEN HCT1
SO BUILDLEN HCT1
                     728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT1
                     648.63 560.26 454.88 335.67 206.26 70.58
SO BUILDLEN HCT1
                      98.02 232.77 360.44 477.17 579.39 664.01
SO BUILDLEN HCT1
                     728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT1
                     648.63 560.26 454.88 335.66 206.26 70.58
SO XBADJ HCT1
                    -14.85 -28.38 -41.04 -52.45 -62.28 -70.20
SO XBADJ
           HCT1
                    -76.00 -79.49 -80.56 -80.80 -79.67 -76.11
SO XBADJ
           HCT1
                    -70.24 -62.24 -52.35 -40.86 -28.14 -14.56
SO XBADJ
           HCT1
                    -83.17 -204.39 -319.40 -424.71 -517.12 -593.81
SO XBADJ
           HCT1
                    -652.46 -691.28 -709.10 -707.00 -684.49 -641.18
SO XBADJ
           HCT1
                   -578.39 -498.02 -402.53 -294.80 -178.12 -56.02
SO YBADJ
           HCT1
                   -313.10 -302.41 -282.53 -254.07 -217.89 -175.09
SO YBADJ
           HCT1
                   -126.97 -74.99 -20.73 34.16 88.01 139.18
SO YBADJ
           HCT1
                    186.13 227.42 261.80 288.23 305.90 314.27
                    313.10 302.41 282.53 254.07 217.89 175.09
SO YBADJ
           HCT1
SO YBADJ
           HCT1
                    126.97 74.99 20.73 -34.16 -88.01 -139.18
SO YBADJ
           HCT1
                   -186.13 -227.42 -261.80 -288.23 -305.90 -314.27
                      10.00 10.00 10.00 10.00 10.00 10.00
SO BUILDHGT HCT2
SO BUILDHGT HCT2
                      10.00
                            10.00 10.00 10.00
                                               10.00 10.00
SO BUILDHGT HCT2
                      10.00
                             10.00
                                   10.00
                                         10.00
                                                10.00
                                                      10.00
SO BUILDHGT HCT2
                      10.00
                             10.00
                                   10.00
                                         10.00
                                                10.00
                                                      10.00
SO BUILDHGT HCT2
                      10.00
                             10.00
                                   10.00
                                         10.00
                                               10.00
                                                      10.00
SO BUILDHGT HCT2
                      10.00
                            10.00
                                   10.00
                                         10.00
                                               10.00
                                                      10.00
SO BUILDWID HCT2
                      787.80 764.15 717.29 648.63 560.26 454.88
SO BUILDWID HCT2
                      335.67 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT2
                      477.17 579.39 664.01 728.46 770.77 789.66
SO BUILDWID HCT2
                      787.80 764.15 717.29 648.63 560.26 454.88
                     335.66 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT2
SO BUILDWID HCT2
                      477.17 579.39 664.01 728.46 770.77 789.66
                      98.02 232.77 360.44 477.17 579.39 664.01
SO BUILDLEN HCT2
SO BUILDLEN HCT2
                      728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT2
                      648.63 560.26 454.88 335.67 206.26 70.58
SO BUILDLEN HCT2
                      98.02 232.77 360.44 477.17 579.39 664.01
SO BUILDLEN HCT2
                      728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT2
                      648.63 560.26 454.88 335.66 206.26 70.58
SO XBADJ
           HCT2
                    -34.21 -79.37 -122.12 -161.16 -195.31 -223.52
SO XBADJ
            HCT2
                    -244.93 -258.91 -265.02 -264.69 -257.40 -242.29
SO XBADJ
            HCT2
                   -219.82 -190.67 -155.72 -116.05 -72.84 -27.43
SO XBADJ
            HCT2
                    -63.81 -153.40 -238.32 -316.00 -384.09 -440.50
SO XBADJ
            HCT2
                   -483.52 -511.86 -524.64 -523.10 -506.75 -475.00
SO XBADJ
            HCT2
                    -428.81 -369.60 -299.15 -219.62 -133.41 -43.15
                    -129.21 -124.67 -116.35 -104.50 -89.46 -71.71
SO YBADJ
            HCT2
SO YBADJ
            HCT2
                    -51.79 -30.28 -7.86 14.80 37.01 58.10
SO YBADJ
            HCT2
                     77.42 94.39 108.49 119.29 126.48 129.81
SO YBADJ
            HCT2
                    129.21 124.67 116.35 104.50 89.46 71.71
SO YBADJ
            HCT2
                     51.79 30.28 7.86 -14.80 -37.01 -58.10
SO YBADJ
           HCT2
                    -77.42 -94.39 -108.49 -119.29 -126.48 -129.81
SO BUILDHGT HCT3
                       10.00 10.00 10.00 10.00 10.00 10.00
SO BUILDHGT HCT3
                       10.00
                             10.00
                                   10.00
                                          10.00
                                                10.00
                                                      10.00
SO BUILDHGT HCT3
                       10.00
                             10.00
                                   10.00
                                          10.00
                                                10.00
                                                      10.00
SO BUILDHGT HCT3
                       10.00
                             10.00
                                   10.00
                                          10.00
                                                10.00
                                                      10.00
SO BUILDHGT HCT3
                             10.00
                                          10.00
                                                10.00
                       10.00
                                   10.00
                                                      10.00
SO BUILDHGT HCT3
                       10.00
                             10.00
                                   10.00 10.00
                                                10.00 10.00
SO BUILDWID HCT3
                      787.80
                            764.15 717.29 648.63 560.26 454.88
SO BUILDWID HCT3
                      335.67 206.26 70.58 98.02 232.77 360.44
 SO BUILDWID HCT3
                      477.17 579.39 664.01 728.46 770.77 789.66
 SO BUILDWID HCT3
                      787.80 764.15 717.29 648.63 560.26 454.88
                      335.66 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT3
 SO BUILDWID HCT3
                      477.17 579.39 664.01 728.46 770.77 789.66
 SO BUILDLEN HCT3
                      98.02 232.77 360.44 477.17 579.39 664.01
 SO BUILDLEN HCT3
                      728.46 770.77 789.66 787.80 764.15 717.29
                      648.63 560.26 454.88 335.67 206.26 70.58
 SO BUILDLEN HCT3
                      98.02 232.77 360.44 477.17 579.39 664.01
 SO BUILDLEN HCT3
 SO BUILDLEN HCT3
                      728.46 770.77 789.66 787.80 764.15 717.29
                      648.63 560.26 454.88 335.66 206.26 70.58
 SO BUILDLEN HCT3
                     -56.90 -147.25 -233.11 -311.90 -381.21 -438.94
 SO XBADJ HCT3
```

```
-483.33 -513.03 -527.15 -526.86 -511.65 -480.89
SO XBADJ
           НСТ3
SO XBADJ
           НСТ3
                   -435.52 -376.92 -306.86 -227.48 -141.19 -50.61
 O XBADJ
           НСТ3
                    -41.12 -85.52 -127.33 -165.27 -198.18 -225.08
 O XBADJ
           НСТ3
                   -245.13 -257.74 -262.51 -260.93 -252.50 -236.39
SO XBADJ
           НСТ3
                   -213.11 -183.35 -148.01 -108.18 -65.07 -19.97
SO YBADJ
           НСТ3
                    132.97 129.58 122.25 111.21 96.79 79.42
                    59.65 38.06 15.32 -7.89 -30.86 -52.89
SO YBADJ
           НСТ3
SO YBADJ
           НСТ3
                    -73.32 -91.51 -106.93 -119.10 -127.65 -132.32
SO YBADJ
           НСТ3
                   -132.97 -129.58 -122.25 -111.21 -96.79 -79.42
SO YBADJ
           НСТ3
                    -59.65 -38.06 -15.32 7.89 30.86 52.89
SO YBADJ
           НСТ3
                    73.32 91.51 106.93 119.10 127.65 132.32
SO BUILDHGT HCT4
                      10.00 10.00 10.00 10.00 10.00 10.00
SO BUILDHGT HCT4
                      10.00 10.00
                                  10.00 10.00 10.00 10.00
SO BUILDHGT HCT4
                      10.00
                            10.00
                                   10.00
                                         10.00
                                               10.00
                                                      10.00
SO BUILDHGT HCT4
                      10.00 10.00
                                  10.00
                                         10.00
                                               10.00 10.00
SO BUILDHGT HCT4
                      10.00 10.00
                                  10.00 10.00
                                              10.00 10.00
SO BUILDHGT HCT4
                      10.00
                            10.00
                                  10.00 10.00
                                               10.00
                                                     10.00
SO BUILDWID HCT4
                     787.80 764,15 717.29 648.63 560,26 454.88
SO BUILDWID HCT4
                     335.67 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT4
                     477.17 579.39 664.01 728.46 770.77 789.66
SO BUILDWID HCT4
                     787.80 764.15 717.29 648.63 560.26 454.88
SO BUILDWID HCT4
                     335.66 206.26 70.58 98.02 232.77 360.44
SO BUILDWID HCT4
                     477.17 579.39 664.01 728.46 770.77 789.66
SO BUILDLEN HCT4
                     98.02 232.77 360.44 477.17 579.39 664.01
SO BUILDLEN HCT4
                     728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT4
                     648.63 560.26 454.88 335.67 206.26 70.58
SO BUILDLEN HCT4
                     98.02 232.77 360.44 477.17 579.39 664.01
                     728.46 770.77 789.66 787.80 764.15 717.29
SO BUILDLEN HCT4
SO BUILDLEN HCT4
                     648.63 560.26 454.88 335.66 206.26 70.58
SO XBADJ
           HCT4
                    -77.12 -198.81 -314.45 -420.54 -513.86 -591.56
SO XBADJ
           HCT4
                   -651.29 -691.22 -710.16 -709.13 -687.64 -645.25
SO XBADJ
                   -583.26 -503.55 -408.53 -301.11 -184.53 -62.35
           HCT4
SO XBADJ
           HCT4
                    -20.90 -33.96 -45.99 -56.62 -65.53 -72.45
SO XBADJ
           HCT4
                    -77.17 -79.55 -79.50 -78.66 -76.51 -72.03
SO XBADJ
           HCT4
                    -65.37 -56.72 -46.34 -34.56 -21.73 -8.23
 D YBADJ
           HCT4
                    315.24 305.57 286.61 258.95 223.42 181.10
 O YBADJ
           HCT4
                    133.27 81.40 27.06 -28.11 -82.42 -134.23
SO YBADJ
           HCT4
                   -181.96 -224.16 -259.55 -287.06 -305.84 -315.33
SO YBADJ
           HCT4
                   -315.24 -305.57 -286.61 -258.95 -223.42 -181.10
SO YBADJ
           HCT4
                   -133.27 -81.40 -27.06 28.11 82.42 134.23
                    181.96 224.16 259.55 287.06 305.84 315.33
SO YBADJ
           HCT4
SO BUILDHGT FAT1
                      60.40 60.40 60.40 60.40 60.40 60.40
SO BUILDHGT FAT1
                      60.40 60.40 12.20 12.20 60.40 60.40
SO BUILDHGT FAT1
                      60.40 60.40
                                  60.40 60.40
                                               60.40
                                                     60.40
SO BUILDHGT FAT1
                      60.40
                            60.40
                                  60.40
                                        60.40
                                               60.40
                                                     60.40
SO BUILDHGT FAT1
                      60.40
                            60.40
                                  12.20
                                        12.20
                                               60.40 60.40
SO BUILDHGT FAT1
                      60.40 60.40
                                  60.40 60.40
                                               60.40 60.40
SO BUILDWID FAT1
                     98.57 101.00
                                  100.36 96.68 90.05 80.69
SO BUILDWID FAT1
                     68.88 54.98
                                  26.05 34.33 68.04 79.92
SO BUILDWID FAT1
                     89.37 96.10
                                  99.92 100.69
                                               98.41 93.14
SO BUILDWID FAT1
                     98.57
                           101.00
                                  100.36 96.68 90.05 80.69
SO BUILDWID FAT1
                                  26.05 34.33 68.04 79.92
                           54.98
                     68.88
SO BUILDWID FAT1
                     89.37
                           96.10
                                  99.92 100.69
                                              98.41 93.14
SO BUILDLEN FAT1
                     54.10 68.04
                                  79.92
                                        89.37 96.10 99.92
SO BUILDLEN FAT1
                                        53.70 101.00 100.36
                     100.69 98.41
                                  52.11
SO BUILDLEN FAT1
                     96.68 90.05
                                  80.69 68.88 54.97 41.31
SO BUILDLEN FAT1
                     54.10 68.04
                                  79.92 89.37 96.10 99.92
SO BUILDLEN FAT1
                                        53.70 101.00 100.36
                     100.69 98.41
                                  52.11
SO BUILDLEN FAT1
                     96.68 90.05 80.69 68.88 54.97 41.31
SO XBADJ
           FAT1
                    28.85 29.69 29.63 28.67 26.83 24.19
SO XBADJ
           FAT1
                                7.88 -60.59 -10.27 -21.24
                    20.81 16.79
SO XBADJ
           FAT1
                   -31.57 -40.93 -49.06 -55.69 -60.63 -65.64
SO XBADJ
           FAT1
                   -82.94 -97.73 -109.55 -118.04 -122.94 -124.10
SO XBADJ
           FAT1
                   -121.50 -115.20 -59.98 6.88 -90.73 -79.12
SO XBADJ
           FAT1
                   -65.11 -49.12 -31.64 -13.19
                                              5.65 24.33
                    -50.30 -40.23 -28.94 -16.77 -4.09
SO YBADJ
           FAT1
                                                   8 71
SO YBADJ
           FAT1
                    21.25 33.14
                                -0.08 -7.13 63.71 69.59
                    73.35 74.89
SO YBADJ
           FAT1
                                74.15
                                      71.15 66.00 58.84
                                              4.09
SO YBADJ
           FAT1
                    50.30 40.23 28.94
                                       16 77
                                                   -8 71
 O YBADJ
           FAT1
                   -21.25 -33.14
                                0.08
                                       7.13 -63.71 -69.59
           FAT1
                   -73.35 -74.89 -74.15 -71.15 -66.00 -58.84
 O YBADJ
```

SO BUILDHGT FAS1&2 12.20 12.20 0.00 0.00 0.00 0.00 SO BUILDHGT FAS1&2 0.00 12.20 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1 &2 60.40 60.40 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 0.00 12.20 0.00 0.00 0.00 0.00 SO BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 SO BUILDWID FAS1&2 57.84 57.89 57.90 57.89 57.84 57.78 SO BUILDWID FAS1&2 71.33 0.00 0.00 71.33 0.00 0.00 SO BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 SO BUILDWID FAS1&2 68.88 54.98 57.90 57.89 57.84 57.78 SO BUILDWID FAS1&2 0.00 71 33 0.00 0.00 0.00 0.00 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 57.85 57.89 57.90 57.89 57.85 57.78 SO BUILDLEN FAS1&2 71.33 0.00 0.00 71.33 0.00 0.00 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 100.69 98.41 57.90 57.89 57.85 57.78 SO BUILDLEN FAS1&2 0.00 71.33 0.00 0.00 0.00 0.00 SO XBADJ FAS1&2 0.00 0.11 5.32 9.51 12.49 14.16 SO XBADJ FAS1&2 14.54 13.61 11.40 7.99 3.46 -2.04 SO XBADJ FAS1&2 -100.72 -95.65 0.00 0.00 0.00 0.00 SO XBADJ FAS1&2 0.00 -57.95 -63.10 -67.19 -70.17 -71.94 SO XBADJ FAS1&2 -348.91 -353.53 -69.31 -65.87 -61.30 -55.74 SO XBADJ 0.00 24.32 0.00 0.00 0.00 FAS1&2 0.00 SO YBADJ FAS1&2 0.00 -32.38 -20.50 -13.53 -26.85SO YBADJ FAS1&2 1.42 8.95 16.20 22.96 29.03 34.21 -23.51-34.45 0.00 SO YBADJ **FAS1&2** 0.00 0.00 0.00 SO YBADJ FAS1&2 0.00 32.38 26.85 20.50 13.53 6.15 SO YBADJ FAS1&2 61.52 8.88 -16.20 -22.96 -29.03 -34.21 SO YBADJ FAS1&2 0.00 34.45 0.00 0.00 0.00 0.00 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID FAT2A 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2A 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDWID FAT2A 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2A 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDLEN FAT2A 79.92 89.37 96.10 99.92 54.10 68.04 SO BUILDLEN FAT2A 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2A 96.68 90.05 80.69 68.88 54.97 41.31 SO BUILDLEN FAT2A 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT2A 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2A 96.68 90.05 80.69 68.88 54.97 41.31 SO XBADJ FAT2A 28.85 29.69 29.63 28.67 26.83 24.19 SO XBADJ FAT2A 20.81 16.79 7.88 -60.59 -10.27 -21.24 SO XBADJ FAT2A -31.57 -40.93 -49.06 -55.69 -60.63 -65.64 -82.94 -97.73 -109.55 -118.04 -122.94 -124.10 SO XBADJ FAT2A SO XBADJ FAT2A -121.50 -115.20 -59.98 6.88 -90.73 -79.12 SO XBADJ FAT2A -65.11 -49.12 -31.64 -13.19 5.65 24.33 SO YBADJ FAT2A -50.30 -40.23 -28.94 -16.77 -4.09 8.71 SO YBADJ FAT2A 21.25 33.14 -0.08 -7.13 63.71 69.59 SO YBADJ FAT2A 73.35 74.89 74.15 71.15 66.00 58.84 SO YBADJ 50.30 -8.71 FAT2A 40.23 28.94 16.77 4.09 SO YBADJ FAT2A -21.25-33.14 0.08 7.13 -63.71 -69.59 FAT2A -73.35 -74.89 -74.15 -71.15 -66.00 -58.84 SO YBADJ SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 60.40 12.20 60.40 60.40 SO BUILDHGT FAT2B 60.40 12.20 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B SO BUILDHGT FAT2B 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID FAT2B 98.57 101.00 96.68 90.05 80.69 100.36 SO BUILDWID FAT2B 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2B 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDWID FAT2B 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT28 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2B 89.37 96.10 99.92 100.69 98.41 93.14 54.10 68.04 89.37 96.10 99.92 SO BUILDLEN FAT2B 79.92 SO BUILDLEN FAT2B 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2B 96.68 90.05 80.69 68.88 54.97 41.31 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT2B

```
SO BUILDLEN FAT2B
                     100.69 98.41 52.11 53.70 101.00 100.36
SO BUILDLEN FAT2B
                     96.68 90.05 80.69 68.88 54.97 41.31
           FAT2B
 O XBADJ
                    28.85 29.69 29.63 28.67 26.83 24.19
 O XBADJ
           FAT2B
                    20.81 16.79 7.88 -60.59 -10.27 -21.24
SO XBADJ
           FAT2B
                    -31.57 -40.93 -49.06 -55.69 -60.63 -65.64
SO XBADJ
           FAT2B
                    -82.94 -97.73 -109.55 -118.04 -122.94 -124.10
SO XBADJ
           FAT2B
                   -121.50 -115.20 -59.98 6.88 -90.73 -79.12
SO XBADJ
           FAT2B
                    -65.11 -49.12 -31.64 -13.19
                                            5.65 24.33
SO YBADJ
           FAT2B
                    -50.30 -40.23 -28.94 -16.77
                                            -4.09
                                                   8.71
                                -0.08 -7.13 63.71 69.59
SO YBADJ
           FAT2B
                    21.25 33.14
SO YBADJ
           FAT2B
                    73.35 74.89
                                74.15 71.15 66.00 58.84
SO YBADJ
           FAT2B
                    50.30 40.23
                                28.94
                                      16.77
                                             4.09 -8.71
SO YBADJ
           FAT2B
                   -21.25
                         -33.14
                                0.08
                                      7.13 -63.71 -69.59
SO YBADJ
           FAT2B
                   -73.35 -74.89 -74.15 -71.15 -66.00 -58.84
SO BUILDHGT BAS12
                      0.00
                            0.00 0.00
                                       0.00 12.20 12.20
SO BUILDHGT BAS12
                      12.20
                            12.20
                                  0.00
                                        0.00 0.00
                                                  0.00
SO BUILDHGT BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDHGT BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                             0.00
                                                  0.00
SO BUILDHGT BAS12
                      0.00
                            0.00
                                 0.00
                                      60.40
                                            60.40 60.40
SO BUILDHGT BAS12
                      60.40
                            0.00
                                  0.00
                                       0.00
                                             0.00
                                                  0.00
$O BUILDWID BAS12
                      0.00
                           0.00
                                 0.00
                                       0.00 57.68 57.78
SO BUILDWID BAS12
                      57.84
                           57.89
                                  0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDWID BAS12
                                 0.00
                                       0.00
                                                  0.00
                      0.00
                           0.00
                                            0.00
SO BUILDWID BAS12
                      0.00
                           0.00
                                 0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDWID BAS12
                      0.00
                            0.00
                                 0.00
                                      54.10
                                            68.04 79.92
SO BUILDWID BAS12
                      89.37
                            0.00
                                 0.00
                                       0.00
                                             0.00
                                                  0.00
SO BUILDLEN BAS12
                      0.00
                           0.00
                                 0.00
                                       0.00 57.68 57.78
SO BUILDLEN BAS12
                      57.84
                           57.89
                                  0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDLEN BAS12
                                      0.00
                           0.00
                                 0.00
                                                  0.00
                      0.00
                                            0.00
SO BUILDLEN BAS12
                      0.00
                           0.00
                                 0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDLEN BAS12
                      0.00
                           0.00
                                 0.00
                                      98.57 101.00 100.36
SO BUILDLEN BAS12
                            0.00
                     96.68
                                 0.00 0.00 0.00 0.00
SO XBADJ
           BAS12
                    0.00 0.00
                               0.00
                                    0.00 -113.15 -115.70
SO XBADJ
           BAS12
                   -115.59 -112.84
                                 0.00 0.00 0.00 0.00
SO XBADJ
           BAS12
                    0.00
                          0.00
                               0.00
                                     0.00 0.00 0.00
   XBADJ
           BAS12
                    0.00
                          0.00
                               0.00
                                     0.00 0.00
                                                0.00
           BAS12
                                0.00 -242.62 -250.48 -250.72
 O XBADJ
                    0.00
                          0.00
SO XBADJ
                          0.00
                                0.00 0.00 0.00
           BAS12
                   -243.34
                                                0.00
SO YBADJ
           BAS12
                    0.00
                         0.00
                               0.00
                                     0.00 21.75
                                                 6.78
SO YBADJ
           BAS12
                    -8.40
                         -23.32
                                0.00
                                     0.00
                                          0.00
                                                 0.00
SO YBADJ
           BAS12
                                           0.00
                                                0.00
                    0.00
                          0.00
                                0.00
                                     0.00
SO YBADJ
           BAS12
                    0.00
                          0.00
                                0.00
                                     0.00
                                           0.00
                                                0.00
           BAS12
SO YBADJ
                    0.00
                          0.00
                                0.00
                                     52.82
                                           18.51
                                                -16.35
SO YBADJ
           BAS12
                                0.00
                                     0.00
                                                 0.00
                    -50.72
                          0.00
                                           0.00
SO BUILDHGT CBO
                     65.30 84.40 84.40 84.40 84.40 84.40
SO BUILDHGT CBO
                           0.00
                                0.00 0.00 0.00 0.00
                     0.00
SO BUILDHGT CBO
                     0.00
                           0.00
                                0.00
                                      0.00 0.00 0.00
SO BUILDHGT CBO
                     0.00
                                84.40 84.40 84.40 84.40
                          84.40
SO BUILDHGT CBO
                     0.00
                           0.00
                                0.00 0.00 0.00 0.00
                                38.00 38.00 0.00 0.00
SO BUILDHGT CBO
                     0.00
                          38.00
SO BUILDWID CBO
                     96.38
                          100.22 117.84 131.88 141.91 147.63
SO BUILDWID CBO
                           0.00 0.00 0.00 0.00 0.00
                     0.00
SO BUILDWID CBO
                     0.00
                           0.00
                                0.00
                                     0.00
                                           0.00 0.00
SO BUILDWID CBO
                     0.00 100.22 117.84 131.88 141.91 147.63
SO BUILDWID CBO
                          0.00 0.00 0.00 0.00 0.00
                     0.00
                          48.37 48.54 47.23
                                             0.00 0.00
SO BUILDWID CBO
                     0.00
SO BUILDLEN CBO
                    145.57
                          148.86 147.63 141.91 131.88 117.84
                                0.00 0.00 0.00 0.00
SO BUILDLEN CBO
                           0.00
                     0.00
SO BUILDLEN CBO
                     0.00
                          0.00
                                0.00
                                     0.00 0.00 0.00
SO BUILDLEN CBO
                     0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN CBO
                                0.00 0.00 0.00 0.00
                     0.00
                          0.00
                     0.00 46.73 43.67 39.28
                                             0.00 0.00
SO BUILDLEN CBO
SO XBADJ
           CBO
                  -289.14 -302.96 -307.57 -302.83 -288.90 -266.18
SO XBADJ
           CBO
                         0.00
                              0.00 0.00 0.00 0.00
                    0.00
SO XBADJ
           CBO
                    0.00
                         0.00
                               0.00 0.00 0.00 0.00
SO XBADJ
           CBO
                    0.00 154.10 159.94 160.93 157.02 148.34
SO XBADJ
           CBO
                    0.00 0.00 0.00 0.00 0.00 0.00
SO XBADJ
           CBO
                    SO YBADJ
           CBO
                   80.60 50.09
                               9.64 -31.09 -70.89 -108.53
                                    0.00 0.00 0.00
 O YBADJ
           CBO
                    0.00
                         0.00
                               0.00
 O YBADJ
           CBO
                    0.00
                         0.00
                               0.00
                                    0.00
                                          0.00
                                                0.00
SO YBADJ
           CBO
                    0.00 -50.09
                                    31.09 70.89 108.53
                              -9.64
SO YBADJ
           CBO
                    0.00
                         0.00
                               0.00
                                    0.00 0.00 0.00
SO YBADJ
           CBO
                               2.21 -25.07
                                          0.00
                    0.00
                         29.43
```

EMISFACT PIL12 WSPEED 3*0 3*1 EMISFACT PIL45 WSPEED 3*0 3*1 EMISFACT PILGYP WSPEED 3*0 3*1 SRCGROUP BACKG FCS1-FCS61 CEMEX1-CEMEX27 1AGRI 2AGRI PMINCALL SRCGROUP ALL SO FINISHED ******** ** AERMOD Receptor Pathway ** ** **RE STARTING** INCLUDED CRAUG06A.rou **RE FINISHED** ******************* ** AERMOD Meteorology Pathway ** ME STARTING SURFFILE C:\amodmet\TAMPA_2001.SFC PROFFILE C:\amodmet\TAMPA_2001.PFL SURFDATA 12842 2001 TAMPA/INT'L_ARPT UAIRDATA 12842 2001 TAMPA/INT'L_ARPT

ME FINISHED

PROFBASE 19 FEET

WINDCATS 1.54 3.09 5.39 8.23 10.8

** AERMOD Output Pathway

••

OU STARTING RECTABLE ALLAVE FIRST SECOND OU FINISHED

AERBOB RELEASE 020304

RMOD OUTPUT FILE NUMBER 1 :aqpm55.001 RMOD OUTPUT FILE NUMBER 2 :aqpm55.002

AMOD OUTPUT FILE NUMBER 2 :aqpm55.002

AMOD OUTPUT FILE NUMBER 3 :aqpm55.003

AERMOD OUTPUT FILE NUMBER 4 :aqpm55.004

AERMOD OUTPUT FILE NUMBER 5 :aqpm55.005

First title for last output file is: 2001 PGN CR, PM10 AAQS ANALYSIS - CR+BACKGROUND SOURCES 8/18/06

Second title for last output file is: TAMPA/RUSKIN METDATA 2001-05 (GOLDER SURFACE PARAMETERS)

AVERAGING TIME (ug/	YEAR m3)	CONC (m)	(m) (YYMM	Y PERIOD ENDING
SOURCE GROUP ID Annual	: BACK	G		
2001	0.1	332358.	3203372.	01123124
2002	0.1	332595.	3203033.	02123124
2003	0.1	334262.	3205668.	03123124
2004	0.1	332358.	3203372.	04123124
2005	0.1	332528.	3203104.	05123124
HIGH 24-Hour				
2001	2.3	342800.	3195400.	01121124
2002	1.6	334114.	3205671.	02111124
2003	1.7	334017.	3205672.	03012124
2004	2.0	333579.	3205678.	04120824
2005	1.6	334163.	3205670.	05022424
HSH 24-Hour				
2001	1.1	344800.	3195400.	01102324
2002	1.2	333700.	3205700.	02012524
2003	1.3	334017.	3205672.	03030724
2004	1.2	333628.	3205677.	04102024
2005	1.1	343800.	3195400.	05081424
SOURCE GROUP ID	: ALL			
Annual				
	6.92	336149.	3204837.	01123124
	6.67	336099.		02123124
	7.44	336149.	3204837.	03123124
	7.48	336149.	3204837.	04123124
	6.65	336149.	3204837.	05123124
HIGH 24-Hour				
	23.8	336348.	3204834.	01081624
	29.3	335900.		02061324
	31.7	338541.	3204798.	03072124
	39.1	337694.		04011524
	34.3	338740.	3204795.	05081024
HSH 24-Hour	00.40	000007	0004000	04400004
	23.43	336697.		01122924
	25.58	336049.		
	28.06	339388. 335950.	3204784.	03010924
	25.92			04022124
	30.79	336049.		05070124
All receptor computa		orted with i	respect to a u	ser-specifiea origin
GRID 0.00	0.00	00		
DISCRETE 0.00	0.	00		

```
CO STARTING
 TITLEONE 2001 PGN CR PM10 PSD CLASS II
                                               SOURCES 8/15/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-05 (UPDATED SURFACE PARAMETERS)
 MODELOPT DFAULT CONC
  AVERTIME PERIOD 24
 POLLUTID GEN
 RUNORNOT RUN
** EVENTFIL EP2CRBND.101 SOCONT
CO FINISHED
**********
** AERMOD Source Pathway
SO STARTING
 LOCATION U45100 POINT 334776.80 3205393.42 1.0
   COOLING TOWERS FOR UNITS 4 & 5 MODELED SEPARATELY
   DUE TO INCORRECT USE OF STACK-TIP DOWNWASH
   LOCATION CT4 POINT 334312.560 3205466.280 1.000
   LOCATION CT5 POINT 334313.480 3205236.260 1.000
  LOCATION HCT1 POINT 333190.920 3204586.510 1.0
  LOCATION HCT2 POINT 333375.380 3204573.640 1.0
  LOCATION HCT3 POINT 333637.510 3204550.460 1.0
  LOCATION HCT4 POINT 333820.520 3204538.720 1.0
  LOCATION CTWRPORT POINT 333014.940 3204595.010 1.0
** DESCRERC PORTABLE COOLING TOWER
  LOCATION FAT1 POINT 334242.000 3204264.000 1.0
  LOCATION FAS1&2 POINT 334000.000 3204264.000 1.0
  LOCATION FAT2A POINT 334242.000 3204264.000 1.0
  LOCATION FAT2B POINT 334242.000 3204264.000 1.0
  LOCATION BAS12 POINT 334120.010 3204395.900 1.0
  LOCATION LIM1234 POINT 335081.370 3205560.730 1.0
  LOCATION LIMSILO POINT 335085.720 3205425.850 2.0
  LOCATION CBO POINT 334656.760 3205553.940 2.000
  LOCATION VOLA VOLUME 334116.030 3204084.070 1.0
  LOCATION VOLB VOLUME 334185.650 3204082.870 1.0
 LOCATION VOLC VOLUME 334314.680 3204022.260 1.0
   LOCATION VOLD VOLUME 334120.830 3203977.250 1.0
  LOCATION VOLE VOLUME 334308.680 3204091.880 1.0 LOCATION VOLF VOLUME 334425.400 3204037.260 1.0
  LOCATION VOLG VOLUME 334880.910 3204184.900 1.0
  LOCATION VOLH VOLUME 334888.110 3205023.900 1.0
  LOCATION VOLI VOLUME 334889.910 3205173.330 1.0
  LOCATION PIL45 VOLUME 335095.630 3205080.280 1.0
** LOCATION PILGYP VOLUME 336471.50 3203967.17 0.0
  LOCATION VOLM VOLUME 334428.44 3203986.80 1.0
  LOCATION VOLRAIL VOLUME 334533.81 3203987.81 1.0
  LOCATION VOLC45 VOLUME 334894.28 3205366.67 1.0
  LOCATION VOLP45 VOLUME 334611.45 3205366.16 1.0
  LOCATION PIL45TR VOLUME 335095.63 3205080.28 1.0
** Baseline Coal Yard Sources
  LOCATION VOLAb VOLUME 334116.030 3204084.070 1.0
  LOCATION VOLBb VOLUME 334185.650 3204082.870 1.0
  LOCATION VOLCb VOLUME 334314.680 3204022.260 1.0
  LOCATION VOLDb VOLUME 334120.830 3203977.250 1.0
  LOCATION VOLED VOLUME 334308.680 3204091.880 1.0
" LINE Source ID = ENTRY
 ** DESCRSRC New Entrance Road (90 ft buffer)
** Length of Side = 10.00
** Emission Rate = 10
** Vertical Dimension = 4.57
** SZINIT = 2.13
** Nodes = 2
** 335779.42, 3204815.23, 2.00, 2.29, 0.0
 ** 340609.00, 3204735.67, 2.00, 2.29, 9.26
 ** No. of Volumes = 243
```

LOCATION ENTRY001 VOLUME 335784,406 3204815,168 2.00 LOCATION ENTRY002 VOLUME 335804.321 3204814.840 2.00 LOCATION ENTRY003 VOLUME 335824.237 3204814.512 2.00 LOCATION ENTRY004 VOLUME 335844.153 3204814.184 2.00 LOCATION ENTRY005 VOLUME 335864.068 3204813.856 2.00 LOCATION ENTRY006 VOLUME 335883.984 3204813.529 2.00 **LOCATION ENTRY007** VOLUME 335903.900 3204813.201 2.00 LOCATION ENTRY008 VOLUME 335923.815 3204812.873 2.00 LOCATION ENTRY009 VOLUME 335943.731 3204812.545 2.00 LOCATION ENTRY010 VOLUME 335963.647 3204812.217 2.00 LOCATION ENTRY011 VOLUME 335983.562 3204811.889 2.00 LOCATION ENTRY012 VOLUME 336003.478 3204811.562 2.00 LOCATION ENTRY013 VOLUME 336023.394 3204811.234 2.00 LOCATION ENTRY014 VOLUME 336043.309 3204810.906 2.00 LOCATION ENTRY015 VOLUME 336063.225 3204810.578 2.00 LOCATION ENTRY016 VOLUME 336083.141 3204810.250 2.00 LOCATION ENTRY017 VOLUME 336103.057 3204809.922 2.00 LOCATION ENTRY018 VOLUME 336122.972 3204809.595 2.00 **LOCATION ENTRY019** VOLUME 336142.888 3204809.267 2.00 LOCATION ENTRY020 VOLUME 336162.804 3204808.939 2.00 LOCATION ENTRY021 VOLUME 336182.719 3204808.611 2.00 **LOCATION ENTRY022** VOLUME 336202.635 3204808.283 2.00 LOCATION ENTRY023 VOLUME 336222.551 3204807.955 2.00 **LOCATION ENTRY024** VOLUME 336242.466 3204807.628 2.00 **LOCATION ENTRY025** VOLUME 336262.382 3204807.300 2.00 **LOCATION ENTRY026** VOLUME 336282.298 3204806.972 2.00 LOCATION ENTRY027 VOLUME 336302.214 3204806.644 2.00 LOCATION ENTRY028 VOLUME 336322.129 3204806.316 2.00 LOCATION ENTRY029 VOLUME 336342.045 3204805.988 2.00 LOCATION ENTRY030 VOLUME 336361.961 3204805.661 2.00 LOCATION ENTRY031 VOLUME 336381.876 3204805.333 2.00 LOCATION ENTRY032 VOLUME 336401.792 3204805.005 2.00 LOCATION ENTRY033 VOLUME 336421.708 3204804.677 2.00 **LOCATION ENTRY034** VOLUME 336441.623 3204804.349 2.00 LOCATION ENTRY035 VOLUME 336461.539 3204804.021 2.00 LOCATION ENTRY036 VOLUME 336481.455 3204803.694 2.00 **LOCATION ENTRY037** VOLUME 336501.371 3204803.366 2.00 LOCATION ENTRY038 VOLUME 336521.286 3204803.038 2.00 LOCATION ENTRY039 VOLUME 336541.202 3204802.710 2.00 **LOCATION ENTRY040** VOLUME 336561.118 3204802.382 2.00 **LOCATION ENTRY041** VOLUME 336581.033 3204802.054 2.00 LOCATION ENTRY042 VOLUME 336600.949 3204801.727 2.00 **LOCATION ENTRY043** VOLUME 336620.865 3204801.399 2.00 LOCATION ENTRY044 VOLUME 336640.780 3204801.071 2.00 LOCATION ENTRY045 VOLUME 336660.696 3204800.743 2.00 LOCATION ENTRY046 VOLUME 336680.612 3204800.415 2.00 **LOCATION ENTRY047** VOLUME 336700.527 3204800.087 2.00 LOCATION ENTRY048 VOLUME 336720.443 3204799.760 2.00 LOCATION ENTRY049 VOLUME 336740.359 3204799.432 2.00 LOCATION ENTRY050 VOLUME 336760.275 3204799.104 2.00 LOCATION ENTRY051 VOLUME 336780.190 3204798.776 2.00 **LOCATION ENTRY052** VOLUME 336800.106 3204798.448 2.00 LOCATION ENTRY053 VOLUME 336820.022 3204798.120 2.00 LOCATION ENTRY054 VOLUME 336839.937 3204797.793 2.00 **LOCATION ENTRY055** VOLUME 336859.853 3204797.465 2.00 LOCATION ENTRY056 VOLUME 336879.769 3204797.137 2.00 VOLUME 336899.684 3204796.809 2.00 LOCATION ENTRY057 LOCATION ENTRY058 VOLUME 336919.600 3204796.481 2.00 **LOCATION ENTRY059** VOLUME 336939.515 3204796.153 2.00 LOCATION ENTRY060 VOLUME 336959.431 3204795.826 2.00 VOLUME 336979.347 3204795.498 2.00 LOCATION ENTRY061 LOCATION ENTRY062 VOLUME 336999.262 3204795.170 2.00 LOCATION ENTRY063 VOLUME 337019.178 3204794.842 2.00 LOCATION ENTRY064 VOLUME 337039.094 3204794.514 2.00 LOCATION ENTRY065 VOLUME 337059.009 3204794.186 2.00 LOCATION ENTRY066 VOLUME 337078.925 3204793.859 2.00 LOCATION ENTRY067 VOLUME 337098.841 3204793.531 2.00 LOCATION ENTRY068 VOLUME 337118.756 3204793.203 2.00 LOCATION ENTRY069 VOLUME 337138.672 3204792.875 2.00 LOCATION ENTRY070 VOLUME 337158.587 3204792.547 2.00 LOCATION ENTRY071 VOLUME 337178.503 3204792.219 2.00 LOCATION ENTRY072 VOLUME 337198.419 3204791.892 2.00 LOCATION ENTRY073 VOLUME 337218.334 3204791.564 2.00 LOCATION ENTRY074 VOLUME 337238.250 3204791.236 2.00 LOCATION ENTRY075 VOLUME 337258.166 3204790.908 2.00 LOCATION ENTRY076 VOLUME 337278.081 3204790.580 2.00 LOCATION ENTRY077 VOLUME 337297.997 3204790.252 2.00 LOCATION ENTRY078 VOLUME 337317.913 3204789.925 2.00

Page: 2

LOCATION ENTRY079 VOLUME 337337.828 3204789.597 2.00 LOCATION ENTRY080 VOLUME 337357.744 3204789.269 2.00 LOCATION ENTRY081 VOLUME 337377.659 3204788.941 2.00 LOCATION ENTRY082 VOLUME 337397,575 3204788,613 2.00 LOCATION ENTRY083 VOLUME 337417.491 3204788.285 2.00 LOCATION ENTRY084 VOLUME 337437.406 3204787.958 2.00 LOCATION ENTRY085 VOLUME 337457.322 3204787.630 2.00 LOCATION ENTRY086 VOLUME 337477.238 3204787.302 2.00 **LOCATION ENTRY087** VOLUME 337497.153 3204786.974 2.00 VOLUME 337517.069 3204786.646 2.00 LOCATION ENTRY088 LOCATION ENTRY089 VOLUME 337536.985 3204786.318 2.00 VOLUME 337556.900 3204785.991 2.00 **LOCATION ENTRY090** VOLUME 337576.816 3204785.663 2.00 LOCATION ENTRY091 LOCATION ENTRY092 VOLUME 337596.731 3204785.335 2.00 **LOCATION ENTRY093** VOLUME 337616.647 3204785.007 2.00 LOCATION ENTRY094 VOLUME 337636.563 3204784.679 2.00 LOCATION ENTRY095 VOLUME 337656.478 3204784.351 2.00 **LOCATION ENTRY096** VOLUME 337676.394 3204784.024 2.00 VOLUME 337696.310 3204783.696 2.00 **LOCATION ENTRY097** LOCATION ENTRY098 VOLUME 337716.225 3204783.368 2.00 VOLUME 337736.141 3204783.040 2.00 LOCATION ENTRY099 VOLUME 337756.057 3204782.712 2.00 **LOCATION ENTRY100** LOCATION ENTRY101 VOLUME 337775.972 3204782.385 2.00 VOLUME 337795.888 3204782.057 2.00 LOCATION ENTRY 102 LOCATION ENTRY 103 VOLUME 337815.803 3204781.729 2.00 LOCATION ENTRY104 VOLUME 337835.719 3204781.401 2.00 LOCATION ENTRY105 VOLUME 337855.635 3204781.073 2.00 LOCATION ENTRY106 VOLUME 337875.551 3204780.745 2.00 LOCATION ENTRY107 VOLUME 337895.466 3204780.418 2.00 LOCATION ENTRY108 VOLUME 337915.382 3204780.090 2.00 LOCATION ENTRY109 VOLUME 337935.298 3204779.762 2.00 LOCATION ENTRY110 VOLUME 337955.214 3204779.434 2.00 LOCATION ENTRY111 VOLUME 337975.130 3204779.106 2.00 LOCATION ENTRY112 VOLUME 337995.045 3204778.778 2.00 LOCATION ENTRY113 VOLUME 338014.961 3204778.451 2.00 LOCATION ENTRY114 VOLUME 338034.877 3204778.123 2.00 LOCATION ENTRY115 VOLUME 338054.793 3204777.795 2.00 LOCATION ENTRY116 VOLUME 338074.708 3204777.467 2.00 LOCATION ENTRY117 VOLUME 338094.624 3204777.139 2.00 LOCATION ENTRY118 VOLUME 338114.540 3204776.811 2.00 LOCATION ENTRY119 VOLUME 338134.456 3204776.484 2.00 LOCATION ENTRY120 VOLUME 338154.371 3204776.156 2.00 LOCATION ENTRY121 VOLUME 338174.287 3204775.828 2.00 LOCATION ENTRY122 VOLUME 338194.203 3204775.500 2.00 LOCATION ENTRY123 VOLUME 338214.119 3204775.172 2.00 LOCATION ENTRY124 VOLUME 338234.034 3204774.844 2.00 LOCATION ENTRY125 VOLUME 338253.950 3204774.517 2.00 LOCATION ENTRY126 VOLUME 338273.866 3204774.189 2.00 LOCATION ENTRY127 VOLUME 338293.782 3204773.861 2.00 LOCATION ENTRY128 VOLUME 338313.697 3204773.533 2.00 LOCATION ENTRY129 VOLUME 338333.613 3204773.205 2.00 LOCATION ENTRY130 VOLUME 338353.529 3204772.877 2.00 LOCATION ENTRY131 VOLUME 338373.445 3204772.550 2.00 LOCATION ENTRY132 VOLUME 338393.360 3204772.222 2.00 LOCATION ENTRY133 VOLUME 338413.276 3204771.894 2.00 LOCATION ENTRY134 VOLUME 338433.192 3204771.566 2.00 LOCATION ENTRY135 VOLUME 338453.108 3204771.238 2.00 LOCATION ENTRY136 VOLUME 338473.024 3204770.910 2.00 LOCATION ENTRY137 VOLUME 338492.939 3204770.583 2.00 LOCATION ENTRY138 VOLUME 338512.855 3204770.255 2.00 LOCATION ENTRY139 VOLUME 338532.771 3204769.927 2.00 LOCATION ENTRY140 VOLUME 338552.687 3204769.599 2.00 LOCATION ENTRY141 VOLUME 338572.602 3204769.271 2.00 LOCATION ENTRY142 VOLUME 338592.518 3204768.943 2.00 LOCATION ENTRY143 VOLUME 338612.434 3204768.615 2.00 LOCATION ENTRY144 VOLUME 338632.350 3204768.288 2.00 LOCATION ENTRY145 VOLUME 338652.265 3204767.960 2.00 LOCATION ENTRY146 VOLUME 338672.181 3204767.632 2.00 LOCATION ENTRY147 VOLUME 338692.097 3204767.304 2.00 LOCATION ENTRY148 VOLUME 338712.013 3204766.976 2.00 LOCATION ENTRY149 VOLUME 338731.928 3204766.648 2.00 LOCATION ENTRY150 VOLUME 338751.844 3204766.321 2.00 LOCATION ENTRY151 VOLUME 338771.760 3204765.993 2.00 LOCATION ENTRY152 VOLUME 338791.676 3204765.665 2.00 LOCATION ENTRY153 VOLUME 338811.591 3204765.337 2.00 LOCATION ENTRY154 VOLUME 338831.507 3204765.009 2.00 LOCATION ENTRY155 VOLUME 338851.423 3204764.681 2.00 LOCATION ENTRY156 VOLUME 338871.339 3204764.354 2.00

LOCATION ENTRY157 VOLUME 338891.254 3204764.026 2.00 LOCATION ENTRY158 VOLUME 338911.170 3204763.698 2.00 OCATION ENTRY159 VOLUME 338931.086 3204763.370 2.00 LOCATION ENTRY160 VOLUME 338951.002 3204763.042 2.00 **LOCATION ENTRY161** VOLUME 338970.917 3204762.714 2.00 LOCATION ENTRY162 VOLUME 338990.833 3204762.387 2.00 LOCATION ENTRY163 VOLUME 339010.749 3204762.059 2.00 LOCATION ENTRY164 VOLUME 339030.665 3204761.731 2.00 **LOCATION ENTRY165** VOLUME 339050.581 3204761.403 2.00 **LOCATION ENTRY166** VOLUME 339070.496 3204761.075 2.00 VOLUME 339090.412 3204760.747 2.00 LOCATION ENTRY167 **LOCATION ENTRY168** VOLUME 339110.328 3204760.420 2.00 **LOCATION ENTRY169** VOLUME 339130.244 3204760.092 2.00 LOCATION ENTRY170 VOLUME 339150.159 3204759.764 2.00 **LOCATION ENTRY171** VOLUME 339170.075 3204759.436 2.00 LOCATION ENTRY172 VOLUME 339189.991 3204759.108 2.00 LOCATION ENTRY173 VOLUME 339209.907 3204758.780 2.00 VOLUME 339229.822 3204758.453 2.00 **LOCATION ENTRY174** VOLUME 339249.738 3204758.125 2.00 LOCATION ENTRY175 LOCATION ENTRY176 VOLUME 339269.654 3204757.797 2.00 LOCATION ENTRY177 VOLUME 339289.570 3204757.469 2.00 LOCATION ENTRY178 VOLUME 339309.485 3204757.141 2.00 LOCATION ENTRY179 VOLUME 339329.401 3204756.813 2.00 VOLUME 339349.317 3204756.486 2.00 LOCATION ENTRY180 VOLUME 339369.233 3204756.158 2.00 LOCATION ENTRY181 LOCATION ENTRY182 VOLUME 339389.148 3204755.830 2.00 LOCATION ENTRY183 VOLUME 339409.064 3204755.502 2.00 LOCATION ENTRY184 VOLUME 339428.980 3204755.174 2.00 **LOCATION ENTRY185** VOLUME 339448.896 3204754.846 2.00 LOCATION ENTRY186 VOLUME 339468.811 3204754.519 2.00 LOCATION ENTRY187 VOLUME 339488.727 3204754.191 2.00 LOCATION ENTRY188 VOLUME 339508.643 3204753.863 2.00 LOCATION ENTRY189 VOLUME 339528.559 3204753.535 2.00 VOLUME 339548.474 3204753.207 2.00 LOCATION ENTRY190 LOCATION ENTRY191 VOLUME 339568.390 3204752.879 2.00 VOLUME 339588.306 3204752.552 2.00 LOCATION ENTRY 192 LOCATION ENTRY193 VOLUME 339608.222 3204752.224 2.00 OCATION ENTRY194 VOLUME 339628.138 3204751.896 2.00 LOCATION ENTRY 195 VOLUME 339648.053 3204751.568 2.00 LOCATION ENTRY196 VOLUME 339667.969 3204751.240 2.00 LOCATION ENTRY197 VOLUME 339687.885 3204750.912 2.00 VOLUME 339707.801 3204750.585 2.00 LOCATION ENTRY198 VOLUME 339727.716 3204750.257 2.00 LOCATION ENTRY199 LOCATION ENTRY200 VOLUME 339747.632 3204749.929 2.00 VOLUME 339767.548 3204749.601 2.00 LOCATION ENTRY201 VOLUME 339787.464 3204749.273 2.00 LOCATION ENTRY202 LOCATION ENTRY203 VOLUME 339807.379 3204748.945 2.00 VOLUME 339827.295 3204748.618 2.00 LOCATION ENTRY204 VOLUME 339847.211 3204748.290 2.00 LOCATION ENTRY205 LOCATION ENTRY206 VOLUME 339867.127 3204747.962 2.00 VOLUME 339887.042 3204747.634 2.00 **LOCATION ENTRY207** VOLUME 339906.958 3204747.306 2.00 LOCATION ENTRY208 VOLUME 339926.874 3204746.978 2.00 LOCATION ENTRY209 LOCATION ENTRY210 VOLUME 339946.789 3204746.651 2.00 VOLUME 339966.705 3204746.323 2.00 LOCATION ENTRY211 LOCATION ENTRY212 VOLUME 339986.621 3204745.995 2.00 LOCATION ENTRY213 VOLUME 340006.537 3204745.667 2.00 VOLUME 340026.452 3204745.339 2.00 LOCATION ENTRY214 LOCATION ENTRY215 VOLUME 340046.368 3204745.011 2.00 **LOCATION ENTRY216** VOLUME 340066.284 3204744.684 2.00 LOCATION ENTRY217 VOLUME 340086.200 3204744.356 2.00 LOCATION ENTRY218 VOLUME 340106.115 3204744.028 2.00 LOCATION ENTRY219 VOLUME 340126.031 3204743.700 2.00 LOCATION ENTRY220 VOLUME 340145.947 3204743.372 2.00 LOCATION ENTRY221 VOLUME 340165.863 3204743.044 2.00 LOCATION ENTRY222 VOLUME 340185.779 3204742.717 2.00 VOLUME 340205.694 3204742.389 2.00 LOCATION ENTRY223 **LOCATION ENTRY224** VOLUME 340225.610 3204742.061 2.00 LOCATION ENTRY225 VOLUME 340245.526 3204741.733 2.00 VOLUME 340265.442 3204741.405 2.00 LOCATION ENTRY226 LOCATION ENTRY227 VOLUME 340285.357 3204741.077 2.00 LOCATION ENTRY228 VOLUME 340305.273 3204740.750 2.00 VOLUME 340325.189 3204740.422 2.00 OCATION ENTRY229 VOLUME 340345.105 3204740.094 2.00 LOCATION ENTRY230 VOLUME 340365.020 3204739.766 2.00 LOCATION ENTRY231 **LOCATION ENTRY232** VOLUME 340384.936 3204739.438 2.00 **LOCATION ENTRY233** VOLUME 340404.852 3204739.110 2.00 VOLUME 340424.768 3204738.783 2.00 LOCATION ENTRY234

```
LOCATION ENTRY235 VOLUME 340444.683 3204738.455 2.00
LOCATION ENTRY237 VOLUME 340464.599 3204738.127 2.00
LOCATION ENTRY238 VOLUME 340544.361 3204737.799 2.00
LOCATION ENTRY240 VOLUME 340524.346 3204736.816 2.00
LOCATION ENTRY241 VOLUME 340564.178 3204736.488 2.00
LOCATION ENTRY242 VOLUME 340584.094 3204736.160 2.00
LOCATION ENTRY243 VOLUME 340604.009 3204735.832 2.00
```

** End of Line Source

** ______

- ** LINE Source ID = INTERA
- ** DESCRSRC Interior around coal pile
- ** Length of Side = 20.00
- ** Emission Rate = 10
- ** Vertical Dimension = 4.57
- ** SZINIT = 2.13
- ** Nodes = 4
- ** 335000.00, 3205500.00, 2.00, 0.00, 0.0
- ** 335090.00, 3205500.00, 2.00, 0.00, 16.28
- ** 335420.00, 3205370.00, 2.00, 0.00, 18.33
- ** 335410.00, 3204810.00, 2.00, 0.00, 17.37

** No. of Volumes = 89

LOCATION INTERA01 VOLUME 335010.000 3205500.000 2.00 LOCATION INTERA02 VOLUME 335045.000 3205500.000 2.00 LOCATION INTERA03 VOLUME 335080.000 3205500.000 2.00 LOCATION INTERA04 VOLUME 335117.363 3205489.221 2.00 LOCATION INTERA05 VOLUME 335154.029 3205474.776 2.00 LOCATION INTERA06 VOLUME 335190.696 3205460.332 2.00 LOCATION INTERA07 VOLUME 335227.363 3205445.887 2.00 LOCATION INTERA08 VOLUME 335264,029 3205431,443 2.00 LOCATION INTERA09 VOLUME 335300.696 3205416.999 2.00 LOCATION INTERA10 VOLUME 335337.363 3205402.554 2.00 LOCATION INTERA11 VOLUME 335374.029 3205388.110 2.00 LOCATION INTERA12 VOLUME 335410.696 3205373.665 2.00 LOCATION INTERA13 VOLUME 335419.512 3205342.665 2.00 LOCATION INTERA14 VOLUME 335418.845 3205305.332 2.00 LOCATION INTERA15 VOLUME 335418.179 3205267.998 2.00 LOCATION INTERA16 VOLUME 335417.512 3205230.665 2.00 LOCATION INTERA17 VOLUME 335416.845 3205193.332 2.00 LOCATION INTERA18 VOLUME 335416.179 3205155.998 2.00 LOCATION INTERA19 VOLUME 335415.512 3205118.665 2.00 LOCATION INTERA20 VOLUME 335414.845 3205081.332 2.00 LOCATION INTERA21 VOLUME 335414.179 3205043.998 2.00 LOCATION INTERA22 VOLUME 335413.512 3205006.665 2.00 LOCATION INTERA23 VOLUME 335412.845 3204969.332 2.00 LOCATION INTERA24 VOLUME 335412.179 3204931.998 2.00 LOCATION INTERA25 VOLUME 335411.512 3204894.665 2.00 LOCATION INTERA26 VOLUME 335410.845 3204857.332 2.00

- ** End of Line Source
- ** Line Source represented by Separated Volume Sources

LOCATION INTERA27 VOLUME 335410.179 3204819.998 2.00

- ** LINE Source ID = INTERB (FROM ENTRY ROAD)
- ** DESCRSRC Interior
- ** Length of Side = 20.00
- ** Emission Rate = 10
- ** Vertical Dimension = 4.57
- ** SZINIT = 2.13
- ** Nodes = 2
- ** 335410.00, 3204810.00, 2.00, 2.29, 0.0
- ** 335780.00, 3204740.00, 2.00, 2.29, 18.43
- ** No. of Volumes = 10

LOCATION INTERB01 VOLUME 335419.826 3204808.141 2.00 LOCATION INTERB02 VOLUME 335458.753 3204800.776 2.00 LOCATION INTERB03 VOLUME 335497.681 3204793.412 2.00 LOCATION INTERB04 VOLUME 335536.609 3204786.047 2.00 LOCATION INTERB06 VOLUME 335575.536 3204778.682 2.00 LOCATION INTERB07 VOLUME 335614.464 3204771.318 2.00 LOCATION INTERB08 VOLUME 335692.319 3204763.953 2.00 LOCATION INTERB08 VOLUME 335692.319 3204756.588 2.00 LOCATION INTERB09 VOLUME 335731.247 3204749.224 2.00 LOCATION INTERB10 VOLUME 335770.174 3204741.859 2.00

** End of Line Source

```
LINE Source ID = GYPWALL
" DESCRSRC Perimeter
** Length of Side = 10.00
** Emission Rate = 10
** Vertical Dimension = 6.10
** SZINIT = 2.84
** Nodes = 2
** 334990.00, 3205488.00, 2.00, 3.05, 0.0
** 334990.00, 3205638.00, 2.00, 3.05, 9.30
** No. of Volumes = 8
 LOCATION GYPWAL01 VOLUME 334990.000 3205493.000 2.00 LOCATION GYPWAL02 VOLUME 334990.000 3205513.000 2.00
 LOCATION GYPWAL03 VOLUME 334990.000 3205533.000 2.00
 LOCATION GYPWAL04 VOLUME 334990.000 3205553.000 2.00 LOCATION GYPWAL05 VOLUME 334990.000 3205573.000 2.00
 LOCATION GYPWAL06 VOLUME 334990.000 3205593.000 2.00
 LOCATION GYPWAL07 VOLUME 334990.000 3205613.000 2.00
 LOCATION GYPWAL08 VOLUME 334990.000 3205633.000 2.00
** End of Line Source
**Background Sources
    Progress Materials, Inc.
SO LOCATION PMINCALL POINT 334000 3204400 1.5
    Holcim, Inc.
"SO LOCATION
                 HOLCIM1 POINT 334400 3207500 1.5
     Cemex, Inc. - Inglis Mine (was 0750031)
"SO LOCATION INGMINE1
                                POINT 337360 3210440 4.6
     SMG, INC.
"SO LOCATION
                 SMG1 POINT 347790 3203140 9.1
     Florida Crushed Stone - Brooksville Cement And Power Plants
                 FCS1 POINT 361340 3162370 39.6
 SO LOCATION
*SO LOCATION
                  FCS2
                         POINT 361340 3162370 39.6
SO LOCATION FCS4 POINT 361340 3162370 39.6
"SO LOCATION
                 FCS6 POINT 361340 3162370 39.6
"SO LOCATION
                  FCS7
                         POINT 361340 3162370 39.6
```

**SO LOCATION FCS8 POINT 361340 3162370 39.6 "SO LOCATION FCS9 POINT 361340 3162370 39.6 "SO LOCATION FCS10 POINT 361340 3162370 39.6 **SO LOCATION FCS11 POINT 361340 3162370 39.6 "SO LOCATION FCS12 POINT 361340 3162370 39.6 SO LOCATION FCS13 POINT 361340 3162370 39.6 "SO LOCATION FCS14 POINT 361340 3162370 39.6 FCS15 POINT 361340 3162370 39.6 FCS17 POINT 361340 3162370 39.6 "SO LOCATION "SO LOCATION SO LOCATION FCS18 POINT 361340 3162370 39.6 SO LOCATION FCS19 POINT 361340 3162370 39.6 SO LOCATION FCS20 POINT 361340 3162370 39.6 "SO LOCATION FCS21 POINT 361340 3162370 39.6 "SO LOCATION FCS22 POINT 361340 3162370 39.6 "SO LOCATION FCS23 POINT 361340 3162370 39.6 **SO LOCATION FCS24 POINT 361340 3162370 39.6 "SO LOCATION FCS25 POINT 361340 3162370 39.6 SO LOCATION FCS28 POINT 361340 3162370 39.6 "SO LOCATION FCS29 POINT 361340 3162370 39.6 "SO LOCATION FCS30 POINT 361340 3162370 39.6 SO LOCATION FCS35 POINT 361340 3162370 39.6 "SO LOCATION FCS36 POINT 361340 3162370 39.6 **SO LOCATION FCS37 POINT 361340 3162370 39.6 **SO LOCATION FCS38 POINT 361340 3162370 39.6 "SO LOCATION FCS39 POINT 361340 3162370 39.6 SO LOCATION FCS40 POINT 361340 3162370 39.6 SO LOCATION FCS44 POINT 361340 3162370 39.6 SO LOCATION FCS45 POINT 361340 3162370 39.6 *SO LOCATION FCS46 POINT 361340 3162370 39.6 60 LOCATION FCS47 POINT 361340 3162370 39.6 FCS48 POINT 361340 3162370 39.6 SO LOCATION SO LOCATION FCS49 POINT 361340 3162370 39.6 **SO LOCATION FCS50 POINT 361340 3162370 39.6 FCS51 POINT 361340 3162370 39.6 "SO LOCATION "SO LOCATION FCS52 POINT 361340 3162370 39.6

```
"SO LOCATION
               FCS53 POINT 361340 3162370 39.6
"SO LOCATION
               FCS54 POINT 361340 3162370 39.6
SO LOCATION
             FCS55 POINT 361340 3162370 39.6
**SO LOCATION
               FCS56 POINT 361340 3162370 39.6
**SO LOCATION
               FCS57 POINT
                            361340 3162370 39.6
**SO LOCATION
               FCS58 POINT 361340 3162370 39.6
"SO LOCATION
               FCS59 POINT 361340 3162370 39.6
SO LOCATION FCS60 POINT 361340 3162370 39.6
               FCS61 POINT 361340 3162370 39.6
**SO LOCATION
    CEMEX
```

**SO LOCATION CEMEX8 POINT 357470 3169190 30.5 **SO LOCATION CEMEX12 POINT 357470 3169190 30.5 SO LOCATION CEMEX13 POINT 357470 3169190 30.5 CEMEX14 POINT 357470 3169190 30.5 SO LOCATION CEMEX15 POINT 357470 3169190 30.5 CEMEX16 POINT 357470 3169190 30.5 SO LOCATION SO LOCATION CEMEX17 POINT 357470 3169190 30.5 **SO LOCATION **SO LOCATION CEMEX18 POINT 357470 3169190 30.5 **SO LOCATION CEMEX19 POINT 357470 3169190 30.5 CEMEX21 POINT 357470 3169190 30.5 **SO LOCATION CEMEX22 POINT 357470 3169190 30.5 **SO LOCATION SO LOCATION CEMEX23 POINT 357470 3169190 30.5

SO LOCATION CEMEX23 POINT 357470 3169190 30.5
**SO LOCATION CEMEX24 POINT 357470 3169190 30.5
**SO LOCATION CEMEX25 POINT 357470 3169190 30.5
SO LOCATION CEMEX26 POINT 357470 3169190 30.5
SO LOCATION CEMEX27 POINT 357470 3169190 30.5

** IMC Agrico (Pierce)

SO LOCATION 1AGRI POINT 404100 3079000 39.6 SO LOCATION 2AGRI POINT 404100 3079000 39.6

** PROP. 0.05 LB/MMBTU X 7200= 360 LB/HR PER UNIT

SRCPARAM U45100 90.7 167.6 328.0 15.3 9.3

SRCPARAM CT4 22.1 135.10 311.0 3.32 65.200 22.1 135.10 311.0 3.32 65.200 SRCPARAM CT5 SRCPARAM HCT1 6.75 16.200 298.0 7.93 10.500 **SRCPARAM HCT2** 6.75 16.200 298.0 7.93 10.500 SRCPARAM HCT3 6.75 16.200 298.0 7.93 10.500 **SRCPARAM HCT4** 6.75 16.200 298.0 7.93 10.500 SRCPARAM HCT1 0.71 16.2 298.0 7.93 10.5 SRCPARAM HCT2 0.71 16.2 298.0 7.93 10.5 SRCPARAM HCT3 0.71 16.2 298.0 7.93 10.5 SRCPARAM HCT4 0.71 16.2 298.0 7.93 10.5 SRCPARAM CTWRPORT 0.268 5.79 333.0 20.5 6.64

SRCPARAM FAT1 0.44 9.150 298.0 0.10 0.240 SRCPARAM FAS1&2 0.08 22.90 298.0 0.10 0.460 SRCPARAM FAT2A 0.28 9.150 298.0 0.10 0.250 SRCPARAM FAT2B 0.28 9.150 298.0 0.10 0.250 SRCPARAM BAS12 1.64 23.80 298.0 0.10 0.240

SRCPARAM CBO 0.161 28.400 298.150 0.01000 0.396

SRCPARAM VOLA 0.122 7.50 3.488 6.980 0.010 7.50 3.488 6.980 SRCPARAM VOLB SRCPARAM VOLC 0.078 7.50 3.488 6.980 SRCPARAM VOLD 0.010 7.50 3.488 6.980 0.025 7.50 3.488 6.980 SRCPARAM VOLE **SRCPARAM VOLF** 0.018 7.50 3.488 6.980 **SRCPARAM VOLG** 0.010 7.50 3.488 6.980 0.010 7.50 3.488 6.980 SRCPARAM VOLH SRCPARAM VOLI 0.010 7.50 3.488 6.980 0.008 7.50 3.488 6.980 SRCPARAM VOLM SRCPARAM VOLRAIL 0.092 7.50 3.488 6.980 SRCPARAM VOLC45 0.038 7.50 3.488 6.980 SRCPARAM VOLP45 0.012 7.50 3.488 6.980

** Baseline Coal Yard Sources

 PILE TRANSFERS & PILE TRAFFIC
PILE TRAFFIC ≈ 0.127 G/S SPLIT BETWEEN PILE 1&2 PILE 4&5

SRCPARAM PIL45TR 0.141 6.100 79.791 2.800

- ** WIND EROSION SRCPARAM PIL45 0.205 3.05 79.791 2.84 ** SRCPARAM PILGYP 0.050 5.60 42.5 5.25
- ** NEW LIM1234 VERTICAL RELEASE SRCPARAM LIM1234 0.24 13.70 298.0 16.2 0.30 SRCPARAM LIMSILO 0.14 41.80 298.0 11.2 0.25
- ** LINE Source ID = ENTRY SRCPARAM ENTRY001 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY002 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY003 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY004 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY005 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY006 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY007 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY008 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY009 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY010 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY011 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY012 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY013 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY014 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY015 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY016 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY017 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY018 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY019 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY020 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY021 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY022 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY023 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY024 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY025 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY026 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY027 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY028 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY029 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY030 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY031 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY032 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY033 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY034 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY035 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY036 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY037 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY038 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY039 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY040 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY041 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY042 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY043 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY044 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY045 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY046 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY047 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY048 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY049 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY050 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY051 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY052 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY053 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY054 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY055 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY056 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY057 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY058 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY059 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY060 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY061 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY062 0.00203 3.05 9.26 2.84

SRCPARAM ENTRY063 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY064 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY065 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY066 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY067 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY068 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY069 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY070 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY071 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY072 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY073 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY074 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY075 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY076 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY077 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY078 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY079 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY080 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY081 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY082 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY083 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY084 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY085 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY086 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY087 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY088 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY089 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY090 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY091 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY092 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY093 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY094 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY095 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY096 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY097 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY098 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY099 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY100 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY101 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY102 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY103 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY104 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY105 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY106 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY107 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY108 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY109 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY110 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY111 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY112 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY113 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY114 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY115 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY116 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY117 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY118 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY119 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY120 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY121 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY122 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY123 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY124 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY125 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY126 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY127 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY128 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY129 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY130 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY131 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY132 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY133 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY134 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY135 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY136 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY137 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY138 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY139 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY140 0.00203 3.05 9.26 2.84

SRCPARAM ENTRY141 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY142 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY143 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY144 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY145 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY146 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY147 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY148 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY149 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY150 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY151 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY152 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY153 0.00203 3.05 9:26 2.84 SRCPARAM ENTRY154 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY155 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY156 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY157 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY158 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY159 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY160 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY161 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY162 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY163 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY164 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY165 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY166 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY167 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY168 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY169 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY170 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY171 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY172 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY173 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY174 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY175 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY176 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY177 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY178 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY179 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY180 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY181 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY182 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY183 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY184 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY185 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY186 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY187 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY188 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY189 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY190 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY191 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY192 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY193 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY194 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY195 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY196 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY197 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY198 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY199 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY200 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY201 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY202 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY203 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY204 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY205 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY206 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY207 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY208 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY209 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY210 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY211 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY212 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY213 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY214 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY215 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY216 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY217 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY218 0.00203 3.05 9.26 2.84

SRCPARAM ENTRY219 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY220 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY221 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY222 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY223 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY224 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY225 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY226 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY227 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY228 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY229 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY230 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY231 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY232 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY233 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY234 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY235 0.00203 2.29 9.26 2.13 SRCPARAM ENTRY236 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY237 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY238 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY239 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY240 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY241 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY242 0.00203 3.05 9.26 2.84 SRCPARAM ENTRY243 0.00203 3.05 9.26 2.84

" LINE Source ID = INTERA

SRCPARAM INTERA01 0.00442 3.05 16.28 2.84 SRCPARAM INTERA02 0.00442 3.05 16.28 2.84 SRCPARAM INTERA03 0.00442 3.05 16.28 2.84 SRCPARAM INTERA04 0.00442 3.05 18.33 2.84 SRCPARAM INTERA05 0.00442 3.05 18.33 2.84 SRCPARAM INTERA06 0.00442 3.05 18.33 2.84 SRCPARAM INTERA07 0.00442 3.05 18.33 2.84 SRCPARAM INTERA08 0.00442 3.05 18.33 2.84 SRCPARAM INTERA09 0.00442 3.05 18.33 2.84 SRCPARAM INTERA10 0.00442 3.05 18.33 2.84 SRCPARAM INTERA11 0.00442 3.05 18.33 2.84 SRCPARAM INTERA12 0.00442 3.05 18.33 2.84 SRCPARAM INTERA13 0.00442 3.05 17.37 2.84 SRCPARAM INTERA14 0.00442 3.05 17.37 2.84 SRCPARAM INTERA15 0.00442 3.05 17.37 2.84 SRCPARAM INTERA16 0.00442 3.05 17.37 2.84 SRCPARAM INTERA17 0.00442 3.05 17.37 2.84 SRCPARAM INTERA18 0.00442 3.05 17.37 2.84 SRCPARAM INTERA19 0.00442 3.05 17.37 2.84 SRCPARAM INTERA20 0.00442 3.05 17.37 2.84 SRCPARAM INTERA21 0.00442 3.05 17.37 2.84 SRCPARAM INTERA22 0.00442 3.05 17.37 2.84 SRCPARAM INTERA23 0.00442 3.05 17.37 2.84 SRCPARAM INTERA24 0.00442 3.05 17.37 2.84 SRCPARAM INTERA25 0.00442 3.05 17.37 2.84 SRCPARAM INTERA26 0.00442 3.05 17.37 2.84 SRCPARAM INTERA27 0.00442 3.05 17.37 2.84

** LINE Source ID = INTERB

SRCPARAM INTERB01 0.00397 3.05 18.43 2.84 SRCPARAM INTERB02 0.00397 3.05 18.43 2.84 SRCPARAM INTERB03 0.00397 3.05 18.43 2.84 SRCPARAM INTERB04 0.00397 3.05 18.43 2.84 SRCPARAM INTERB05 0.00397 3.05 18.43 2.84 SRCPARAM INTERB06 0.00397 3.05 18.43 2.84 SRCPARAM INTERB07 0.00397 3.05 18.43 2.84 SRCPARAM INTERB08 0.00397 3.05 18.43 2.84 SRCPARAM INTERB08 0.00397 3.05 18.43 2.84 SRCPARAM INTERB09 0.00397 3.05 18.43 2.84 SRCPARAM INTERB09 0.00397 3.05 18.43 2.84

" LINE Source ID = GYPWALL

SRCPARAM GYPWAL01 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL02 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL03 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL04 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL05 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL06 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL07 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL08 0.00093 3.05 9.30 2.84 SRCPARAM GYPWAL08 0.00093 3.05 9.30 2.84

^{**}Background Sources

```
**********
               a
                   н
                        Т
SRCID (g/s) (m) (K)
                                (m/s) (m)
    Progress Materials, Inc.
SO SRCPARAM PMINCALL 0.21 18.3 298 11.6 0.15
    Holcim, Inc.
**SO SRCPARAM
               HOLCIM1 0.403 22.86 298
                                         7.01 0.91
    Cemex, Inc. - Inglis Mine (was 0750031)
**SO SRCPARAM INGMINE1
                             0.469 18.29 298
                                              6.40 1.19
    SMG, INC
**SO SRCPARAM SMG1 2.520 0.00 298
                                        0.00
    Florida Crushed Stone - Brooksville Cement And Power Plants
               FCS13 0.643 21.34 372
SO SRCPARAM
                                        10.06 1.52
SO SRCPARAM
               FCS18 3.150 97.54
                                  422
                                       21.21 4.88
SO SRCPARAM
               FCS20
                      6.237
                            91.44
                                  378
                                        14.33 4.88
SO SRCPARAM
               FCS28 1.620 37.49 344
                                        10.06 2.62
SO SRCPARAM
               FCS44 3.629 97.54
                                  561
                                        12.22 4.27
SO SRCPARAM
               FCS55 1.159 39.62
                                  344
                                        14.78 2.29
**Units 6,10,15,22,25,29,36,45,50,& 57 modeled together using FCS45 parameters
"SO SRCPARAM
                FCS6 0.277
                            73.15 355
                                        8.84 1.07
                                         7.32
**SO SRCPARAM
                 FCS10 0.038 60.96
                                              0.46
**SO SRCPARAM
                FCS15 0.126 60.96
                                   355
                                         11.98 0.61
**SO SRCPARAM
                 FCS22 0.086 60.96
                                   355
                                         8.56 0.61
**SO SRCPARAM
                 FCS25 0.213 66.75
                                   355
                                         10.09 1.01
                FCS29 0.178 61.87
**SO SRCPARAM
                                   355
                                         10.58 0.64
"SO SRCPARAM
                 FCS36 0.178
                             60.96
                                   355
                                         31.61 0.46
**SO SRCPARAM
                 FCS45 0.144 59.13 366
                                         8.96 0.52
**SO SRCPARAM
                FCS50 0.032 61.87
                                   389
                                         10.12 0.49
**SO SRCPARAM
                FCS57 0.105 61.87 355
                                         9.36 0.49
SO SRCPARAM FCS45 1.377 59.13 366
                                        8.96 0.52
"Units 1,2,11,12,38,49,& 52 modeled together using FCS49 parameters
 SO SRCPARAM
                 FCS1 0.088 38.10 298
                                        10.97 0.61
 SO SRCPARAM
                FCS2
                       0.050 38.10 298
                                        6.71 0.61
**SO SRCPARAM
                                         14.33 0.46
                 FCS11 0.076 41.15 366
**SO SRCPARAM
                 FCS12 0.151 41.15 311
                                         9.14 0.76
**SO SRCPARAM
                 FCS38 0.097
                             45.72 311
                                         10.03 1.07
**SO SRCPARAM
                 FCS49 0.040 36.58 308
                                         10.12 0.49
**SO SRCPARAM
                FCS52 0.291 39.62 373
                                         14.14 1.22
SO SRCPARAM FCS49 0.793 36.58 308
                                        10.12 0.49
**Units 4,23,& 24 modeled together using FCS4 parameters
**SO SRCPARAM FCS4 0.025 21.34 355
                                        7.77 0.30
**SO SRCPARAM
                FCS23 0.014 22.86 298
                                         8.53 0.24
**SO SRCPARAM
               FCS24 0.130 24.38 298
                                       17.07 0.46
SO SRCPARAM FCS4 0.169 21.34 355 7.77 0.30
**Units 35 & 39 modeled together using FCS35 parameters
**SO SRCPARAM FCS35 0.139 30.48 294 10.88 0.76
**SO SRCPARAM FCS39 0.146 30.48 322
                                         6.52 0.76
SO SRCPARAM FCS35 0.285 30.48 294
                                       10.88 0.76
**Units 7,14,17,21,30,53,54,56,60,& 61 modeled together using FCS60 parameters
**SO SRCPARAM
                 FCS7 0.101 15.24 366
                                        9.69 0.61
**SO SRCPARAM
                 FCS14 0.050 15.24 344
                                         9.14 0.46
**SO SRCPARAM
                 FCS17 0.063
                             15.54
                                   355
                                         10.36 0.46
"SO SRCPARAM
                 FCS21 0.163 15.24
                                   344
                                         28.65 0.46
**SO SRCPARAM
                 FCS30 0.238 12.19
                                   339
                                         10.21
                                               1.19
**SO SRCPARAM
                 FCS53 0.051 14.02
                                   366
                                         11.98 0.55
**SO SRCPARAM
                 FCS54 0.051 14.02
                                   366
                                         11.98 0.55
"SO SRCPARAM
                 FCS56 0.051 14.02
                                         11.98 0.55
                                   366
**SO SRCPARAM
                 FCS60 0.202
                             12.19
                                   339
                                         9.36
                                              1.19
                                         10.70 0.34
**SO SRCPARAM
                 FCS61 0.018 12.19 339
SO SRCPARAM FCS60 0.988 12.19 339
                                       9.36 1.19
**Units 19,37,46,47,48,58,& 59 modeled together using FCS19 parameters
**SO SRCPARAM FCS19 0.146 8.84 303
                                        14.33 0.61
  60 SRCPARAM
                 FCS37 0.097 9.14
                                   339
                                         4.85
                                              0.61
 SO SRCPARAM
                 FCS46 0.033 9.14
                                         9.91
                                              0.43
                                   355
 *SO SRCPARAM
                 FCS47 0.033 9.14
                                   355
                                         9.91
                                              0.43
"SO SRCPARAM
                 FCS48
                       0.024 9.75
                                   389
                                         7.59
                                              0.49
**SO SRCPARAM
                 FCS58 0.026 9.14
                                              0.43
                                   355
                                         9.91
**SO SRCPARAM
                 FCS59 0.026 9.14
                                   355
                                         9.91
                                              0.43
```

```
SO SRCPARAM
               FCS19 0.385 8.84 303
                                       14.33 0.61
**Units 8,9,40,& 51 modeled together using FCS40 parameters
                                         9.45 0.61
"SO SRCPARAM
                 FCS8 0.088 4.57
                                   294
**SO SRCPARAM
                 FCS9
                       0.083 3.05
                                         32.98 0.30
                                   394
**SO SRCPARAM
                 FCS40 0.028 4.57
                                    298
                                          4.97
                                               0.46
**SO SRCPARAM
                 FCS51 0.105 4.57
                                   355
                                          14.66 0.70
SO SRCPARAM FCS40 0.304 4.57 298
                                        4.97
                                             0.46
    CEMEX
SO SRCPARAM
               CEMEX13 1.701 27.43 328
                                          19.51 0.43
SO SRCPARAM
                CEMEX14 3.742
                              32.00
                                          9.75
                                    394
                                                4.27
SO SRCPARAM
                CEMEX15 1.877
                                          21.64 2.29
                              15.24 478
SO SRCPARAM
               CEMEX27 1.600 14.63 255
                                          20.45 0.50
**Units 8, 12, 21, 22, & 16 are modeled together using CEMEX16 parameters
**SO SRCPARAM
                 CEMEX8 0.471 65.84 303
                                           24.08 0.61
**SO SRCPARAM
                 CEMEX12 0.247 67.06 366
                                            18.90 0.85
**SO SRCPARAM
                 CEMEX21 0.126 64.01
                                      336
                                            15.24 0.67
**SO SRCPARAM
                 CEMEX22 0.126 64.01
                                      339
                                            15.54 0.46
**SO SRCPARAM
                 CEMEX16 0.183 45.72 358
                                            7.01 0.85
SO SRCPARAM
               CEMEX16 1.153 45.72 358
                                          7.01 0.85
**Units 17, 18, 19, 23, & 24 are modeled together using CEMEX23 parameters
**SO SRCPARAM
                 CEMEX17 0.064 22.86 339
                                            19.20 0.30
**SO SRCPARAM
                 CEMEX18 0.183 22.86
                                      333
                                                 0.85
                                            7.01
**SO SRCPARAM
                 CEMEX19 0.504 22.86
                                      370
                                            18.90 1.01
**SO SRCPARAM
                 CEMEX23 0.063 21.34
                                      339
                                            15.54
                                                  0.46
**SO SRCPARAM
                 CEMEX24 0.076 24.69 315
                                            11.89 0.52
                CEMEX23 0.890 21.34 339
SO SRCPARAM
                                           15.54 0.46
**Units 25 & 26 are modeled together using CEMEX26 parameters
**SO SRCPARAM
                 CEMEX25 0.001 9.75 294 24.08 0.61
**SO SRCPARAM
                 CEMEX26 0.076 7.32 319
                                           6.10 0.61
               CEMEX26 0.077 7.32 319 6.10 0.61
SO SRCPARAM
    IMC Agrico (Pierce)
                1AGRI -5.040 24.38 321
SO SRCPARAM
                                         21.24 2.44
SO SRCPARAM
                2AGRI -3.919 28.96 683
                                         14.87 1.77
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 31.10 87.60
                     87.60 87.60 87.60 87.60 38.00 38.00
SO BUILDHGT U45100
SO BUILDHGT U45100
                     38.00
                           38.00 38.00 38.00 38.00
                                                    0.00
SO BUILDHGT U45100
                     0.00
                           0.00
                                 0.00 0.00 0.00 87.60
                           38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00 0.00
SO BUILDWID U45100
                     44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67
                     46.73
SO BUILDWID U45100
                           48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                     0.00
                           0.00
                                 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                           33.70 27.10 33.70 39.28 43.67
                     39.28
SO BUILDWID U45100
                     46.73
                           48.37 48.54 47.23 44.49
                                                   0.00
SO BUILDLEN U45100
                     33.67
                           39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45100
                    100.22
                           79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45100
                     0.00
                           0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100
                          44.49 40.40 44.49 47.23 48.54
                     47.23
SO BUILDLEN U45100
                     48.37 46.73 43.67 39.28 33.70 0.00
SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
SO XBADJ
SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
           U45100
                    0.00
                         0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45100
                    9.22
                         16.51
                              23.30 24.68 25.31 25.16
                   24.26 22.62 20.29
SO XBADJ
           U45100
                                     17.34 13.87
                                                 0.00
SO YBADJ
           U45100
                   25.96
                          7.68 -10.83 -29.01 76.77 90.51
SO YBADJ
           U45100
                    49.03
                          6.06 -37.10 -79.12
                                            7.23 -1.38
           U45100
                    -9.94 -18.20 -25.91 -32.83 -38.75
SO YBADJ
                                                  0.00
                    0.00 0.00 0.00 0.00 0.00 -90.51
SO YBADJ
           U45100
           U45100
                   -36.98
                         -30.72 -23.52 -15.61 -7.23 1.38
SO YBADJ
SO YBADJ
           U45100
                    9.94 18.20 25.91 32.83 38.75 0.00
SO BUILDHGT HCT1
                      10.00 10.00 10.00 10.00 10.00 10.00
SO BUILDHGT HCT1
                           10.00
                                       10.00 10.00 10.00
                      10.00
                                 10.00
SO BUILDHGT HCT1
                      10.00
                           10.00
                                 10.00
                                       10.00
                                             10.00 10.00
SO BUILDHGT HCT1
                      10.00
                           10.00
                                  10.00
                                        10.00
                                              10.00
                                                    10.00
```

SO BUILDHGT HCT1

SO BUILDHGT HCT1

10.00

10.00

10.00 10.00

10.00

10.00

10.00

10.00

10.00

10.00 10.00

10.00

SO BUILDWID HCT1 787.80 764.15 717.29 648.63 560.26 454.88 335.67 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT1 O BUILDWID HCT1 477.17 579.39 664.01 728.46 770.77 789.66 O BUILDWID HCT1 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT1 335.66 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT1 477.17 579.39 664.01 728.46 770.77 789.66 SO BUILDLEN HCT1 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT1 728.46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT1 648.63 560.26 454.88 335.67 206.26 70.58 SO BUILDLEN HCT1 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT1 728,46 770.77 789.66 787.80 764.15 717.29 SO BUILDLEN HCT1 648.63 560.26 454.88 335.66 206.26 70.58 SO XBADJ -14.85 -28.38 -41.04 -52.45 -62.28 -70.20 HCT1 -76.00 -79.49 -80.56 -80.80 -79.67 -76.11 SO XBADJ HCT1 SO XBADJ HCT1 -70.24 -62.24 -52.35 -40.86 -28.14 -14.56 SO XBADJ HCT1 -83.17 -204.39 -319.40 -424.71 -517.12 -593.81 -652.46 -691.28 -709.10 -707.00 -684.49 -641.18 SO XBADJ HCT1 SO XBADJ -578.39 -498.02 -402.53 -294.80 -178.12 -56.02 HCT1 SO YBADJ HCT1 -313.10 -302.41 -282.53 -254.07 -217.89 -175.09 -126.97 -74.99 -20.73 34.16 88.01 139.18 SO YBADJ HCT1 SO YBADJ HCT1 186.13 227.42 261.80 288.23 305.90 314.27 SO YBADJ 313.10 302.41 282.53 254.07 217.89 175.09 HCT1 126.97 74.99 20.73 -34.16 -88.01 -139.18 HCT1 SO YBADJ SO YBADJ HCT1 -186.13 -227.42 -261.80 -288.23 -305.90 -314.27 SO BUILDHGT HCT2 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT2 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT2 10.00 10.00 10.00 SO BUILDHGT HCT2 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT2 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT2 SO BUILDWID HCT2 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT2 335.67 206.26 70.58 98.02 232.77 360.44 477.17 579.39 664.01 728.46 770.77 789.66 SO BUILDWID HCT2 SO BUILDWID HCT2 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT2 335.66 206.26 70.58 98.02 232.77 360.44 477.17 579.39 664.01 728.46 770.77 789.66 O BUILDWID HCT2 98.02 232.77 360.44 477.17 579.39 664.01 O BUILDLEN HCT2 SO BUILDLEN HCT2 728.46 770.77 789.66 787.80 764.15 717.29 648.63 560.26 454.88 335.67 206.26 70.58 SO BUILDLEN HCT2 SO BUILDLEN HCT2 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT2 728.46 770.77 789.66 787.80 764.15 717.29 648.63 560.26 454.88 335.66 206.26 70.58 SO BUILDLEN HCT2 SO XBADJ HCT2 -34.21 -79.37 -122.12 -161.16 -195.31 -223.52 SO XBADJ HCT2 -244.93 -258.91 -265.02 -264.69 -257.40 -242.29 SO XBADJ -219.82 -190.67 -155.72 -116.05 -72.84 -27.43 HCT2 -63.81 -153.40 -238.32 -316.00 -384.09 -440.50 SO XBADJ HCT2 SO XBADJ HCT2 -483.52 -511.86 -524.64 -523.10 -506.75 -475.00 -428.81 -369.60 -299.15 -219.62 -133.41 -43.15 SO XBADJ HCT2 -129.21 -124.67 -116.35 -104.50 -89.46 -71.71 SO YBADJ HCT2 SO YBADJ HCT2 -51.79 -30.28 -7.86 14.80 37.01 58.10 77.42 94.39 108.49 119.29 126.48 129.81 SO YBADJ HCT2 SO YBADJ HCT2 129.21 124.67 116.35 104.50 89.46 71.71 SO YBADJ HCT2 51.79 30.28 7.86 -14.80 -37.01 -58.10 -77.42 -94.39 -108.49 -119.29 -126.48 -129.81 HCT2 SO YBADJ SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 SO BUILDHGT HCT3 10.00 10.00 10.00 10.00 10.00 10.00 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT3 SO BUILDWID HCT3 335.67 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT3 477.17 579.39 664.01 728.46 770.77 789.66 787.80 764.15 717.29 648.63 560.26 454.88 SO BUILDWID HCT3 335.66 206.26 70.58 98.02 232.77 360.44 SO BUILDWID HCT3 SO BUILDWID HCT3 477.17 579.39 664.01 728.46 770.77 789.66 SO BUILDLEN HCT3 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT3 728.46 770.77 789.66 787.80 764.15 717.29 O BUILDLEN HCT3 648.63 560.26 454.88 335.67 206.26 70.58 O BUILDLEN HCT3 98.02 232.77 360.44 477.17 579.39 664.01 SO BUILDLEN HCT3 728.46 770.77 789.66 787.80 764.15 717.29 648.63 560.26 454.88 335.66 206.26 70.58 SO BUILDLEN HCT3 SO XBADJ HCT3 -56.90 -147.25 -233.11 -311.90 -381.21 -438.94

-483.33 -513.03 -527.15 -526.86 -511.65 -480.89

SO XBADJ HCT3

SO BUILDHGT HCT4 10.00
SO BUILDHGT HCT4 SO BUILDHGT HCT4 SO BUILDWID HCT4 SO BUILDLEN HCT4 SO SBADJ HCT4 SO XBADJ HCT4 SO YBADJ
SO BUILDHGT FAT1 SO BUILDWID FAT1 SO BUILDLEN FAT1 SO BUI

SO BUILDHGT FAS1&2 0.00 12.20 12.20 12.20 12.20 12.20 SO BUILDHGT FAS1&2 60.40 60.40 12.20 12.20 12.20 12.20 O BUILDHGT FAS1&2 0.00 12.20 0.00 0.00 0.00 0.00 O BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 SO BUILDWID FAS1&2 57.84 57.89 57.90 57.89 57.84 57.78 SO BUILDWID FAS1&2 71.33 71.33 0.00 0.00 0.00 0.00 SO BUILDWID FAS1&2 0.00 57.85 57.78 57.68 57.68 57.78 SO BUILDWID FAS1&2 68.88 54.98 57.90 57.89 57.84 57.78 SO BUILDWID FAS1&2 0.00 71.33 0.00 0.00 0.00 0.00 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 57.85 57.89 57.90 57.89 57.85 57.78 SO BUILDLEN FAS1&2 71.33 0.00 0.00 71.33 0.00 0.00 SO BUILDLEN FAS1&2 0.00 57.84 57.78 57.68 57.68 57.78 SO BUILDLEN FAS1&2 100.69 98.41 57.90 57.89 57.85 57.78 SO BUILDLEN FAS1&2 0.00 0.00 0.00 0.00 0.00 71.33 SO XBADJ FAS1&2 0.00 0.11 5.32 9.51 12.49 14.16 SO XBADJ FAS1&2 14.54 13.61 11.40 7.99 3.46 -2.04 SO XBADJ FAS1&2 -100.72 -95.65 0.00 0.00 0.00 0.00 SO XBADJ FAS1&2 0.00 -57.95 -63.10 -67.19 -70.17 -71.94 SO XBADJ FAS1&2 -348.91 -353.53 -69.31 -65.87 -61.30 -55.74 SO XBADJ 0.00 0.00 0.00 0.00 FAS1&2 0.00 24.32 SO YBADJ FAS1&2 0.00 -32.38 -26.85 -20.50 -13.53 -6.15 SO YBADJ FAS1&2 1.42 8.95 16.20 22.96 29.03 34.21 SO YBADJ FAS1&2 -23.51 -34.45 0.00 0.00 0.00 0.00 SO YBADJ FAS1&2 0.00 32.38 26.85 20.50 13.53 SO YBADJ FAS1&2 61.52 8.88 -16.20 -22.96 -29.03 -34.21 SO YBADJI FAS1&2 0.00 34.45 0.00 0.00 0.00 0.00

SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2A 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDWID FAT2A 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 O BUILDWID FAT2A 89.37 96.10 99.92 100.69 98.41 O BUILDWID FAT2A 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID FAT2A 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2A 89.37 96.10 99.92 100.69 98.41 93.14 SO BUILDLEN FAT2A 79.92 89.37 96.10 99.92 54.10 68.04 SO BUILDLEN FAT2A 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2A 96.68 90.05 80.69 68.88 54.97 41.31 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT2A SO BUILDLEN FAT2A 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2A 96.68 90.05 80.69 68.88 54.97 41.31 SO XBADJ 28.85 29.69 29.63 28.67 26.83 24.19 FAT2A SO XBADJ FAT2A 20.81 16.79 7.88 -60.59 -10.27 -21.24 SO XBADJ FAT2A -31.57 -40.93 -49.06 -55.69 -60.63 -65.64 SO XBADJ -82.94 -97.73 -109.55 -118.04 -122.94 -124.10 FAT2A SO XBADJ FAT2A -121.50 -115.20 -59.98 6.88 -90.73 -79.12 SO XBADJ FAT2A -65.11 -49.12 -31.64 -13.19 5.65 24.33 SO YBADJ -50.30 -40.23 -28.94 -16.77 -4.09 FAT2A 8.71 SO YBADJ FAT2A 21.25 33.14 -0.08 -7.13 63.71 69.59 SO YBADJ FAT2A 73.35 74.89 74.15 71.15 66.00 58.84 SO YBADJ 50.30 40.23 28.94 FAT2A 16.77 4.09 -8.71 SO YBADJ FAT2A -21.25 -33.14 0.08 7.13 -63.71 -69.59 -73.35 -74.89 -74.15 -71.15 -66.00 -58.84 SO YBADJ FAT2A

SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 12.20 12.20 60.40 60.40 SO BUILDHGT FAT2B 60.40 60.40 60.40 60.40 60.40 98.57 101.00 SO BUILDWID FAT2B 100.36 96.68 90.05 80.69 SO BUILDWID FAT2B 68.88 54.98 26.05 34.33 68.04 79.92 SO BUILDWID FAT2B 89.37 96.10 99.92 100.69 98.41 93.14 100.36 96.68 90.05 80.69 SO BUILDWID FAT2B 98.57 101.00 SO BUILDWID FAT2B 68.88 54.98 26.05 34.33 68.04 79.92 O BUILDWID FAT2B 89.37 96.10 99.92 100.69 98.41 93.14 O BUILDLEN FAT2B 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN FAT2B 100.69 98.41 52.11 53.70 101.00 100.36 SO BUILDLEN FAT2B 96.68 90.05 80.69 68.88 54.97 41.31 89.37 96.10 99.92 SO BUILDLEN FAT2B 54.10 68.04 79.92 SO BUILDLEN FAT2B 100.69 98.41 52.11 53.70 101.00 100.36

```
SO BUILDLEN FAT2B
                     96.68 90.05 80.69 68.88 54.97 41.31
SO XBADJ FAT2B
                    28.85 29.69 29.63 28.67 26.83 24.19
SO XBADJ
           FAT2B
                    20.81 16.79
                                7.88 -60.59 -10.27 -21.24
                         -40.93 -49.06 -55.69 -60.63 -65.64
SO XBADJ
           FAT2B
                   -31.57
SO XBADJ
           FAT2B
                   -82.94 -97.73 -109.55 -118.04 -122.94 -124.10
SO XBADJ
           FAT2B
                   -121.50 -115.20 -59.98 6.88 -90.73 -79.12
SO XBADJ
           FAT2B
                   -65.11 -49.12 -31.64 -13.19 5.65 24.33
SO YBADJ
           FAT2B
                   -50.30 -40.23 -28.94 -16.77 -4.09
                                                   8.71
                                -0.08 -7.13 63.71 69.59
SO YBADJ
           FAT2B
                    21.25 33.14
SO YBADJ
           FAT2B
                    73.35
                         74.89
                                74.15
                                      71.15 66.00 58.84
SO YBADJ
           FAT2B
                    50.30 40.23
                                28.94
                                      16.77 4.09 -8.71
SO YBADJ
           FAT2B
                    -21.25 -33.14
                                0.08
                                      7.13 -63.71 -69.59
SO YBADJ
           FAT2B
                   -73.35 -74.89 -74.15 -71.15 -66.00 -58.84
SO BUILDHGT BAS12
                      0.00 0.00 0.00 0.00 12.20 12.20
SO BUILDHGT BAS12
                      12.20
                           12.20
                                 0.00
                                        0.00 0.00
                                                   0.00
SO BUILDHGT BAS12
                      0.00
                            0.00
                                  0.00
                                       0.00
                                             0.00
                                                   0.00
SO BUILDHGT BAS12
                      0.00
                            0.00
                                  0.00
                                       0.00
                                             0.00
                                                   0.00
SO BUILDHGT BAS12
                            0.00
                                  0.00 60.40
                                                   60.40
                      0.00
                                             60.40
SO BUILDHGT BAS12
                      60.40
                            0.00
                                  0.00
                                        0.00
                                             0.00
                                                   0.00
SO BUILDWID BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00 57.68 57.78
SO BUILDWID BAS12
                                        0.00 0.00
                      57.84
                            57.89
                                  0.00
                                                   0.00
SO BUILDWID BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                            0.00
                                                   0.00
SO BUILDWID BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                             0.00
                                                   0.00
SO BUILDWID BAS12
                            0.00
                                 0.00 54.10 68.04
                                                   79.92
                      0.00
SO BUILDWID BAS12
                      89.37
                            0.00
                                  0.00
                                       0.00
                                             0.00
                                                   0.00
SO BUILDLEN BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00 57.68
                                                   57.78
SO BUILDLEN BAS12
                            57.89
                                        0.00 0.00
                      57.84
                                  0.00
                                                   0.00
SO BUILDLEN BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                            0.00
                                                   0.00
SO BUILDLEN BAS12
                      0.00
                            0.00
                                 0.00
                                       0.00
                                             0.00
                                                   0.00
SO BUILDLEN BAS12
                      0.00
                            0.00
                                 0.00
                                      98.57 101.00 100.36
SO BUILDLEN BAS12
                      96.68
                            0.00
                                  0.00
                                       0.00
                                             0.00 0.00
SO XBADJ
           BAS12
                     0.00
                          0.00 0.00
                                     0.00 -113.15 -115.70
                                  0.00 0.00 0.00 0.00
                   -115.59 -112.84
SO XBADJ
           BAS12
SO XBADJ
           BAS12
                    0.00
                          0.00
                                0.00
                                     0.00
                                           0.00
                                                 0.00
SO XBADJ
           BAS12
                     0.00
                          0.00
                                0.00
                                      0.00
                                           0.00
                                                 0.00
SO XBADJ
           BAS12
                                0.00 -242.62 -250.48 -250.72
                    0.00
                          0.00
SO XBADJ
           BAS12
                   -243.34
                           0.00
                                 0.00 0.00
                                            0.00 0.00
SO YBADJ
           BAS12
                     0.00
                          0.00
                                0.00 0.00 21.75
                                                  6.78
SO YBADJ
           BAS12
                    -8.40
                         -23.32
                                0.00
                                      0.00
                                            0.00
                                                  0.00
SO YBADJ
           BAS12
                     0.00
                          0.00
                                0.00
                                      0.00
                                           0.00
                                                 0.00
SO YBADJ
           BAS12
                     0.00
                          0.00
                                0.00
                                      0.00
                                            0.00
                                                 0.00
SO YBADJI
           BAS12
                          0.00
                                0.00 52.82
                     0.00
                                            18.51 -16.35
SO YBADJ
           BAS12
                    -50.72
                           0.00
                                0.00
                                      0.00
                                            0.00 0.00
SO BUILDHGT CBO
                     65.30 84.40 84.40 84.40 84.40 84.40
SO BUILDHGT CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDHGT CBO
                      0.00
                           0.00
                                 0.00
                                       0.00
                                            0.00
                                                  0.00
SO BUILDHGT CBO
                      0.00 84.40
                                 84.40 84.40 84.40 84.40
SO BUILDHGT CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDHGT CBO
                      0.00 38.00
                                 38.00 38.00 0.00 0.00
SO BUILDWID CBO
                     96.38 100.22 117.84 131.88 141.91 147.63
SO BUILDWID CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDWID CBO
                      0.00
                           0.00
                                 0.00
                                      0.00
                                            0.00
                                                  0.00
                      0.00 100.22 117.84 131.88 141.91 147.63
SO BUILDWID CBO
SO BUILDWID CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDWID CBO
                      0.00 48.37 48.54 47.23 0.00 0.00
SO BUILDLEN CBO
                     145.57 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDLEN CBO
                      0.00
                           0.00
                                 0.00
                                      0.00
                                           0.00
                                                  0.00
SO BUILDLEN CBO
                      0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN CBO
                      0.00
                           0.00
                                 0.00 0.00 0.00 0.00
SO BUILDLEN CBO
                      0.00 46.73
                                 43.67 39.28 0.00 0.00
           CBO
                   -289.14 -302.96 -307.57 -302.83 -288.90 -266.18
SO XBADJ
SO XBADJ
           CBO
                    0.00 0.00
                               0.00
                                     0.00 0.00 0.00
SO XBADJ
            CBO
                    0.00
                         0.00
                                0.00
                                     0.00
                                           0.00
                                                 0.00
SO XBADJ
            CBO
                    0.00 154.10 159.94 160.93 157.02 148.34
 SO XBADJ
            CBO
                    0.00 0.00 0.00 0.00 0.00 0.00
 SO XBADJ
            CBO
                    0.00 -177.51 -178.75 -174.56 0.00 0.00
 SO YBADJ
                                9.64 -31.09 -70.89 -108.53
            CBO
                    80.60 50.09
 SO YBADJ
            CBO
                    0.00
                          0.00
                                0.00
                                     0.00 0.00 0.00
 SO YBADJ
            CBO
                          0.00
                                0.00
                                      0.00
                                           0.00
                                                 0.00
                    0.00
 SO YBADJ
            CBO
                     0.00
                         -50.09
                                -9.64
                                      31.09 70.89 108.53
 SO YBADJ
            CBO
                     0.00
                          0.00
                                0.00
                                      0.00 0.00 0.00
                                2.21 -25.07 0.00 0.00
 SO YBADJ
            CBO
                     0.00
                         29.43
```

** EMISFACT PILGYP WSPEED 3*0 3*1

SRCGROUP U45100 U45100

SRCGROUP ALL

SO FINISHED

** AERMOD Receptor Pathway

RE STARTING

INCLUDED CRAUG06A.rou

RE FINISHED

** AERMOD Meteorology Pathway

**

ME STARTING

SURFFILE C:\amodmet\TAMPA_2001.SFC PROFFILE C:\amodmet\TAMPA_2001.PFL SURFDATA 12842 2001 TAMPA/INT'L_ARPT UAIRDATA 12842 2001 TAMPA/INT'L_ARPT PROFBASE 19 FEET WINDCATS 1.54 3.09 5.39 8.23 10.8

ME FINISHED

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST SECOND OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :C2P255.O01 AERMOD OUTPUT FILE NUMBER 2 :C2P255.002 AERMOD OUTPUT FILE NUMBER 3 :C2P255.003 AERMOD OUTPUT FILE NUMBER 4 :C2P255.O04 AERMOD OUTPUT FILE NUMBER 5 :C2P255.O05

First title for last output file is: 2001 PGN CR PM10 PSD CLASS II SOURCES 8/15/06
Second title for last output file is: TAMPA/RUSKIN METDATA 2001-05 (UPDATED SURFACE PARAMETERS)

AVERAGING TIME YEAR CONC X Y PERIOD E	NDING			
(ug/m3) (m) (m) (YYMMDDHH)				
SOURCE GROUP ID: U45100				
Annual 2001 0.00004 000500 0005000 01100104				
2001 0.62384 336500. 3205200. 01123124				
2002 0.66060 333434. 3205679. 02123124				
2003 0.62738 336400. 3205100. 03123124 2004 0.64687 336400. 3205100. 04123124				
2005 0.66278 336400. 3205100. 05123124				
HIGH 24-Hour				
2001 6.72891 336600. 3205400. 01052624 2002 6.57486 333800. 3205800. 02060524				
2003 6.22251 336800. 3205500. 03053024 2004 7.53404 336600. 3205400. 04052724				
2005 8.77922 336500. 3205000. 05052424 HSH 24-Hour				
2001 6.18043 336700. 3205500. 01071224				
2001 6.16043 336700. 3205500. 01071224 2002 5.73347 333531. 3205678. 02052424				
2002 5.75347 33351. 3205676. 02052424 2003 5.55350 333482. 3205679. 03081524				
2003 5.55550 535482. 5205679. 03081524 2004 6.04141 336400. 3205300. 04082924				
2004 6.04141 336400. 3205300. 04062924 2005 7.15927 336300. 3205100. 05032824				
SOURCE GROUP ID: ALL				
Annual				
2001 6.15640 336049. 3204839. 01123124				
2002 5.93062 336049. 3204839. 02123124				
2002 5.95002 530049. 5204059. 02125124				
2004 6.53733 336099. 3204838. 04123124				
2005 5.90698 336099. 3204838. 05123124				
HIGH 24-Hour				
2001 22.48584 336348. 3204834. 01081624				
2002 24.50613 335100. 3205700. 02012124				
2003 28.45001 337843. 3204809. 03072124				
2004 34.75616 337594. 3204814. 04011524				
2005 31.02207 338740. 3204795. 05081024				
HSH 24-Hour				
2001 20.85495 335200. 3205700. 01071124				
2002 22.40025 335100. 3205700, 02012524				
2003 25.12480 336498. 3204832. 03010924				
2004 23.06524 336348. 3204834. 04080524				
2005 26.77573 336099. 3204838. 05012024				
All receptor computations reported with respect to a user-specified original	in			
GRID 0.00 0.00				
DISCRETE 0.00 0.00				

```
CO STARTING
 ITLEONE 2001 PGN CR PROJECT 550 FT SO2 0.27 LB/MMBTU 8/16/06
   TLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
 AVERTIME PERIOD 24 3
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
*****************************
** AERMOD Source Pathway
**
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION 1145100 POINT 334776 800 3205393 420 1 000
 LOCATION BLR4 POINT 334665.270 3205401.840 1.000
 LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.27 LB/MMBTU X 7200= 1944 LB/HR PER UNIT
 SRCPARAM U45100 489.9 167.700 328.000 15.300 9.300
 SRCPARAM BLR4 -1008.8 178.200 300.000 21.00000 7.770
 SRCPARAM BLR5 -1008.8 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100 87.60 87.60 87.60 87.60 38.00 38.00
   BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00 0.00
   BUILDHGT U45100
                     0.00
                           0.00 0.00 0.00 0.00 87.60
 SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00 38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00 0.00
SO BUILDWID U45100 44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                    0.00 0.00 0.00 0.00 0.00 147.63
                     39.28 33.70 27.10 33.70 39.28 43.67
SO BUILDWID U45100
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49
SO BUILDLEN U45100 33.67 39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45100 100.22 79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70
                                                   0.00
SO BUILDLEN U45100 0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100 47.23 44.49 40.40 44.49 47.23 48.54
SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70
SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
SO XBADJ
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
           U45100 0.00 0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45100
                    9.22 16.51 23.30 24.68 25.31 25.16
SO XBADJ
           U45100 24.26 22.62 20.29 17.34 13.87
                                                  0.00
 SO YBADJ
           U45100 25.96 7.68 -10.83 -29.01 76.77 90.51
 SO YBADJI
           U45100 49.03 6.06 -37.10 -79.12 7.23 -1.38
 SO YBADJ
           U45100
                   -9.94 -18.20 -25.91 -32.83 -38.75
                                                  0.00
 SO YBADJ
           U45100
                    0.00 0.00 0.00 0.00 0.00 -90.51
           U45100 -36.98 -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
 SO YBADJ
           U45100 9.94 18.20 25.91 32.83 38.75 0.00
 SO BUILDHGT BLR4
                     27.80 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     27.80 27.80 27.80
                                       0.00 0.00 0.00
 SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40 84.40
```

84.40 84.40 84.40 84.40 84.40 84.40

138.19 129.98 117.84 131.88 141.91 147.63

148.86 145.57 137.85 145.57 148.86 147.63

0.00 129.98 117.84 131.88 141.91 147.63

148.86 145.57 137.85 145.57 148.86 147.63

38.00 38.00 38.00 38.00 0.00 0.00

125.54 134.97 140.30 0.00 0.00 0.00

46.71 48.36 48.53 47.24 0.00 0.00

SO BUILDHGT BLR4

SO BUILDHGT BLR4

BUILDWID BLR4

BUILDWID BLR4

BUILDWID BLR4

SO BUILDWID BLR4

SO BUILDWID BLR4

SO BUILDWID BLR4

Page: 1

```
75.81 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                    135.12 125.72 112.50 0.00 0.00 0.00
                     0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
SO BUILDLEN BLR4
                    100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                     48.36 46.71 43.64 39.25 0.00 0.00
                  -140.83 -162.94 -180.10 -191.79 -197.65 -197.50
SO XBADJ BLR4
SO XBADJ
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
           BLR4
SO XBADJ
           BLR4
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
SO XBADJ
           BLR4
                    0.00 14.08 32.48 49.88 65.77 79.66
SO XBADJ
           BLR4
                   91.13 99.83 105.50 84.02 60.00 34.14
SO XBADJ
           BLR4
                   -144.04 -147.81 -147.09 -141.90 0.00 0.00
SO YBADJ
           BLR4
                   78.62 95.23 93.06 73.19 51.10 27.45
SO YBADJ
           BLR4
                    2.97 -21.60 -45.52 -68.05 -88.51 -106.29
SO YBADJ
           BLR4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
SO YBADJ
           BLR4
                   -2.97 21.60 45.52 68.05 88.51 106.29
SO YBADJ
          BLR4
                    36.93 15.56 -6.29 -27.95
                                            0.00
                                                 0.00
SO BUILDHGT BLR5
                     0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 27.80 0.00
SO BUILDHGT BLR5
                      0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
                     84.40 84.40 84.40 65.30 0.00 0.00
SO BUILDHGT BLR5
SO BUILDWID BLR5
                     0.00 0.00 140.52 135.27 125.90 147.63
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 138.13 0.00
SO BUILDWID BLR5
                     0.00 47.23 48.54 48.37 46.73 147.63
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 0.00 0.00
SO BUILDLEN BLR5
                     0.00 0.00 112.05 125.31 134.77 117.84
SO BUILDLEN BLR5
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 76.31 0.00
SO BUILDLEN BLR5
                     0.00 39.28 43.67 46.73 48.37 117.84
 SO BUILDLEN BLR5
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 0.00 0.00
                    0.00 0.00 -100.94 -121.76 -138.89 -151.80
SO XBADJ BLR5
 SO XBADJ
            BLR5
                   -160.09 -163.52 -161.98 -179.46 -191.48 -197.69
 SO XBADJ
            BLR5
                   -197.89 -192.08 -180.43 -163.30 -141.20 0.00
SO XBADJ
                    0.00 -143.00 -148.09 -148.69 -144.76 33.96
            BLR5
 SO XBADJ
            BLR5
                    59.87 83.96 105.50 99.90 91.26 79.85
 SO XBADJ
            BLR<sub>5</sub>
                    66.01 50.17 32.80 14.44 0.00 0.00
                    0.00 0.00 81.74 71.52 59.12 106.61
            BLR5
 SO YBADJ
            BLR5
                    88.87 68.42 45.89 21.97 -2.62 -27.13
 SO YBADJ
 SO YBADJ
            BLR5
                    -50.81 -72.95 -92.88 -95.16 -78.58 0.00
 SØ YBADJ
            BLR5
                    0.00 27.50 5.66 -16.35 -37.86 -106.61
                    -88.87 -68.42 -45.89 -21.97 2.62 27.13
 SO YBADJ
            BLR5
 SØ YBADJ
            BLR5
                    50.81 72.95 92.88 95.16 0.00 0.00
  SRCGROUP U45100 U45100
  SRCGROUP ALL
 SO FINISHED
 ************
 ** AERMOD Receptor Pathway
 RE STARTING
  INCLUDED CRAUG06A.ROU
 RE FINISHED
 ********************
 ** AERMOD Meteorology Pathway
 **
 ME STARTING
   SURFFILE C:\amodmet\TAMPA 2001.SFC
   PROFFILE C:\amodmet\TAMPA 2001.PFL
   SURFDATA 12842 2001 TAMPA/INT'L_ARPT
   UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
   PROFBASE 19 FEET
 ME FINISHED
```

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :PRS55A27.001 AERMOD OUTPUT FILE NUMBER 2 :PRS55A27.002 AERMOD OUTPUT FILE NUMBER 3 :PRS55A27.003
AERMOD OUTPUT FILE NUMBER 4 :PRS55A27.004
AERMOD OUTPUT FILE NUMBER 5 :PRS55A27.005

First title for last output file is: 2001 PGN CR PROJECT 550 FT SO2 0.27 LB/MMBTU 8/16/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIM		CONC (m) (m		Y PERIOD ENDING
SOURCE GROUP Annual	D: U4510	0		
2001	3.36498	336500.	3205200.	01123124
2002	3.56507	333434.	3205679.	02123124
2003	3.38574	336400.	3205100.	03123124
2004	3.49031	336400.	3205100.	04123124
2005	3.57649	336400.	3205100.	05123124
HIGH 24-Hour				
2001	35.29628	33 6 700.	3205400.	01052624
2002	35.48179	333800.	3205800.	02060524
2003	33.57984	336800.	3205500.	03053024
2004	40.64769	336600.	3205400.	04052724
2005	47.38185	336500.	3205000.	05052424
HIGH 3-Hour				
2001	153.37410	336700.		01071215
2002	129.07887	336700.		02051718
2003	143.32951	336700.	3206000.	03030915
2004	151.59546	336600.	3205600.	04060215
2005	142.98541	336500.	3205100.	05052418
SOURCE GROU	P ID: ALL			
Annual				
2001	0.00000	0.		23124
2002	0.00000	0.		23124
2003	0.00000	0.		23124
2004	0.00000	0.		23124
2005	0.00000	0.	0. 0512	23124
HIGH 24-Hour				
2001	4.22576	343800.		01070624
2002	5.64717	344800.	3210400.	02011124
2003	2.70538	340800.	3214400.	03060924
2004	3.19574	337800.	3215400.	04033024
2005	2.81214	340800.	3215400.	05012124
HIGH 3-Hour	00 000 10	0.40000	0011100	04050700
2001	29.06048	340800.		
2002	44.38533	339800.	3213400.	02021212
2003	43.37156	339800.	3213400.	03020715
2004		340800.	3213400.	04101212
2005	17.32894	340800.	3215400.	05012112
All receptor computations reported with respect to a user-specified origin				
GRID 0.0				
DISCRETE	0.00 0	.00		

```
CO STARTING
 TITLEONE 2001 PGN CR PROJECT 550 FT SO2 0.27 LB/MMBTU CLASS I 8/16/06
   TLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
 AVERTIME PERIOD 24 3
 POLITID GEN
 RUNORNOT RUN
CO FINISHED
******
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
 LOCATION BLR4 POINT 334665.270 3205401.840 1.000
 LOCATION BLR5 POINT 334665.270 3205310.430 1.000
** Source Parameters **
** PROP. 0.27 LB/MMBTU X 7200= 1944 LB/HR PER UNIT
 SRCPARAM U45100 489.9 167.700 328.000 15.300 9.300
 SRCPARAM BLR4 -1008.8 178.200 300.000 21.00000 7.770
 SRCPARAM BLR5 -1008.8 178.200 300.000 21.00000 7.770
** Building Downwash **
SO BUILDHGT U45100 38.00 38.00 38.00 38.00 31.10 87.60
SO BUILDHGT U45100
                     87.60 87.60 87.60 87.60 38.00 38.00
   BUILDHGT U45100
                     38.00
                           38.00 38.00 38.00 38.00
                                                   0.00
   BUILDHGT U45100
                           0.00 0.00 0.00 0.00 87.60
                     0.00
                           38.00 38.00 38.00 38.00 38.00
 BUILDHGT U45100
                     38.00
SO BUILDHGT U45100
                     38.00 38.00 38.00 38.00 38.00
                                                   0.00
SO BUILDWID U45100
                     44.50 47.24 48.53 48.36 144.98 147.63
SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDWID U45100
                     0.00 0.00 0.00 0.00 0.00 147.63
SO BUILDWID U45100
                     39.28 33.70 27.10 33.70 39.28 43.67
SO BUILDWID U45100
                     46.73 48.37 48.54 47.23 44.49 0.00
SO BUILDLEN U45100
                     33.67 39.25 43.64 46.71 126.46 117.84
SO BUILDLEN U45100 100.22 79.56 56.48 79.56 47.23 48.54
SO BUILDLEN U45100
                    48.37 46.73 43.67 39.28 33.70 0.00
SO BUILDLEN U45100
                     0.00 0.00 0.00 0.00 0.00 117.84
SO BUILDLEN U45100
                     47.23 44.49 40.40 44.49 47.23 48.54
SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00
SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88
SO XBADJ
           U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70
SO XBADJ
           U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00
SO XBADJ
           U45100
                   0.00 0.00 0.00 0.00 0.00 172.04
SO XBADJ
           U45100
                    9.22 16.51 23.30 24.68 25.31 25.16
SO XBADJ
           U45100 24.26 22.62 20.29 17.34 13.87 0.00
 SO YBADJ
           U45100 25.96 7.68 -10.83 -29.01 76.77 90.51
 SO YBADJ
           U45100
                   49.03
                          6.06 -37.10 -79.12 7.23 -1.38
SO YBADJ
           U45100
                   -9.94 -18.20 -25.91 -32.83 -38.75 0.00
 SO YBADJ
           U45100
                    0.00
                          0.00 0.00 0.00 0.00 -90.51
 SO YBADJ
           U45100
                   -36.98 -30.72 -23.52 -15.61 -7.23 1.38
 SO YBADJ
           U45100
                   9.94 18.20 25.91 32.83 38.75 0.00
 SO BUILDHGT BLR4
                     27.80 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     27.80 27.80 27.80 0.00 0.00
                                                   0.00
 SO BUILDHGT BLR4
                      0.00 65.30 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     84.40 84.40 84.40 84.40 84.40 84.40
 SO BUILDHGT BLR4
                     38.00 38.00 38.00 38.00 0.00 0.00
    BUILDWID BLR4
                     138.19 129.98 117.84 131.88 141.91 147.63
    BUILDWID BLR4
                     148.86 145.57 137.85 145.57 148.86 147.63
   BUILDWID BLR4
                     125.54 134.97 140.30 0.00 0.00 0.00
 SO BUILDWID BLR4
                      0.00 129.98 117.84 131.88 141.91 147.63
                     148.86 145.57 137.85 145.57 148.86 147.63
 SO BUILDWID BLR4
```

46.71 48.36 48.53 47.24 0.00 **0**.00

SO BUILDWID BLR4

```
SO BUILDLEN BLR4
                    75.81 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100,22 79.56 56.48 79.56 100.22 117.84
                    135.12 125.72 112.50 0.00 0.00 0.00
SO BUILDIEN BLB4
SO BUILDLEN BLR4
                     0.00 148.86 147.63 141.91 131.88 117.84
SO BUILDLEN BLR4
                    100,22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR4
                     48.36 46.71 43.64 39.25 0.00 0.00
SO XBADJ BLR4
                  -140,83 -162.94 -180.10 -191,79 -197.65 -197.50
SO XBADJ
          BLR4
                  -191.35 -179.39 -161.98 -163.58 -160.22 -151.98
SO XBADJ
          BLR4
                  -139.13 -122.05 -101.26 0.00 0.00 0.00
SO XBADJ
           BLR4
                    0.00 14.08 32.48 49.88 65.77 79.66
SO XBADJ
          BLR4
                   91.13 99.83 105.50 84.02 60.00 34.14
           BLR4
                  -144.04 -147.81 -147.09 -141.90 0.00 0.00
SO XBADJ
SO YBADJ
           BLR4
                   78.62 95.23 93.06 73.19 51.10 27.45
SO YBADJ
           BLR4
                    2.97 -21.60 -45.52 -68.05 -88.51 -106.29
SO YBADJ
           BLR4
                   -59.01 -71.42 -81.66 0.00 0.00 0.00
SO YBADJ
           BLR4
                    0.00 -95.23 -93.06 -73.19 -51.10 -27.45
SO YBADJ
           BLR4
                   -2.97 21.60 45.52 68.05 88.51 106.29
                   36.93 15.56 -6.29 -27.95
SO YBADJ
           BLR4
                                           0.00 0.00
SO BUILDHGT BLR5
                     0.00 0.00 27.80 27.80 27.80 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                                             27.80
                     84.40 84.40 84.40 65.30
                                                   0.00
SO BUILDHGT BLR5
                     0.00 38.00 38.00 38.00 38.00 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 84.40 84.40
SO BUILDHGT BLR5
                     84.40 84.40 84.40 65.30 0.00
                                                   0.00
SO BUILDWID BLR5
                     0.00 0.00 140.52 135.27 125.90 147.63
SO BUILDWID BLR5
                     148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 138.13 0.00
SO BUILDWID BLR5
                     0.00 47.23 48.54 48.37 46.73 147.63
                     148.86 145.57 137.85 145.57 148.86 147.63
SO BUILDWID BLR5
SO BUILDWID BLR5
                     141.91 131.88 117.84 129.86 0.00 0.00
SO BUILDLEN BLR5
                     0.00 0.00 112.05 125.31 134.77 117.84
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 76.31 0.00
SO BUILDLEN BLR5
                     0.00 39.28 43.67 46.73 48.37 117.84
SO BUILDLEN BLR5
                     100.22 79.56 56.48 79.56 100.22 117.84
SO BUILDLEN BLR5
                     131.88 141.91 147.63 148.86 0.00 0.00
SO XBADJ BLR5
                    0.00 0.00 -100.94 -121.76 -138.89 -151.80
SO XBADJ
           BLR5
                   -160.09 -163.52 -161.98 -179.46 -191.48 -197.69
           BLR5
SO XBADJ
                   -197.89 -192.08 -180.43 -163.30 -141.20 0.00
SO XBADJ
           BLR5
                    0.00 -143.00 -148.09 -148.69 -144.76 33.96
SO XBADJ
           BLR5
                    59.87 83.96 105.50 99.90 91.26 79.85
           BLR5
                    66.01 50.17 32.80 14.44 0.00 0.00
SO XBADJ
SO YBADJ
            BLR5
                    0.00
                         0.00 81.74 71.52 59.12 106.61
SO YBADJ
           BLR5
                    88.87 68.42 45.89 21.97 -2.62 -27.13
SO YBADJ
            BLR5
                    -50.81 -72.95 -92.88 -95.16 -78.58 0.00
           BLR5
SO YBADJ
                    0.00 27.50 5.66 -16.35 -37.86 -106.61
SO YBADJ
            BLR5
                    -88.87 -68.42 -45.89 -21.97 2.62 27.13
SO YBADJ
            BLR5
                    50.81 72.95 92.88 95.16 0.00 0.00
  SRCGROUP U45100 U45100
  SRCGROUP ALL
 SO FINISHED
 ***********
 ** AERMOD Receptor Pathway
 **
 RE STARTING
  INCLUDED CHASS.ROU
 RE FINISHED
 *************
 ** AERMOD Meteorology Pathway
 **
 ME STARTING
  SURFFILE C:\amodmet\TAMPA_2001.SFC
   PROFFILE C:\amodmet\TAMPA_2001.PFL
   SURFDATA 12842 2001 TAMPA/INT'L ARPT
   UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
   PROFBASE 19 FEET
 ME FINISHED
```

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :PRS55AC1.001
AERMOD OUTPUT FILE NUMBER 2 :PRS55AC1.002
AERMOD OUTPUT FILE NUMBER 3 :PRS55AC1.003
AERMOD OUTPUT FILE NUMBER 4 :PRS55AC1.004
AERMOD OUTPUT FILE NUMBER 5 :PRS55AC1.005

First title for last output file is: 2001 PGN CR PROJECT 550 FT SO2 0.27 LB/MMBTU CLASS I 8/16/06

Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING TIME YEA (ug/m3)	R CONC (m) (m	X Y) (YYMMD			
SOURCE GROUP ID: U45	5100				
2001 0.32218	8 334447.	3183601.	01123124		
2002 0.3685		3183601.	02123124		
2003 0.3235		3183601.	03123124		
2004 0.3230	1 334447.	3183601.	04123124		
2005 0.3603		3178095.	05123124		
HIGH 24-Hour					
2001 4.0525	8 335260.	3183589.	01111624		
2002 3.3461	1 331926.	3178095.	02110724		
2003 4.0241	2 331926.	3178095.	03112024		
2004 4.2147		3183601.	04110624		
2005 4.5715	1 335260.	3183589.	05090824		
HIGH 3-Hour					
2001 11.9260	334447.	3183601.	01101621		
2002 13.8801	14 338515.	3183544.	02052909		
2003 9.8155	0 331926.	3178095.	03092909		
2004 11.2042	23 336074.	3183578.	04022703		
2005 10.9409		3183544.	05112924		
SOURCE GROUP ID: ALI	L				
Annual					
2001 0.0000	0 0.	0. 0112	3124		
2002 0.0000	0.	0. 0212	3124		
2003 0.0000	0.	0. 0312	3124		
2004 0.0000	0.	0. 0412	3124		
2005 0.0000	0.	0. 0512	3124		
HIGH 24-Hour					
2001 0.0000		-	0000		
2002 0.0000	0.		0000		
2003 0.0000			0000		
2004 0.0000		0. 0000	0000		
2005 0.0000	0.	0. 0000	0000		
HIGH 3-Hour					
2001 0.2667	78 335260.		01032509		
2002 0.0817		3183589.	02102509		
2003 0.0003	35 335143.	3175279.	03041706		
2004 0.1697	72 335260.	3183589.	04033009		
2005 0.0000		3182620.	05022021		
All receptor computations reported with respect to a user-specified origin					
	.00				
DISCRETE 0.00	0.00				

```
CO STARTING
 TITLEONE 2001 PGN CR AAQS PROPOSED 550 FT SO2 0.27 LB/MMBTU 8/12/06
 JITLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
   VERTIME PERIOD 24 3
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
**********
** AERMOD Source Pathway
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
 LOCATION UNIT1 POINT 334319.400 3204230.210 1.0
 LOCATION UNIT2 POINT 334260.580 3204230.210 1.0
****** PSD CLASS II CONSUMING
** RECENT PSD (CFI INDUSTRIES): FCS, CRYSTAL RIVER QUARRIES
** PSD CLASS I INVENTORIES
    Florida Crushed Stone Co., Inc.
**
    FCRUSH18
                  POWER PLANT
**
    FCRUSH20
                  BCP: Kiln, Clinker Cooler, Raw Mill, & Dryer with Baghouse
                  KILN #2 SYSTEM: preheater/precalciner, cooler, dyer, raw mill
    FCRUSH44
SO LOCATION FCRUSH18
                            POINT 361340 3162370 0.0
SO LOCATION
               FCRUSH20
                            POINT 361340 3162370 0.0
              FCRUSH44
                            POINT 361340 3162370 0.0
SO LOCATION
    Crystal River Quarries
 50 LOCATION
              CRQUAR
                            POINT 340600 3205300 0.0
SO LOCATION
               IPSPASCO
                            POINT 347200 3138800 0
SO LOCATION
               FCS1
                         POINT 360000 3162500 0
SO LOCATION
               ASPHALT3
                            POINT 359900 3162400 0
SO LOCATION
               ASPHALT4
                            POINT 361400 3168400 0
SO LOCATION
               FDOC
                          POINT 382200 3166100 0
SO LOCATION
               FMM
                         POINT 356200 3169900 0
SO LOCATION
               HCOA12
                           POINT 333400 3141000 0
SO LOCATION
               OMAN
                          POINT 359800 3164900 0
```

** Source Parameters **

SO LOCATION

SO LOCATION

SO LOCATION

SO LOCATION

SO LOCATION

SO LOCATION SO LOCATION **OVERST**

PASCORRF

CEMEX02

CEMEX14

SHADYHL

CITSER1

CITSER2

RCPARAM U45100 489.9 167.700 328.000 15.300 9.300

POINT 355900 3143700 0

POINT 357470 3169190

POINT 357470 3169190

POINT 348720 3138370 0

POINT 364200 3158300 0

POINT 364200 3158300 0

POINT 347100 3139200 0

Ω

SRCPARAM UNIT1 992.3 152.100 417.000 40.500 4.570 SRCPARAM UNIT2 1268.8 153.000 422.000 48.800 4.880

^{**} PROP. 0.27 LB/MMBTU X 7200= 1944 LB/HR PER UNIT

SO	Florida SRCPAF SRCPAF SRCPAF	RAM RAM		SH18 SH20		0 91.4		21.21 14.33 10.30	4.88
so	Crystal SRCPAF		Quarrie CRQL		3.86	18.3	335	6.4 1	.19
SO	SRCPAF	RAM	IPSP/	ASCO	38.37	18.3	853.0	0 37.3	6.71
so	SRCPAF	MAS	FCS1	1	01.60	97.5	435.00	16.6 6	5.48
so	SRCPAF	RAM	ASPH	ALT3	2.25	12.2	377.00	10.6	1.37
so	SRCPAF	MAF	ASPH	ALT4	2.25	8.5	357.00	11	1.08
so	SRCPAR	MAF	FDOO	;	2.99	9.1 4	78.00 4	.6 0.6	31
so	SRCPAR	MAF	FMM		1.45	32.0 3	94.00 9	.9 4.2	<u>?</u> 7
so	SRCPAR	RAM	HCO	A12	0.16	11.0	533.00	4 0	.31
so	SRCPAR	MAF	OMAI	N	2.09	7.6	347.00 6	6.3 1.8	83
sc	SRCPA	MAF	OVE	RST	3.67	9.1	408.00	16 1	.3
SC	SRCPA	RAM	PASC	ORRF	14.1	10 83.	8 394.	00 15.5	3.05
	SRCPAI SRCPAI		CEM		1.90 1.90		414.00 394.00		3.96 4.27
SC	SRCPA	MAR	SHAD	ÝΗL	4.77	18.3	874.00	35.4	6.71
	SRCPAI		CITS		3.40 0.55	10.4 19.5	515.00 339.00		0.61 0.76
	Building (C) Bu	IGT U4 IGT U45 IGT	5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 5100 100 -2 100	19.83 - 93.28 - 272.63 - 10.00 (9.22 1 24.26 25.96 49.03 - 9.94 1 1 9.94 1	48.37 0.00 33.70 48.37 39.25 79.56 46.73 0.00 44.49 46.73 125.56 - 287.77 - 69.34 - 6 0.00 0 6.51 2 22.62 2 7.68 -1 6.06 -3 18.20 -2 0.00 0 30.72 - 8.20 2	38.00 38.00 48.53 137.89 48.54 48.54 43.64 56.48 43.67 127.48 273.51 33.96 -1 33.96 -1 33.96 -1 55.91 -3 55.91	0.00 0. 33.70 47.23 46.71 79.56 39.28 0.00 0. 44.49 39.28 -125.53 -274.88 56.62 -4 00 0.0 4.68 25 17.34 1: 19.01 76 19.12 7 32.83 -3 00 0.0 15.61 -2.83 38	38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 44.98 7 39.28 44.49 102.6.46 47.23 33.70 -210.42 -72.54 7.57 0 172.0 5.31 25 3.87 0 0.72.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0 0 172.0	38.00 0.00 147.63 3 43.67 0.00 .63 43.67 0.00 117.84 48.54 0.00 .289.88 -73.70 0.00 0.51 38 0.00 1.1 0.00 0.51 0.00 0
S S S S S	O BUILDI	HGT UI HGT UI HGT UI HGT UI HGT UI WID UI	NIT1 NIT1 NIT1 NIT1 NIT1 NIT1	60.40 0.00 60.40 60.40 0.00 60.40 98.57 0.00 89.37	0.00 60.40 60.40 0.00 60.40 101.00 0.00	0.00 60.40 60.40 0.00 60.40 100.3	0.00 18 60.40 60.40 0.00 18 60.40	2.20 60 60.40 60.40 2.20 60 60.40 90.05	60.40 0.00 0.40 60.40

```
SO BUILDWID UNIT1
                     98.57 101.00 100.36 96.68 90.05 0.00
SO BUILDWID UNIT1
                     0.00 0.00 0.00 0.00 42.31 79.92
   BUILDWID UNIT1
                     89.37 96.10 99.92 100.69 98.41 93.14
                     54.10 68.04 79.92 89.37 96.10 0.00
   BUILDLEN UNIT1
SO BUILDLEN UNIT1
                          0.00 0.00 0.00 57.88 100.36
                     0.00
SO BUILDLEN UNIT1
                     96.68 90.05 80.69 68.88 54.97 41.31
SO BUILDLEN UNIT1
                     54.10 68.04 79.92 89.37 96.10 0.00
SO BUILDLEN UNIT1
                     0.00 0.00 0.00 0.00 57.88 100.36
SO BUILDLEN UNIT1
                     96.68 90.05 80.69 68.88 54.97 41.31
SO XBADJ UNIT1
                   48.68 34.97 20.19 4.80 -10.74 0.00
SO XBADJ
          UNIT1
                   0.00 0.00 0.00 0.00 -81.32 -105.17
SO XBADJ
           UNIT1
                  -112.58 -116.57 -117.02 -113.91 -107.35 -99.43
SO XBADJ
          UNIT1
                  -102.78 -103.01 -100.11 -94.17 -85.36 0.00
                    0.00 0.00 0.00 0.00 23.44 4.80
           UNIT1
SO XBADJ
           UNIT1
                   15.90 26.52 36.33 45.03 52.37 58.12
SO XBADJ
SO YBADJ
           UNIT1
                   31.79 44.06 54.98 64.24 71.54 0.00
SO YBADJ
           UNIT1
                    0.00 0.00 0.00 0.00 16.81 60.15
SO YBADJ
           UNIT1
                    49.48 37.31 24.01 9.98 -4.36 -18.56
SO YBADJ
           UNIT1
                   -31.79 -44.06 -54.98 -64.24 -71.54 0.00
           UNIT1
                    0.00 0.00 0.00 -16.81 -60.15
SO YBADJ
                   -49.48 -37.31 -24.01 -9.98 4.36 18.56
SO YBADJ
           UNIT1
```

60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 SO BUILDHGT UNIT2 0.00 12.20 12.20 12.20 SO BUILDHGT UNIT2 12.20 12.20 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 60.40 60.40 60.40 60.40 60.40 SO BUILDHGT UNIT2 60.40 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT UNIT2 0.00 12.20 60.40 60.40 60.40 60.40 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 34.33 41.56 47.53 SO BUILDWID UNIT2 52.06 55.00 99.92 100.69 98.41 93.14 SO BUILDWID UNIT2 98.57 101.00 100.36 96.68 90.05 80.69 SO BUILDWID UNIT2 68.88 0.00 0.00 0.00 0.00 0.00 SO BUILDWID UNIT2 0.00 56.66 99.92 100.69 98.41 93.14 SO BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 SO BUILDLEN UNIT2 100.69 0.00 0.00 53.70 55.84 56.28 BUILDLEN UNIT2 55.00 52.06 80.69 68.88 54.97 41.31 BUILDLEN UNIT2 54.10 68.04 79.92 89.37 96.10 99.92 BUILDLEN UNIT2 100.69 0.00 0.00 0.00 0.00 0.00 SO BUILDLEN UNIT2 0.00 53.45 80.69 68.88 54.97 41.31 SO XBADJ UNIT2 58.90 55.08 49.60 42.61 34.32 24.99 SO XBADJ UNIT2 14.90 0.00 0.00 -84.75 -88.92 -90.39 SO XBADJ UNIT2 -89.10 -85.12 -87.61 -93.80 -97.13 -99.43 SO XBADJ UNIT2 -112.99 -123.13 -129.52 -131.98 -130.42 -124.91 SO XBADJ UNIT2 -115.60 0.00 0.00 0.00 0.00 0.00 SO XBADJ UNIT2 0.00 -10.77 6.92 24.92 42.16 58.12 SO YBADJ STIND -26.13 -11.21 4.04 19.18 33.73 47.26 SO YBADJ STIND 59.36 0.00 0.00 22.92 12.51 1.73 UNIT2 SO YBADJ -9.10 -19.66 74.95 65.25 53.57 40.26 SO YBADJ **UNIT2** 26.13 11.21 -4.04 -19.18 -33.73 -47.26 UNIT2 SO YBADJ -59.36 0.00 0.00 0.00 0.00 0.00 SO YBADJ STIND 0.00 -33.43 -74.95 -65.25 -53.57 -40.26

SRCGROUP U45100 U45100 SRCGROUP ALL

```
SO FINISHED

** AERMOD Receptor Pathway

** RE STARTING
INCLUDED CRAUG06A.ROU
RE FINISHED

** AERMOD Meteorology Pathway
```

STARTING
SURFFILE C:\amodmet\TAMPA_2001.SFC
PROFFILE C:\amodmet\TAMPA_2001.PFL
SURFDATA 12842 2001 TAMPA/INT'L_ARPT

UAIRDATA 12842 2001 TAMPA/INT'L_ARPT PROFBASE 19 FEET
ME FINISHED
*** AERMOD Output Pathway

**

OU STARTING RECTABLE ALLAVE FIRST SECOND OU FINISHED

AFRMOD OUTPUT FILE NUMBER 1 :AQS55A27.O01

MOD OUTPUT FILE NUMBER 2 :AQS55A27.O02

MOD OUTPUT FILE NUMBER 3 :AQS55A27.O03

AERMOD OUTPUT FILE NUMBER 4 :AQS55A27.O04

AERMOD OUTPUT FILE NUMBER 5 :AQSS5A27.005

First title for last output file is: 2001 PGN CR AAQS PROPOSED 550 FT SO2 0.27 LB/MMBTU 8/12/06

Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

SOURCE	GROU	 P ID: U45100			
Annual	-				
	2001	3.36498	336500.	3205200.	01123124
	2002	3.56507	333434.	3205679.	02123124
	2003	3.38574	336400.	3205100.	03123124
	2004	3.49031	336400.	3205100.	04123124
	2005	3.57649	336400.	3205100.	05123124
HIGH 24-	Hour				
	2001	35.29628	336700.	3205400.	01052624
	2002	35.48179	333800.	3205800.	02060524
	2003	33.57984	336800.	3205500.	03053024
	2004	40.64769	336600.	3205400.	04052724
	2005	47.38185	336500.	3205000.	05052424
HSH 24-F					
	2001	33.35896	336700.	3205500.	01071224
	2002	30.94106	333531.	3205678.	02052424
	2003	29.97574	333482.	3205679.	03081524
	2004	32.60637	336400.	3205300.	04082924
	2005	38.62300	336300.	3205100.	05032824
HIGH 3-I		153.37410	000700	0005000	01071015
	2001 2002		336700.	3205600.	01071215
		129.07887	336700.	3206000. 3206000.	02051718
	2003 2004	143.32 951 151.59546	336700. 336600.	3205600.	03030915 04060215
	2004	142.98541	336500.	3205100.	05052418
mSH 3-H		142.50041	330500.	3203100.	03032410
non o-n	2001	116.21026	336800.	3206300.	01061215
	2002	109.94534	336500.	3205200.	02031312
	2002	103.34334	336700.	3205200.	03060818
	2003	129.14613	336600.	3205500.	04052718
	2005	131.32732	336500.	3205000.	05052415
SOURCE		P ID: ALL	330300.	3203000.	03032413
Annual	. (1100)	ID. ALL			
, , , , , , , , , , , , , , , , , , , ,	2001	12.12693	332319.	3203398.	01123124
	2002	12.21435	332996.	3205685.	02123124
	2003	11.03612	340511.	3204937.	03123124
	2004	11.95528	340800.	3205400.	04123124
	2005	13.02716	332663.	3202963.	05123124
HIGH 24-					
	2001	133.46278	333800.	3202150.	01110524
	2002	105.51767	335063.	3202438.	02022724
	2003	124.58272	333717.	3202438.	03112924
	2004	147.36174	334166.	3202438.	04092524
	2005	109.70304	333767.	3202438.	05090324
HSH 24-I	Hour				
	2001	111.24711	333567.	3202438.	01041824
	2002	95.62583	334664.	3202438.	02030424
	2003	109.01365	333033.	3202578.	03110924
	2004	118.17327	333817.	3202438.	04092524
	2005	105.57790	333667.	3202438.	05041 5 24
HIGH 3-	Hour				
	2001	321.81363	335200.	3206600.	01061115
	2002	306.91324	333866.	3202438.	02101712
	2003	354.19897	340800.	3205400.	030 5 0712
	2004	321.88919	334315.	3202438.	04012315
	2005	315.59543	333617.	3202438.	05101112
HSH 3-F	lour				
	2001	305.30988	340800.	3207400.	01072912
	2002	298.49911	334166.	3202438.	02021112
	2003	289.58899	334664.	3202438.	03090818
	2004	292.85342	334265.	3202438.	04092524
	2005		334764.	3202438.	05050618

DISCRETE 0.00 0.00

```
CO STARTING
 TITLEONE 2001 PGN CR PSD CLASS II PROPOSED 550 FT SO2 0.27 LB/MMBTU 8/12/06
  [ITLETWO TAMPA/RUSKIN METDATA 2001-2005
   ODELOPT DFAULT CONC
  VERTIME PERIOD 24 3
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
************
** AERMOD Source Pathway
**
SO STARTING
** U45100= UNITS 4 & 5 AT 100% LOAD WITH EXCURSION
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
 LOCATION U45100 POINT 334776.800 3205393.420 1.000
******** PSD CLASS II CONSUMING
**
** RECENT PSD (CFI INDUSTRIES): FCS, CRYSTAL RIVER QUARRIES
** PSD CLASS I INVENTORIES
    Florida Crushed Stone Co., Inc.
    FCRUSH18
                  POWER PLANT
**
                  BCP: Kiln, Clinker Cooler, Raw Mill, & Dryer with Baghouse
    FCRUSH20
                  KILN #2 SYSTEM: preheater/precalciner, cooler,dyer,raw mill
RUSH18 POINT 361340 3162370 0.0
    FCRUSH44
SO LOCATION FCRUSH18
SO LOCATION
               FCRUSH20
                             POINT 361340 3162370 0.0
SO LOCATION FCRUSH44
                             POINT 361340 3162370 0.0
     Crystal River Quarries
SO LOCATION
               CRQUAR
                            POINT 340600 3205300 0.0
   LOCATION
               IPSPASCO
                            POINT 347200 3138800 0
                          POINT 360000 3162500 0
SO LOCATION
               FCS<sub>1</sub>
                            POINT 359900 3162400 0
SO LOCATION
               ASPHALT3
SO LOCATION
               ASPHALT4
                            POINT 361400 3168400 0
SO LOCATION
               FDOC
                          POINT 382200 3166100 0
SO LOCATION
               FMM
                          POINT 356200 3169900 0
SO LOCATION
               HCOA12
                            POINT 333400 3141000 0
SO LOCATION
               OMAN
                           POINT 359800 3164900 0
SO LOCATION
               OVERST
                            POINT 355900 3143700 0
               PASCORRE
                             POINT 347100 3139200 0
SO LOCATION
                            POINT 357470 3169190 0
SO LOCATION
               CEMEX14
SO LOCATION
               SHADYHL
                            POINT 348720 3138370 0
****** PSD CLASS II EXPANDING
** PSD CLASS I INVENTORIES
SO LOCATION CRYRIV1B
                            POINT 334300 3204500 0
SO LOCATION CRYRIV2B
                            POINT 334300 3204500
 ** Source Parameters **
 ** PROP. 0.27 LB/MMBTU X 7200= 1944 LB/HR PER UNIT
    RCPARAM U45100 489.9 167.700 328.000 15.300 9.300
```

SO SRCPARAM FCRUSH18 97.020 97.54 422 21.21 4.88

^{**} Florida Crushed Stone Co., Inc.

```
SO SRCPARAM
               FCRUSH20
                            6.300 91.44 378
                                             14.33 4.88
SO SRCPARAM
               FCRUSH44
                            3.629 97.54 399
                                             10.30
    Crystal River Quarries
               CRQUAR
SO SRCPARAM
                           3.86 18.3 335
                                            6.4 1.19
               IPSPASCO
SO SRCPARAM
                           38.37 18.3 853.00 37.3 6.71
                        101.60 97.5 435.00 16.6 6.48
SO SRCPARAM
               FCS<sub>1</sub>
               ASPHALT3
SO SRCPARAM
                            2.25 12.2 377.00 10.6 1.37
SO SRCPARAM
               ASPHALT4
                            2.25
                                 8.5 357.00 11
                                                  1.08
SO SRCPARAM
               FDOC
                          2.99
                                9.1
                                    478.00 4.6
                                               0.61
SO SECPARAM
               FMM
                          1.45 32.0 394.00 9.9
                                               4.27
SO SRCPARAM
                               11.0 533.00 4
                                                 0.31
               HCOA12
                           0.16
SO SRCPARAM
               OMAN
                          2.09
                               7.6 347.00 6.3
                                               1.83
SO SRCPARAM
               OVERST
                                9.1 408.00 16
                           3.67
                                                 1.3
SO SRCPARAM
               PASCORRF
                            14.10 83.8 394.00 15.5 3.05
SO SRCPARAM
               CEMEX14
                            1.90 32.0
                                      394.00 9.8
                                                 4.27
SO SRCPARAM
               SHADYHL
                            4.77 18.3 874.00 35.4 6.71
SO SRCPARAM
               CRYRIV1B
                           -314.00 152.0 422.00 42.1 4.57
SO SRCPARAM
               CRYRIV2B -1860.00 153.0 422.00 42.1 4.88
```

SO BUILDHGT U45100 38.00 38.00 38.00 31.10 87.60 SO BUILDHGT U45100 87.60 87.60 87.60 87.60 38.00 38.00 SO BUILDHGT U45100 38.00 38.00 38.00 0.00 38.00 SO BUILDHGT U45100 0.00 0.00 0.00 0.00 0.00 87.60 SO BUILDHGT U45100 38.00 38.00 38.00 38.00 38.00 38.00 SO BUILDHGT U45100 38.00 38.00 38.00 38.00 38.00 0.00 SO BUILDWID U45100 44.50 47.24 48.53 48.36 144.98 147.63 SO BUILDWID U45100 148.86 145.57 137.85 145.57 39.28 43.67 46.73 48.37 48.54 47.23 44.49 0.00 SO BUILDWID U45100 0.00 0.00 0.00 147.63 SO BUILDWID U45100 0.00 0.00 SO BUILDWID U45100 39.28 33.70 27.10 33.70 39.28 43.67 SO BUILDWID U45100 48.37 47.23 44.49 0.00 46.73 48.54 39.25 43.64 46.71 126.46 117.84 SO BUILDLEN U45100 33.67 SO BUILDLEN U45100 100.22 79.56 56.48 79.56 47.23 48.54 SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00 SO BUILDLEN U45100 0.00 0.00 0.00 0.00 117.84 0.00 44.49 40.40 44.49 47.23 48.54 SO BUILDLEN U45100 47.23 SO BUILDLEN U45100 48.37 46.73 43.67 39.28 33.70 0.00 SO XBADJ U45100 -119.83 -125.56 -127.48 -125.53 -210.42 -289.88 U45100 -293.28 -287.77 -273.51 -274.88 -72.54 -73.70 SO XBADJ SO XBADJ U45100 -72.63 -69.34 -63.96 -56.62 -47.57 0.00 SO XBADJ U45100 0.00 0.00 0.00 0.00 172.04 0.00 SO XBADJ 16.51 23.30 24.68 25.31 25.16 U45100 9.22 SO XBADJ U45100 24.26 22.62 20.29 17.34 13.87 0.00 SO YBADJ U45100 25.96 7.68 -10.83 -29.01 76.77 90.51 SO YBADJ 6.06 -37.10 -79.12 U45100 49.03 7.23 -**1.3**8 SO YBADJ U45100 -9.94 -18.20 -25.91 -32.83 -38.75 0.00 SO YBADJ U45100 0.00 0.00 0.00 0.00 -90.51 0.00 -36.98 -30.72 -23.52 -15.61 -7.23 1.38 SO YBADJ U45100 SO YBADJ U45100 9.94 18.20 25.91 32.83 38.75 0.00

SRCGROUP U45100 U45100 SRCGROUP ALL

SO FINISHED

** Building Downwash **

************* ** AERMOD Receptor Pathway

RE STARTING INCLUDED CRAUG06A.ROU FINISHED

************************* ** AERMOD Meteorology Pathway

ME STARTING

SURFFILE C:\amodmet\TAMPA_2001.SFC PROFFILE C:\amodmet\TAMPA_2001.PFL SURFDATA 12842 2001 TAMPA/INT'L_ARPT UAIRDATA 12842 2001 TAMPA/INT'L_ARPT PROFBASE 19 FEET ME FINISHED

** AERMOD Output Pathway

OU STARTING RECTABLE ALLAVE FIRST SECOND OU FINISHED

AERMOD OUTPUT FILE NUMBER 1:C2S55A27.O01

AERMOD OUTPUT FILE NUMBER 2:C2S55A27.O02

AERMOD OUTPUT FILE NUMBER 3:C2S55A27.O03

AERMOD OUTPUT FILE NUMBER 4 :C2S55A27.O04 AERMOD OUTPUT FILE NUMBER 5 :C2S55A27.O05

First title for last output file is: 2001 PGN CR PSD CLASS II PROPOSED 550 FT SO2 0.27 LB/MMBTU 8/12/06 Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005

AVERAGING		E YEAR ug/m3)	ÇONC (m) (ı	m) (YYMN	Y PERIOD ENDING IDDHH)
SOURCE GR	OUP	ID: U4510	0		
	01	3.36498	336500.	3205200.	01123124
20	002	3.56507	333434.	3205679.	02123124
20	003	3.38574	336400.	3205100.	03123124
	004	3.49031	336400.		
	005	3.57649	336400.	3205100.	05123124
HIGH 24-Hou			000700	2025422	04050004
	001	35.29628	336700.		
)02)03	35.48179 3 3 .57984	333800. 336800.		
	003	40.64769	336600.		
	005	47.38185	336500.		
HSH 24-Hour		47.00100	000000	O L00000	. 00002424
	001	33.35896	336700.	3205500	. 01071224
20	002	30.94106	333531.		
20	003	29.97574	333482.	3205679	. 03081524
20	004	32.60637	336400	3205300	. 04082924
	005	38.62300	336300	. 3205100	. 05032824
HIGH 3-Hou					
	001	153.37410	336700		
	002	129.07887	336700		
	003	143.32951	336700		
	004	151.59546	336600 336500		
HSH 3-Hour	005	142.98541	336500). 3205100). 05052418
	001	116.21026	336800	. 3206300	0. 01061215
		109.94534	336500		
	003	101.33315	336700		
_	004	129.14613	336600		
	005	131.32732	336500		
SOURCE GF	ROUF				
Annual .					
2	001	2.29558	340420.		
	002	2.44583	340511.		
	003	1.94436	340511.		
	004	2.24404	340800.		
HIGH 24-Hou	005	3.25734	340420.	3204937.	. 05123124
	มเ 001	34.51078	340602	. 3204937	01111604
	001	36.76392	340502		
	003	33.82766	340420	•	
	004	36.19138	340602		
	005	46.89188	336300		
HSH 24-Hou					
2	001	30.49697	336600	. 3205500). 0 10 7 1224
2	002	34.74818	340511	. 3204937	⁷ . 02122624
2	003	30.81038	340420	. 3204937	7. 03011224
	004	29.03656	340420		
	005	38.33672	336300	. 3205100). 05032824
HIGH 3-Hou					
	001	152.60400			
	2002	119.33990			
	2003	139.84874			
	2004	146.98141	33660		
HSH 3-Hou		142.55235	33650	0. 320510	0. 05052418
	r 2001	107.21988	33660	0. 320540	0. 01071215
	2002	107.21988			
	2002	94.17541	336800		
	2003				
	2005				
		putations re	ported with		user-specified origin

DISCRETE 0.00 0.00

```
CO STARTING
 TITLEONE 2001 PGN CR COOLING TOWER PM
                                                  8/20/06
 TITLETWO TAMPA/RUSKIN METDATA 2001-2005
 MODELOPT CONC NOSTD
 AVERTIME PERIOD 24
 POLLUTID GEN
 RUNORNOT RUN
CO FINISHED
****************
** AERMOD Source Pathway
**
SO STARTING
 LOCATION CT4 POINT 334312.560 3205466.280 1.000
 LOCATION CT5 POINT 334313.480 3205236.260 1.000
** Source Parameters **
** EACH TOWER PM10= 10.2 LB/HR BASED ON REALISTIC PM10 EMISSIONS
 SRCPARAM CT4 1.28 135.10 311.0 3.32 65.200
 SRCPARAM CT5 1.28 135.10 311.0 3.32 65.200
 SRCGROUP ALL
SO FINISHED
** AERMOD Receptor Pathway
RE STARTING
 INCLUDED CRAUG06A.ROU
RE FINISHED
*******************************
** AERMOD Meteorology Pathway
ME STARTING
 SURFFILE C:\amodmet\TAMPA_2001.SFC
 PROFFILE C:\amodmet\TAMPA_2001.PFL
 SURFDATA 12842 2001 TAMPA/INT'L_ARPT
 UAIRDATA 12842 2001 TAMPA/INT'L_ARPT
 PROFBASE 19 FEET
ME FINISHED
***********************
** AERMOD Output Pathway
**
OU STARTING
 RECTABLE ALLAVE FIRST
OU FINISHED
```

CO STARTING TLEONE 2001 PGN CR COOLING TOWER PM 8/20/06 LETWO TAMPA/RUSKIN METDATA 2001-2005 ODELOPT CONC NOSTD **AVERTIME PERIOD 24 POLLUTID GEN** RUNORNOT RUN **CO FINISHED** ********* ** AERMOD Source Pathway ** •• SO STARTING LOCATION CT4 POINT 334312.560 3205466.280 1.000 LOCATION CT5 POINT 334313.480 3205236.260 1.000 ** Source Parameters ** ** EACH TOWER PM10= 10.2 LB/HR BASED ON REALISTIC PM10 EMISSIONS SRCPARAM CT4 1.28 135.10 311.0 3.32 65.200 SRCPARAM CT5 1.28 135.10 311.0 3.32 65.200 SRCGROUP ALL SO FINISHED ************* ** AERMOD Receptor Pathway ** **RE STARTING** INCLUDED CRAUG06A.ROU INISHED ************* ** AERMOD Meteorology Pathway ME STARTING SURFFILE C:\amodmet\TAMPA 2001.SFC PROFFILE C:\amodmet\TAMPA_2001.PFL SURFDATA 12842 2001 TAMPA/INT'L_ARPT UAIRDATA 12842 2001 TAMPA/INT'L ARPT PROFBASE 19 FEET ME FINISHED ************************* ** AERMOD Output Pathway ** **OU STARTING** RECTABLE ALLAVE FIRST

OU FINISHED

AERMOD OUTPUT FILE NUMBER 1 :PMCTWR45.001 AERMOD OUTPUT FILE NUMBER 2 :PMCTWR45.002
AERMOD OUTPUT FILE NUMBER 3 :PMCTWR45.003
AERMOD OUTPUT FILE NUMBER 4 :PMCTWR45.004

AERMOD OUTPUT FILE NUMBER 5 : PMCTWR45.005
First title for last output file is: 2001 PGN CR COOLING TOWER PM
Second title for last output file is: TAMPA/RUSKIN METDATA 2001-2005 8/20/06

AVERAGING TIM		CONC (m) (n		Y PERIOD ENDING DDHH)	
SOURCE GROUP	D: ALL				
Annual					
2001	0.00725	332996.	3205685.	01123124	
2002	0.00926	333045.	3205684.	02123124	
2003	0.00741	333300.	3206200.	03123124	
2004	0.00788	332996.	3205685.	04123124	
2005	0.00705	336100.	3205000.	05123124	
HIGH 24-Hour					
2001	0.10927	335900.	3204900.	01061624	
2002	0.11683	333300.	3205800.	02060524	
2003	0.11111	333093.	3205684.	03083124	
2004	0.10629	333100.	3205700.	04051324	
2005	0.12195	333800.	3206300.	05071624	
All receptor computations reported with respect to a user-specified origin					
GRID 0.00					
DISCRETE (0.00 0.0	00			

```
2001 PGN CRYSTAL RIVER 4 AND 5 ONLY - NEW STACK 550 FT
CHASSAHOWITZKA & ST. MARKS NWA, 4-km FLORIDA DOMAIN
  D2 0.27 LB/MMBTU
    ------ Run title (3 lines) ------
             CALPUFF MODEL CONTROL FILE
INPUT GROUP: 0 -- Input and Output File Names
Default Name Type
                            File Name
CALMET.DAT input * METDAT =
ISCMET.DAT input * ISCDAT =
PLMMET.DAT input * PLMDAT =
PROFILE.DAT input *PRFDAT = SURFACE.DAT input *SFCDAT = RESTARTB.DAT input *RSTARTB=
CALPUFF.LST output ! PUFLST = PUFCR550.LST!
CONC.DAT output | CONDAT = PUFCR550.CON !
              output *DFDAT =
output *WFDAT =
DFLX.DAT
WFLX.DAT
VISB.DAT output *VISDAT =
TK2D.DAT output *T2DDAT =
RHO2D.DAT output *RHODAT =
RESTARTE.DAT output *RSTARTE=
Emission Files
  TEMARB.DAT input *PTDAT = OLEMARB.DAT input *VOLDAT =
BAEMARB.DAT input *ARDAT = LNEMARB.DAT input *LNDAT =
Other Files
OZONE.DAT input *OZDAT =
VD.DAT input *VDDAT =
CHEM.DAT input *CHEMDAT=
H2O2.DAT input *H2O2DAT=
             input * HILDAT=
HILL.DAT
HILLEAT INDUT *RCTDAT=
COASTLN.DAT input *CSTDAT=
FLUXBDY.DAT input *BDYDAT=
BCON.DAT input *BCNDAT=
DEBUG.DAT output *DEBUG=
MASSFLX.DAT output *FLXDAT=
MASSBAL.DAT output *BALDAT=
             output *FOGDAT=
All file names will be converted to lower case if LCFILES = T
Otherwise, if LCFILES = F, file names will be converted to UPPER CASE
                        ! LCFILES = T!
      T = lower case
      F = UPPER CASE
NOTE: (1) file/path names can be up to 70 characters in length
Provision for multiple input files
    Number of CALMET.DAT files for run (NMETDAT)
                         Default: 1
                                       !NMETDAT = 36 !
    Number of PTEMARB.DAT files for run (NPTDAT)
                         Default: 0
                                       !NPTDAT = 0 !
    Number of BAEMARB.DAT files for run (NARDAT)
                         Default: 0
                                      ! NARDAT = 0 !
```

Number of VOLEMARB.DAT files for run (NVOLDAT)

Page: 1

7/05/06

Default: 0 ! NVOLDAT = 0 !

!END!

Subgroup (0a)

The following CALMET.DAT filenames are processed in sequence if NMETDAT>1

```
File Name
Default Name Type
CALMET.DAT
             input ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-01A.DAT ! !END!
CALMET.DAT
                   ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-01B.DAT ! !END!
             input
CALMET.DAT
                   ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-01C.DAT ! !END!
             input
CALMET.DAT
                   ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-02A.DAT | !END|
             input
                   ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-02B.DAT | IENDI
CALMET.DAT
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-02C.DAT ! !END!
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-03A.DAT ! !END!
CALMET.DAT
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-03B.DAT ! !END!
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-03C.DAT | !END!
             input
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-04A.DAT ! !END!
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-04B.DAT ! !END!
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-04C.DAT ! !END!
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-05A.DAT | !END!
CALMET.DAT
             input
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-05B.DAT | IEND!
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-05C.DAT | |END|
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-06A.DAT ! !END!
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-06B.DAT ! !END!
CALMET.DAT
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DQM2-06C.DAT ! !END!
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-07A.DAT ! !END!
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-07B.DAT | !END!
CALMET.DAT
             input
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-07C.DAT ! !END!
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-08A.DAT ! !END!
             input
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-08B.DAT ! !END!
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-08C.DAT ! !END!
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-09A.DAT ! |END|
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-09B.DAT ! !END!
CALMET.DAT
             input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-09C.DAT ! (END)
              input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-10A.DAT ! !END!
              input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DQM2-10B.DAT ! !END!
CALMET.DAT
              input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-10C.DAT ! !END!
              input
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DQM2-11A.DAT ! !END!
CALMET.DAT
              input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-11B.DAT ! !END!
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-11C.DAT ! !END!
              input
CALMET.DAT
                    ! METDAT =E:\FLA4KM\2001\MET2001-DQM2-12A.DAT ! !END!
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-12B.DAT | |END!
CALMET.DAT
             input
                    ! METDAT =E:\FLA4KM\2001\MET2001-DOM2-12C.DAT ! !END!
CALMET.DAT
             input
```

```
INPUT GROUP: 1 -- General run control parameters
```

```
Option to run all periods found
in the met. file
               (METRUN) Default: 0
                                        !METRUN = 0 !
   METRUN = 0 - Run period explicitly defined below
   METRUN = 1 - Run all periods in met. file
Starting date: Year (IBYR) -- No default
                                          ! IBYR = 2001 !
(used only if Month (IBMO) -- No default
                                          ! IBMO = 1 |
                Day (IBDY) -- No default
 METRUN = 0)
                                           ! IBDY = 1 !
          Hour (IBHR) -- No default
                                     (XBTZ) -- No default
                                          ! XBTZ = 5. !
Base time zone
  PST = 8., MST = 7.
  CST = 6.. EST = 5.
Length of run (hours) (IRLG) -- No default
                                          ! IRLG = 8760 !
Number of chemical species (NSPEC)
                               ! NSPEC = 7 !
                   Default: 5
 Number of chemical species
 to be emitted (NSE)
                           Default: 3
                                       ! NSE = 5 !
```

```
Flag to stop run after
   SETUP phase (ITEST)
                                 Default: 2
                                              ! ITEST = 2 !
   (Used to allow checking
   of the model inputs, files, etc.)
      ITEST = 1 - STOPS program after SETUP phase
      ITEST = 2 - Continues with execution of program
              after SETUP
   Restart Configuration:
     Control flag (MRESTART)
                                 Default: 0
                                             ! MRESTART = 0 1
      0 = Do not read or write a restart file
      1 = Read a restart file at the beginning of
      2 = Write a restart file during run
      3 = Read a restart file at beginning of run
         and write a restart file during run
    Number of periods in Restart
     output cycle (NRESPD)
                                Default: 0
                                             !NRESPD = 0 !
      0 = File written only at last period
     >0 = File updated every NRESPD periods
  Meteorological Data Format (METFM)
                      Default: 1
                                  ! METFM = 1 !
      METFM = 1 - CALMET binary file (CALMET.MET)
      METFM = 2 - ISC ASCII file (ISCMET.MET)
      METFM = 3 - AUSPLUME ASCII file (PLMMET.MET)
      METFM = 4 - CTDM plus tower file (PROFILE.DAT) and
              surface parameters file (SURFACE.DAT)
  PG sigma-y is adjusted by the factor (AVET/PGTIME)**0.2
  Averaging Time (minutes) (AVET)
                      Default: 60.0 ! AVET = 60. !
  PG Averaging Time (minutes) (PGTIME)
                      Default: 60.0 ! PGTIME = 60. !
!END!
INPUT GROUP: 2 -- Technical options
  Vertical distribution used in the
  near field (MGAUSS)
                                  Default: 1 ! MGAUSS = 1 !
    \Omega = uniform
    1 = Gaussian
  Terrain adjustment method
  (MCTADJ)
                               Default: 3 ! MCTADJ = 3 !
    0 = no adjustment
    1 = ISC-type of terrain adjustment
    2 = simple, CALPUFF-type of terrain
      adjustment
    3 = partial plume path adjustment
  Subgrid-scale complex terrain
  flag (MCTSG)
                               Default: 0 ! MCTSG = 0 !
    0 = not modeled
    1 = modeled
  Near-field puffs modeled as
  elongated 0 (MSLUG)
                                   Default: 0 ! MSLUG = 0 !
    0 = no
    1 = yes (slug model used)
   Transitional plume rise modeled?
   (MTRANS)
                                          ! MTRANS = 1 !
                               Default: 1
    0 = no (i.e., final rise only)
    1 = yes (i.e., transitional rise computed)
```

Page: 3

```
Stack tip downwash? (MTIP)
                                  Default: 1 ! MTIP = 1 !
 0 = no (i.e., no stack tip downwash)
 1 = yes (i.e., use stack tip downwash)
Vertical wind shear modeled above
stack top? (MSHEAR)
                                Default: 0 ! MSHEAR = 0 !
 0 = no (i.e., vertical wind shear not modeled)
 1 = yes (i.e., vertical wind shear modeled)
Puff splitting allowed? (MSPLIT)
                                 Default: 0 | MSPLIT = 0 !
 0 = no (i.e., puffs not split)
 1 = yes (i.e., puffs are split)
Chemical mechanism flag (MCHEM)
                                      Default: 1 ! MCHEM = 1 !
 0 = chemical transformation not
    modeled
  1 = transformation rates computed
    internally (MESOPUFF II scheme)
  2 = user-specified transformation
    rates used
 3 = transformation rates computed
    internally (RIVAD/ARM3 scheme)
  4 = secondary organic aerosol formation
    computed (MESOPUFF II scheme for OH)
Aqueous phase transformation flag (MAQCHEM)
                                  Default: 0 | MAQCHEM = 0 |
(Used only if MCHEM = 1, or 3)
  0 = aqueous phase transformation
    not modeled
  1 = transformation rates adjusted
    for aqueous phase reactions
Wet removal modeled ? (MWET)
                                     Default: 1
                                                ! MWET = 1 !
  0 = no
  1 = yes
Dry deposition modeled ? (MDRY)
                                    Default: 1 ! MDRY = 1 !
  0 = no
  1 = yes
  (dry deposition method specified
  for each species in Input Group 3)
Method used to compute dispersion
coefficients (MDISP)
                              Default: 3 ! MDISP = 3 !
  1 = dispersion coefficients computed from measured values
    of turbulence, sigma v, sigma w
  2 = dispersion coefficients from internally calculated
    sigma v, sigma w using micrometeorological variables
    (u*, w*, L, etc.)
  3 = PG dispersion coefficients for RURAL areas (computed using
    the ISCST multi-segment approximation) and MP coefficients in
    urban areas
  4 = same as 3 except PG coefficients computed using
    the MESOPUFF II eans.
  5 = CTDM sigmas used for stable and neutral conditions.
    For unstable conditions, sigmas are computed as in
    MDISP = 3, described above. MDISP = 5 assumes that
    measured values are read
Sigma-v/sigma-theta, sigma-w measurements used? (MTURBVW)
(Used only if MDISP = 1 or 5)
                                 Default: 3 ! MTURBVW = 3 !
  1 = use sigma-v or sigma-theta measurements
    from PROFILE.DAT to compute sigma-y
    (valid for METFM = 1, 2, 3, 4)
  2 = use sigma-w measurements
    from PROFILE.DAT to compute sigma-z
     (valid for METFM = 1, 2, 3, 4)
  3 = use both sigma-(v/theta) and sigma-w
     from PROFILE.DAT to compute sigma-y and sigma-z
     (valid for METFM = 1, 2, 3, 4)
  4 = use sigma-theta measurements
     from PLMMET.DAT to compute sigma-y
     (valid only if METFM = 3)
 Back-up method used to compute dispersion
 when measured turbulence data are
 missing (MDISP2)
                               Default: 3
                                          ! MDISP2 = 3 !
```

```
(used only if MDISP ≈ 1 or 5)
  2 = dispersion coefficients from internally calculated
    sigma v, sigma w using micrometeorological variables
    (u*, w*, L, etc.)
  3 = PG dispersion coefficients for RURAL areas (computed using
    the ISCST multi-segment approximation) and MP coefficients in
    urban areas
  4 = same as 3 except PG coefficients computed using
    the MESOPUFF II eqns.
PG sigma-y,z adj. for roughness?
                                   Default: 0 ! MROUGH = 0 !
(MROUGH)
 0 = no
  1 = ves
Partial plume penetration of
                                Default: 1
                                          ! MPARTL = 1 !
elevated inversion?
(MPARTL)
 0 = no
  1 = yes
Strength of temperature inversion    Default: 0
                                              !MTINV = 0
provided in PROFILE.DAT extended records?
(MTINV)
  0 = no (computed from measured/default gradients)
  1 = yes
PDF used for dispersion under convective conditions?
                       Default: 0 ! MPDF = 0 !
(MPDF)
  1 = yes
Sub-Grid TIBL module used for shore line?
                       Default: 0 ! MSGTIBL = 0 !
(MSGTIBL)
  0 = no
  1 = yes
Boundary conditions (concentration) modeled?
                       Default: 0 ! MBCON = 0 !
(MBCON)
  0 = no
  1 = yes
Analyses of fogging and icing impacts due to emissions from
arrays of mechanically-forced cooling towers can be performed
using CALPUFF in conjunction with a cooling tower emissions
processor (CTEMISS) and its associated postprocessors. Hourly
emissions of water vapor and temperature from each cooling tower
cell are computed for the current cell configuration and ambient
conditions by CTEMISS. CALPUFF models the dispersion of these
emissions and provides cloud information in a specialized format
for further analysis. Output to FOG.DAT is provided in either
'plume mode' or 'receptor mode' format.
Configure for FOG Model output?
                       Default: 0 ! MFOG = 0 !
(MFOG)
  0 = no
  1 = yes - report results in PLUME Mode format
  2 = yes - report results in RECEPTOR Mode format
Test options specified to see if
they conform to regulatory
values? (MREG)
                              Default: 1 ! MREG = 1 !
  0 = NO checks are made
  1 = Technical options must conform to USEPA
    Long Range Transport (LRT) guidance
           METFM 1 or 2
           AVET 60. (min)
PGTIME 60. (min)
           MGAUSS 1
           MCTADJ 3
           MTRANS 1
           MTIP
```

```
MCHEM 1 or 3 (if modeling SOx, NOx)
            MWET
            MDRY
            MDISP 2 or 3
            MPDF
                    0 if MDISP=3
                  1 if MDISP=2
            MROUGH 0
            MPARTL 1
SYTDEP 550. (m)
MHFTSZ 0
!END!
INPUT GROUP: 3a, 3b -- Species list
Subgroup (3a)
 The following species are modeled:
! CSPEC =
               SO2!
                          !END!
! CSPEC =
                          !END!
               SO4!
! CSPEC =
               NOX!
                          IEND!
! CSPEC =
               HNO3!
                           !END!
! CSPEC =
                          IEND
               NO3 I
! CSPEC =
                          !END!
               PM10 I
! CSPEC =
                CO!
                         !END!
                                           OUTPUT GROUP
                               Dry
  SPECIES
                 MODELED
                                EMITTED
                                             DEPOSITED
                                                                 NUMBER
                              (0=NO, 1=YES) (0=NO,
                                                              (0=NONE.
  NAME
              (0=NO, 1=YES)
                                                        1=1st CGRUP
  (Limit: 12
                                 1=COMPUTED-GAS
  Characters
                                  2=COMPUTED-PARTICLE 2=2nd CGRUP,
                                 3=USER-SPECIFIED) 3= etc.)
  in length)
      SO2 =
                                               0 !
      SO4 =
                                               0 !
                                    2,
                  1,
      NOX =
                                               0 !
      HNO3 =
                                                0!
                   1,
      NO3 =
                                               0 |
                            0,
                                    2,
                  1,
      PM10 =
                            1,
                                    2,
                                               0 1
       CO =
                                               0 !
!END!
Subgroup (3b)
 The following names are used for Species-Groups in which results
 for certain species are combined (added) prior to output. The
 CGRUP name will be used as the species name in output files.
 Use this feature to model specific particle-size distributions
 by treating each size-range as a separate species.
 Order must be consistent with 3(a) above.
INPUT GROUP: 4 -- Map Projection and Grid control parameters
   Projection for all (X,Y):
   Map projection
                      Default: UTM ! PMAP = LCC !
   (PMAP)
     UTM: Universal Transverse Mercator
     TTM: Tangential Transverse Mercator
```

TTM: Tangential Transverse Mercator LCC: Lambert Conformal Conic PS: Polar Stereographic EM: Equatorial Mercator

LAZA: Lambert Azimuthal Equal Area

False Easting and Northing (km) at the projection origin (Used only if PMAP= TTM, LCC, or LAZA) (FEAST) Default=0.0 ! FEAST = 0.000 !

(FEAST) Default=0.0 ! FEAST = 0.000 ! (FNORTH) Default=0.0 ! FNORTH = 0.000 !

UTM zone (1 to 60) (Used only if PMAP=UTM)

(IUTMZN) No Default | IUTMZN = 0 !

Hemisphere for UTM projection? (Used only if PMAP=UTM)

(UTMHEM) Default: N | UTMHEM = N |

N : Northern hemisphere projectionS : Southern hemisphere projection

Latitude and Longitude (decimal degrees) of projection origin (Used only if PMAP= TTM, LCC, PS, EM, or LAZA)

(RLATO) No Default ! RLATO = 40N!
(RLONO) No Default ! RLONO = 97W!

TTM: RLON0 identifies central (true N/S) meridian of projection RLAT0 selected for convenience

LCC: RLON0 identifies central (true N/S) meridian of projection RLAT0 selected for convenience

PS: RLON0 identifies central (grid N/S) meridian of projection

RLAT0 selected for convenience

EM: RLON0 identifies central meridian of projection RLAT0 is REPLACED by 0.0N (Equator)

LAZA: RLON0 identifies longitude of tangent-point of mapping plane RLAT0 identifies latitude of tangent-point of mapping plane

Matching parallel(s) of latitude (decimal degrees) for projection (Used only if PMAP= LCC or PS)

(XLAT1) No Default | XLAT1 = 33N | (XLAT2) No Default | XLAT2 = 45N |

LCC: Projection cone slices through Earth's surface at XLAT1 and XLAT2 PS: Projection plane slices through Earth at XLAT1 (XLAT2 is not used)

Note: Latitudes and longitudes should be positive, and include a letter N,S,E, or W indicating north or south latitude, and east or west longitude. For example, 35.9 N Latitude = 35.9N 118.7 E Longitude = 118.7E

Datum-region

The Datum-Region for the coordinates is identified by a character string. Many mapping products currently available use the model of the Earth known as the World Geodetic System 1984 (WGS-84). Other local models may be in use, and their selection in CALMET will make its output consistent with local mapping products. The list of Datum-Regions with official transformation parameters is provided by the National Imagery and Mapping Agency (NIMA).

NIMA Datum - Regions(Examples)

WGS-84 WGS-84 Reference Ellipsoid and Geoid, Global coverage (WGS84)

NAS-C NORTH AMERICAN 1927 Clarke 1866 Spheroid, MEAN FOR CONÚS (NAD27)
NAR-C NORTH AMERICAN 1983 GRS 80 Spheroid, MEAN FOR CONÚS (NAD83)

NWS-84 NWS 6370KM Radius, Sphere

ESR-S ESRI REFERENCE 6371KM Radius, Sphere

Datum-region for output coordinates

(DATUM) Default: WGS-G ! DATUM = NWS-84!

METEOROLOGICAL Grid:

Rectangular grid defined for projection PMAP, with X the Easting and Y the Northing coordinate

No. X grid cells (NX) No default ! NX = 263 ! No. Y grid cells (NY) No default ! NY = 206 !

٠,

```
No. vertical layers (NZ)
                         No default ! NZ = 10 !
                            No default ! DGRIDKM = 4. !
 Grid spacing (DGRIDKM)
                  Units: km
    Cell face heights
       (ZFACE(nz+1))
                        No defaults
                  Units: m
! ZFACE = 0.,20.,40.,80.,160.,320.,640.,1200.,2000.,3000.,4000. !
  Reference Coordinates
 of SOUTHWEST corner of
     grid cell(1, 1):
  X coordinate (XORIGKM)
                                        ! XORIGKM = 721.995 !
                            No default
  Y coordinate (YORIGKM)
                             No default
                                         ! YORIGKM = -1598.000 !
                  Units: km
```

COMPUTATIONAL Grid:

The computational grid is identical to or a subset of the MET. grid. The lower left (LL) corner of the computational grid is at grid point (IBCOMP, JBCOMP) of the MET. grid. The upper right (UR) corner of the computational grid is at grid point (IECOMP, JECOMP) of the MET. grid. The grid spacing of the computational grid is the same as the MET. grid.

```
X index of LL corner (IBCOMP)
                              No default
                                         ! IBCOMP = 1 !
     (1 \le IBCOMP \le NX)
Y index of LL corner (JBCOMP)
                               No default
                                           !JBCOMP = 1 !
     (1 <= JBCOMP <= NY)
X index of UR corner (IECOMP)
                                           ! IECOMP = 263 !
                               No default
     (1 <= IECOMP <= NX)
Y index of UR corner (JECOMP)
                                           ! JECOMP = 206 !
                                No default
     (1 <= JECOMP <= NY)
```

SAMPLING Grid (GRIDDED RECEPTORS):

The lower left (LL) corner of the sampling grid is at grid point (IBSAMP, JBSAMP) of the MET. grid. The upper right (UR) corner of the sampling grid is at grid point (IESAMP, JESAMP) of the MET. grid. The sampling grid must be identical to or a subset of the computational grid. It may be a nested grid inside the computational grid. The grid spacing of the sampling grid is DGRIDKM/MESHDN.

```
Logical flag indicating if gridded
    receptors are used (LSAMP)
                                 Default: T ! LSAMP = F!
    (T=yes, F=no)
    X index of LL corner (IBSAMP)
                                  No default
                                             ! IBSAMP = 1 !
    (IBCOMP <= IBSAMP <= IECOMP)
    Y index of LL corner (JBSAMP)
                                  No default
                                             ! JBSAMP = 1 !
    (JBCOMP <= JBSAMP <= JECOMP)
                                  No default ! IESAMP = 263 !
    X index of UR corner (IESAMP)
    (IBCOMP <= IESAMP <= IECOMP)
                                   No default ! JESAMP = 206 !
    Y index of UR corner (JESAMP)
    (JBCOMP <= JESAMP <= JECOMP)
   Nesting factor of the sampling
    grid (MESHDN)
                              Default: 1
                                        ! MESHDN = 1 !
    (MESHDN is an integer >= 1)
!END!
```

```
INPUT GROUP: 5 -- Output Options
  FILE
                                             VALUE THIS RUN
                    DEFAULT VALUE
 Concentrations (ICON)
                                           ! ICON = 1 !
                              1
 Dry Fluxes (IDRY)
                                         | IDRY = 0 !
 Wet Fluxes (IWET)
                             1
                                         ! IWET = 0 !
 Relative Humidity (IVIS)
                                          ! IVIS = 0 !
                             1
 (relative humidity file is
  required for visibility
  analysis)
 Use data compression option in output file?
 (LCOMPRS)
                            Default: T
                                           ! LCOMPRS = T!
 0 = Do not create file, 1 = create file
 DIAGNOSTIC MASS FLUX OUTPUT OPTIONS:
   Mass flux across specified boundaries
   for selected species reported hourly?
   (IMFLX)
                                       IIMFLX = 0!
                         Default: 0
    0 = no
    1 = yes (FLUXBDY.DAT and MASSFLX.DAT filenames
         are specified in Input Group 0)
   Mass balance for each species
   reported hourly?
   (IMBAL)
                                        ! IMBAL = 0 !
                          Default: 0
    0 = no
    1 = yes (MASSBAL.DAT filename is
       specified in Input Group 0)
  LINE PRINTER OUTPUT OPTIONS:
                                              !ICPRT = 0 !
   Print concentrations (ICPRT) Default: 0
   Print dry fluxes (IDPRT)
                              Default: 0
                                            ! IDPRT = 0 !
   Print wet fluxes (IWPRT)
                               Default: 0
                                             ! IWPRT = 0 !
   (0 = Do not print, 1 = Print)
   Concentration print interval
   (ICFRQ) in hours
                             Default: 1
                                           ! ICFRQ = 24 !
   Dry flux print interval
   (IDFRQ) in hours
                             Default: 1
                                           LIDFRQ = 1 |
   Wet flux print interval
                                           ! IWFRQ = 1 !
   (IWFRQ) in hours
                             Default: 1
   Units for Line Printer Output
                                        | IPRTU = 3 |
   (IPRTU)
                          Default: 1
            for
                      for
          Concentration Deposition
            g/m**3
                        g/m**2/s
     2 =
            mg/m**3
                        mg/m**2/s
            ug/m**3
                        ug/m**2/s
     3 =
            ng/m**3
                        ng/m**2/s
     4 =
     5 =
           Odour Units
   Messages tracking progress of run
   written to the screen?
   (IMESG)
                          Default: 2
                                        ! IMESG = 2 !
    0 = no
    1 = yes (advection step, puff ID)
    2 = yes (YYYYJJJHH, # old puffs, # emitted puffs)
  SPECIES (or GROUP for combined species) LIST FOR OUTPUT OPTIONS
         ---- CONCENTRATIONS --- --- DRY FLUXES ----- WET FLUXES ---- -- -- MASS FLUX --
 SPECIES
 /GROUP
              PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? SAVED ON DISK?
                                                                0 !
      SO2 =
              0,
                                       0.
                                               0,
                                                       0.
      SO4 =
                                       0,
                                                        0,
                                                                0 !
               0,
```

Subgroup (6c)

```
NOX =
     HNO3 =
                                       0.
                                               0.
                                                      0.
                                                              0 !
              0,
                               0.
     NO3 =
             0.
                                      0,
                                              0.
                                                      0,
                                                              0 1
     PM10 =
              0,
      CO = 0,
                              0,
                                     0,
                                             0,
                                                             0 1
  OPTIONS FOR PRINTING "DEBUG" QUANTITIES (much output)
   Logical for debug output
   (LĎEBUG)
                               Default: F | LDEBUG = F !
   First puff to track
   (IPFDEB)
                               Default: 1 ! IPFDEB = 1 !
   Number of puffs to track
                               Default: 1 ! NPFDEB = 1 !
   (NPFDEB)
   Met. period to start output
   (NN1)
                             Default: 1 ! NN1 = 1 !
    Met. period to end output
   (NN2)
                             Default: 10 ! NN2 = 10 !
!END!
INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs
Subgroup (6a)
    Number of terrain features (NHILL)
                                      Default: 0 ! NHILL = 0 !
    Number of special complex terrain
                                   Default: 0 ! NCTREC = 0 !
    receptors (NCTREC)
    Terrain and CTSG Receptor data for
    CTSG hills input in CTDM format?
    (MHILL)
                              No Default ! MHILL = 2 !
    1 = Hill and Receptor data created
      by CTDM processors & read from
      HILL.DAT and HILLRCT.DAT files
    2 = Hill data created by OPTHILL &
      input below in Subgroup (6b);
      Receptor data in Subgroup (6c)
    Factor to convert horizontal dimensions Default: 1.0 ! XHILL2M = 1.!
    to meters (MHILL=1)
    Factor to convert vertical dimensions   Default: 1.0 ! ZHILL2M = 1.!
    to meters (MHILL=1)
    X-origin of CTDM system relative to No Default ! XCTDMKM = 0.0E00 |
    CALPUFF coordinate system, in Kilometers (MHILL=1)
    Y-origin of CTDM system relative to No Default ! YCTDMKM = 0.0E00 !
    CALPUFF coordinate system, in Kilometers (MHILL=1)
! END!
-----
Subgroup (6b)
   HILL information
HILL
          XC
                        THETAH ZGRID RELIEF EXPO 1 EXPO 2 SCALE 1 SCALE 2 AMAX1 AMAX2
                  YC
 NO.
                       (deg.) (m) (m) (m) (m) (m)
```

Page: 10

COMPLEX TERRAIN RECEPTOR INFORMATION

XRCT YRCT **ZRCT** XHH (m) (km) (km)

Description of Complex Terrain Variables:

XC, YC = Coordinates of center of hill THETAH = Orientation of major axis of hill (clockwise from North)

ZGRID = Height of the 0 of the grid above mean sea

RELIEF = Height of the crest of the hill above the grid elevation

EXPO 1 = Hill-shape exponent for the major axis

EXPO 2 = Hill-shape exponent for the major axis

SCALE 1 = Horizontal length scale along the major axis

SCALE 2 = Horizontal length scale along the minor axis

AMAX = Maximum allowed axis length for the major axis

BMAX = Maximum allowed axis length for the major axis

XRCT, YRCT = Coordinates of the complex terrain receptors ZRCT = Height of the ground (MSL) at the complex terrain Receptor

XHH = Hill number associated with each complex terrain receptor (NOTE: MUST BE ENTERED AS A REAL NUMBER)

NOTE: DATA for each hill and CTSG receptor are treated as a separate input subgroup and therefore must end with an input group terminator.

PUT GROUP: 7 -- Chemical parameters for dry deposition of gases

SPECIES DIFFUSIVITY **ALPHA STAR** REACTIVITY MESOPHYLL RESISTANCE HENRY'S LAW COEFFICIENT (cm**2/s) NAME (s/cm) (dimensionless) 1000, 0, SO2 = 0.1509, 8, 0.04 ! NOX = 0.1656. 8, 3.5! 1, HNO3 = 0.1628,0, 0.00000008! !END!

INPUT GROUP: 8 -- Size parameters for dry deposition of particles

For SINGLE SPECIES, the mean and standard deviation are used to compute a deposition velocity for NINT (see group 9) size-ranges, and these are then averaged to obtain a mean deposition velocity.

For GROUPED SPECIES, the size distribution should be explicitly specified (by the 'species' in the group), and the standard deviation for each should be entered as 0. The model will then use the deposition velocity for the stated mean diameter.

GEOMETRIC	MASS MEAN	GEOMETRIC STANDARD
DIAMETER	DEV	/IATION
(microns)	(microns)	
0.48,	2. !	
0.48,	2. !	
0.48,	2. !	
	DIAMETER (microns) 0.48, 0.48,	(microns) (microns) 0.48, 2. ! 0.48, 2. !

!END!

INPUT GROUP: 9 -- Miscellaneous dry deposition parameters Reference cuticle resistance (s/cm) (RCUTR) Default: 30 ! RCUTR = 30.0! Reference ground resistance (s/cm) Default: 10 ! RGR = 10.0! (RGR) Reference pollutant reactivity (REACTR) Default: 8 ! REACTR = 8.0 ! Number of particle-size intervals used to evaluate effective particle deposition velocity Default: 9 ! NINT = 9 ! Vegetation state in unirrigated areas (IVEG) Default: 1 ! IVEG = 1 ! IVEG=1 for active and unstressed vegetation IVEG=2 for active and stressed vegetation IVEG=3 for inactive vegetation **IEND!** _____ INPUT GROUP: 10 -- Wet Deposition Parameters Scavenging Coefficient -- Units: (sec)**(-1) Pollutant Liquid Precip. Frozen Precip. SO2 ≈ 3.0E-05. 0.0E00 I 1.0E-04, 3.0E-05! SO4 = HNO3 = 6.0E-05, 0.0E00! 1.0E-04, 3.0E-05! NO3 ≈ 1.0E-04. PM10 = 3.0E-05! !END! INPUT GROUP: 11 -- Chemistry Parameters Ozone data input option (MOZ) Default: 1 IMOZ = 0(Used only if MCHEM = 1, 3, or 4) 0 = use a monthly background ozone value 1 = read hourly ozone concentrations from the OZONE.DAT data file Monthly ozone concentrations (Used only if MCHEM = 1, 3, or 4 and MOZ = 0 or MOZ = 1 and all hourly O3 data missing) (BCKO3) in ppb Default: 12*80. ! BCKO3 = 12*50.! Monthly ammonia concentrations (Used only if MCHEM = 1, or 3) (BCKNH3) in ppb Default: 12*10. ! BCKNH3 = 12*0.5 ! Nighttime SO2 loss rate (RNITE1) Default: 0.2 ! RNITE1 = .2! in percent/hour

Nighttime NOx loss rate (RNITE2)

Nighttime HNO3 formation rate (RNITE3)

Default: 2.0

Default: 2.0

in percent/hour

in percent/hour

! RNITE2 = 2.0!

! RNITE3 = 2.0 !

H2O2 data input option (MH2O2) Default: 1 ! MH2O2 = 1 !(Used only if MAQCHEM = 1) 0 = use a monthly background H2O2 value 1 = read hourly H2O2 concentrations from the H2O2.DAT data file Monthly H2O2 concentrations (Used only if MQACHEM = 1 and MH2O2 = 0 or MH2O2 = 1 and all hourly H2O2 data missing) (BCKH2O2) in ppb Default: 12*1. ! BCKH2O2 = 12*1 ! --- Data for SECONDARY ORGANIC AEROSOL (SOA) Option (used only if MCHEM = 4) The SOA module uses monthly values of:

Fine particulate concentration in ug/m^3 (BCKPMF) Organic fraction of fine particulate (OFRAC) VOC / NOX ratio (after reaction) (VCNX) to characterize the air mass when computing the formation of SOA from VOC emissions. Typical values for several distinct air mass types are:

Month 1 2 3 4 5 6 7 8 9 10 11 12 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Clean Continental BCKPMF 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 OFRAC .15 .15 .20 .20 .20 .20 .20 .20 .20 .20 .20 .15

Clean Marine (surface)

Urban - low biogenic (controls present) OFRAC .20 .20 .25 .25 .25 .25 .25 .20 .20 .20 .20 VCNX 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

Urban - high biogenic (controls present) OFRAC .25 .25 .30 .30 .30 .55 .55 .55 .35 .35 .35 .25

Regional Plume

OFRAC .20 .20 .25 .35 .25 .40 .40 .40 .30 .30 .30 .20

Urban - no controls present OFRAC .30 .30 .35 .35 .35 .55 .55 .55 .35 .35 .35 .30 VCNX 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

Default: Clean Continental ! BCKPMF = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 ! ! OFRAC = 0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15 ! ! VCNX = 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00 !

!END!

INPUT GROUP: 12 -- Misc. Dispersion and Computational Parameters

Horizontal size of puff (m) beyond which time-dependent dispersion equations (Heffter) are used to determine sigma-y and sigma-z (SYTDEP)

Default: 550. ! SYTDEP = 5.5E02 !

Switch for using Heffter equation for sigma z

```
as above (0 = Not use Heffter; 1 = use Heffter
(MHFTSZ)
                               Default: 0
                                           !MHFTSZ = 0 !
Stability class used to determine plume
growth rates for puffs above the boundary
layer (JSUP)
                               Default: 5
                                           ! JSUP = 5 !
Vertical dispersion constant for stable
conditions (k1 in Eqn. 2.7-3) (CONK1)
                                      Default: 0.01 | CONK1 = .01 |
Vertical dispersion constant for neutral/
unstable conditions (k2 in Eqn. 2.7-4)
(CONK2)
                              Default: 0.1 ! CONK2 = .1 |
Factor for determining Transition-point from
Schulman-Scire to Huber-Snyder Building Downwash
scheme (SS used for Hs < Hb + TBD * HL)
(TBD)
                            Default: 0.5 ! TBD = .5!
  TBD < 0 ==> always use Huber-Snyder
  TBD = 1.5 ==> always use Schulman-Scire
 TBD = 0.5 ==> ISC Transition-point
Range of land use categories for which
urban dispersion is assumed
                                 Default: 10 ! IURB1 = 10 !
(IURB1, IURB2)
                               19 ! IURB2 = 19 !
Site characterization parameters for single-point Met data files ------
(needed for METFM = 2,3,4)
  Land use category for modeling domain
  (ILANDUIN)
                               Default: 20
                                            ! ILANDUIN = 20 !
  Roughness length (m) for modeling domain
  (ZOIN)
                            Default: 0.25 ! Z0IN = .25 !
  Leaf area index for modeling domain
  (XLAIIN)
                             Default: 3.0 ! XLAIIN = 3.0!
  Elevation above sea level (m)
  (ELEVIN)
                              Default: 0.0 ! ELEVIN = .0 !
  Latitude (degrees) for met location
  (XLATIN)
                              Default: -999. ! XLATIN ≈ -999.0 !
  Longitude (degrees) for met location
  (XLŎNIN)
                               Default: -999. ! XLONIN = -999.0 !
Specialized information for interpreting single-point Met data files -----
  Anemometer height (m) (Used only if METFM = 2,3)
                                Default: 10. ! ANEMHT = 10.0 !
  (ANEMHT)
  Form of lateral turbulance data in PROFILE.DAT file
  (Used only if METFM = 4 or MTURBVW = 1 or 3)
  (ISIGMAV)
                               Default: 1 ! ISIGMAV = 1 !
     0 = read sigma-theta
    1 = read sigma-v
  Choice of mixing heights (Used only if METFM = 4)
                                             ! IMIXCTDM = 0 !
  (IMIXCTDM)
                                Default: 0
     0 = read PREDICTED mixing heights
     1 = read OBSERVED mixing heights
Maximum length of a slug (met. grid units)
(XMXLEN)
                               Default: 1.0 ! XMXLEN = 1.0 !
Maximum travel distance of a puff/slug (in
 grid units) during one sampling step
 (XSAMLÉN)
                                 Default: 1.0 ! XSAMLEN = 1.0 !
 Maximum Number of slugs/puffs release from
 one source during one time step
 (MXNEW)
                                Default: 99 ! MXNEW = 99 !
 Maximum Number of sampling steps for
 one puff/slug during one time step
                                Default: 99 ! MXSAM = 99 !
 (MXSAM)
```

```
Number of iterations used when computing
the transport wind for a sampling step
that includes gradual rise (for CALMET
and PROFILE winds)
(NCOUNT)
                                Default: 2
                                            ! NCOUNT = 2 !
Minimum sigma y for a new puff/slug (m)
                              Default: 1.0 ! SYMIN = 1.0 !
(SYMIN)
Minimum sigma z for a new puff/slug (m)
(SZMIN)
                              Default: 1.0 ! SZMIN = 1.0 !
Default minimum turbulence velocities sigma-v and sigma-w
for each stability class over land and over water (m/s)
(SVMIN(12) and SWMIN(12))
          ----- LAND -----
                                    ----- WATER ----
 Stab Class: A B C D E F A B C D E F
Default SVMIN: .50, .50, .50, .50, .50, .50, .37, .37, .37, .37, .37
Default SWMIN: .20, .12, .08, .06, .03, .016, .20, .12, .08, .06, .03, .016
    ! SVMIN = 0.500, 0.500, 0.500, 0.500, 0.500, 0.500, 0.370, 0.370, 0.370, 0.370, 0.370, 0.370!
   ! SWMIN = 0.200, 0.120, 0.080, 0.060, 0.030, 0.016, 0.200, 0.120, 0.080, 0.060, 0.030, 0.016!
Divergence criterion for dw/dz across puff
used to initiate adjustment for horizontal
convergence (1/s)
Partial adjustment starts at CDIV(1), and
full adjustment is reached at CDIV(2)
(CDIV(2))
                              Default: 0.0,0.0 ! CDIV = .0, .0 !
Minimum wind speed (m/s) allowed for
non-calm conditions. Also used as minimum
speed returned when using power-law
extrapolation toward surface
                                Default: 0.5 | WSCALM = .5 |
(WSCALM)
Maximum mixing height (m)
                               Default: 3000. ! XMAXZI = 3000.0 !
(XMAXZI)
Minimum mixing height (m)
                              Default: 50. ! XMINZI = 50.0 !
(XMINZI)
Default wind speed classes --
5 upper bounds (m/s) are entered;
the 6th class has no upper limit
                         Default :
(WSCAT(5))
                    ISC RURAL: 1.54, 3.09, 5.14, 8.23, 10.8 (10.8+)
               Wind Speed Class: 1 2 3 4 5
                     ! WSCAT = 1.54, 3.09, 5.14, 8.23, 10.80 !
Default wind speed profile power-law
exponents for stabilities 1-6
(PLX0(6))
                       Default : ISC RURAL values
                   ISC RURAL: .07, .07, .10, .15, .35, .55
ISC URBAN: .15, .15, .20, .25, .30, .30
                Stability Class: A B C D E F
                     ! PLX0 = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55 !
Default potential temperature gradient
for stable classes E, F (degK/m)
                        Default: 0.020, 0.035
(PTG0(2))
                     ! PTG0 = 0.020, 0.035 !
Default plume path coefficients for
each stability class (used when option
for partial plume height terrain adjustment
is selected -- MCTADJ=3)
                   Stability Class: A B C D E F
(PPC(6))
                  Default PPC: .50, .50, .50, .50, .35, .35
```

! PPC = 0.50, 0.50, 0.50, 0.50, 0.35, 0.35 !

Slug-to-puff transition criterion factor equal to sigma-y/length of slug ! SL2PF = 10.0 ! (SL2PF) Default: 10. Puff-splitting control variables -----**VERTICAL SPLIT** Number of puffs that result every time a puff is split - nsplit=2 means that 1 puff splits into 2 ! NSPLIT = 3 ! (NSPLIT) Default: 3 Time(s) of a day when split puffs are eligible to be split once again; this is typically set once per day, around sunset before nocturnal shear develops. 24 values: 0 is midnight (00:00) and 23 is 11 PM (23:00) 0=do not re-split 1=eligible for re-split (IRESPLIT(24)) Default: Hour 17 = 1 Split is allowed only if last hour's mixing height (m) exceeds a minimum value (ZISPLIT) Default: 10 ! ZISPLIT = 100.0 ! Default: 100. Split is allowed only if ratio of last hour's mixing ht to the maximum mixing ht experienced by the puff is less than a maximum value (this postpones a split until a nocturnal layer develops) Default: 0.25 ! ROLDMAX = 0.25 ! (ROLDMAX) HORIZONTAL SPLIT Number of puffs that result every time a puff is split - nsplith=5 means that 1 puff splits into 5 ! NSPLITH = 5 ! (NSPLITH) Default: 5 Minimum sigma-y (Grid Cells Units) of puff before it may be split (SYSPLITH) Default: 1.0 I SYSPLITH ≈ 1.0 ! Minimum puff elongation rate (SYSPLITH/hr) due to wind shear, before it may be split (SHSPLITH) Default: 2. ! SHSPLITH = 2.0 ! Minimum concentration (g/m^3) of each species in puff before it may be split Enter array of NSPEC values: if a single value is entered, it will be used for ALL species Default: 1.0E-07 ! CNSPLITH = 1.0E-07! (CNSPLITH) Integration control variables -----Fractional convergence criterion for numerical SLUG sampling integration (EPSSLUG) Default: 1.0e-04 ! EPSSLUG = 1.0E-04 ! Fractional convergence criterion for numerical AREA source integration Default: 1.0e-06 ! EPSAREA = 1.0E-06 ! (EPSAREA) Trajectory step-length (m) used for numerical rise integration (DSRISE) Default: 1.0 | DSRISE ≈ 1.0 ! !END! INPUT GROUPS: 13a, 13b, 13c, 13d -- Point source parameters

Subgroup (13a)

```
Number of point sources with
   parameters provided below
                                (NPT1) No default | NPT1 = 1 !
   Units used for point source
                            (IPTU) Default: 1 ! IPTU = 1 !
   emissions below
      1 =
              q/s
      2 =
              kg/hr
      3 =
              lb/hr
      4 =
            tons/yr
            Odour Unit * m**3/s (vol. flux of odour compound)
      5 =
            Odour Unit * m**3/min
      6 =
      7 =
            metric tons/vr
   Number of source-species
   combinations with variable
   emissions scaling factors
   provided below in (13d)
                              (NSPT1) Default: 0 ! NSPT1 = 0 !
   Number of point sources with
   variable emission parameters
   provided in external file
                            (NPT2) No default ! NPT2 = 0 !
   (If NPT2 > 0, these point
   source emissions are read from
   the file: PTEMARB.DAT)
!END!
Subgroup (13b)
      POINT SOURCE: CONSTANT DATA
          XUTM YUTM Stack Base
                                             Stack Exit Exit Bldg. Emission
 Source
        Coordinate Coordinate Height Elevation Diameter Vel. Temp. Dwash Rates
                                       (m) (m/s) (deg. K)
        (km) (km) (m) (m)
Subgroup (13b)
   SO2 0.27 LB/MMBTU X 7200 MMBTU/HR = 1944 LB/HR = 244.9 G/S
   174 ! SRCNAM = CRRIV45N !
   174 | X = 1398.848, -1115.158, 167.70, 0.00, 9.30, 15.30, 328.0, 0.0, 489.90, 9.1, 907.2, 0.0, 0.0, 181.4, 272.2!
      !END!
   Data for each source are treated as a separate input subgroup
   and therefore must end with an input group terminator.
   SRCNAM is a 12-character name for a source
        (No default)
        is an array holding the source data listed by the column headings
        (No default)
   SIGYZI is an array holding the initial sigma-y and sigma-z (m)
        (Default: 0..0.)
   FMFAC is a vertical momentum flux factor (0. or 1.0) used to represent
        the effect of rain-caps or other physical configurations that
        reduce momentum rise associated with the actual exit velocity.
        (Default: 1.0 -- full momentum used)
   0. = No building downwash modeled, 1. = downwash modeled
   NOTE: must be entered as a REAL number (i.e., with decimal point)
   An emission rate must be entered for every pollutant modeled.
   Enter emission rate of zero for secondary pollutants that are
   modeled, but not emitted. Units are specified by IPTU
   (e.g. 1 for g/s).
  ubgroup (13c)
```

BUILDING DIMENSION DATA FOR SOURCES SUBJECT TO DOWNWASH

 group (13	d)	
	-,	
	SOURCE: VARIABLE EMISSIONS DATA	
rates give	ubgroup to describe temporal variations in the emission in 13b. Factors entered multiply the rates in 13b. es here that have constant emissions. For more elabon source parameters, use PTEMARB.DAT and NPT2 >	ate
(IVARY)	rermines the type of variation, and is source-specific: Default: 0	
0 = 1 = 2 = 3 = 4 =	Constant Diurnal cycle (24 scaling factors: hours 1-24) Monthly cycle (12 scaling factors: months 1-12) Hour & Season (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) Speed & Stab. (6 groups of 6 scaling factors, where	
	first group is Stability Class A, and the speed classes have upper	
5 =	bounds (m/s) defined in Group 12 Temperature (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+)	
	ach species are treated as a separate input subgroup ore must end with an input group terminator.	
Data for e and there	JPS: 14a, 14b, 14c, 14d Area source parameters	
Data for e and there	JPS: 14a, 14b, 14c, 14d Area source parameters	
Data for e and there	JPS: 14a, 14b, 14c, 14d Area source parameters	1
NPUT GROD Subgroup (14 Number of paramete Units use emissions 1 = 2 = 3 = 4 = 5 = 6 = 6 =	JPS: 14a, 14b, 14c, 14d Area source parameters JPS: 14a, 14c, 14d Area	!
NPUT GRO Subgroup (14 Number of paramete Units use emissions 1 = 2 = 3 = 4 = 5 = 6 = 7 = Number of combinate emissions	JPS: 14a, 14b, 14c, 14d Area source parameters f polygon area sources with specified below (NAR1) No default ! NAR1 = 0 d for area source below (IARU) Default: 1 ! IARU = 1 ! g/m**2/s kg/m**2/hr lb/m**2/hr tons/m**2/yr Odour Unit * m/s (vol. flux/m**2 of odour compound) Odour Unit * m/min metric tons/m**2/yr of source-species ons with variable a scaling factors	
NPUT GROD Subgroup (14 Number of paramete Units use emissions 1 = 2 = 3 = 4 = 5 = 6 = 7 = Number of combinate emissions provided Number of combinate emissions provided Number of combinate emissions provided	d for area source (IARU) Default: 1 ! IARU = 1 ! g/m**2/s kg/m**2/hr lb/m**2/hr tons/m**2/yr Odour Unit * m/s (vol. flux/m**2 of odour compound) Odour Unit * m/min metric tons/m**2/yr of source-species ons with variable	-

Page: 18

AREA SOURCE: CONSTANT DATA

,			b	
ource	Effect	. Base	Initial	Emission
No.	Height	Elevation	Sigma 2	z Rates
	(m) ¯	(m) (m	1)	

Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator.

An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IARU (e.g. 1 for g/m**2/s).

Subgroup (14c)

COORDINATES (UTM-km) FOR EACH VERTEX(4) OF EACH POLYGON

Source

Ordered list of X followed by list of Y, grouped by source No.

Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator.

bgroup (14d)

AREA SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission rates given in 14b. Factors entered multiply the rates in 14b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use BAEMARB.DAT and NAR2 > 0.

IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0

- 0 = Constant
- Diurnal cycle (24 scaling factors: hours 1-24) 1 =
- Monthly cycle (12 scaling factors: months 1-12) 2 =
- 3 = Hour & Season (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB)
- 4 = Speed & Stab. (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper
- bounds (m/s) defined in Group 12 5 = Temperature (12 scaling factors, where temperature
- classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+)

Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

INPUT GROUPS: 15a, 15b, 15c -- Line source parameters

```
Subgroup (15a)
  Number of buoyant line sources
  with variable location and emission
   parameters (NLN2)
                                      No default | NLN2 = 0 |
   (If NLN2 > 0, ALL parameter data for
   these sources are read from the file: LNEMARB.DAT)
                                               No default ! NLINES = 0 !
   Number of buoyant line sources (NLINES)
   Units used for line source
                            (ILNU)
                                        Default: 1 ! ILNU = 1 !
   emissions below
      1 =
              g/s
      2 =
             kg/hr
      3 =
             lb/hr
      4 =
            tons/yr
            Odour Unit * m**3/s (vol. flux of odour compound)
      5 =
            Odour Unit * m**3/min
            metric tons/yr
   Number of source-species
   combinations with variable
   emissions scaling factors
                             (NSLN1) Default: 0 ! NSLN1 = 0 !
   provided below in (15c)
   Maximum number of segments used to model
                                        Default: 7 | MXNSEG = 7 !
   each line (MXNSEG)
   The following variables are required only if NLINES > 0. They are
   used in the buoyant line source plume rise calculations.
     Number of distances at which
                                          Default: 6 ! NLRISE = 6 !
     transitional rise is computed
     Average building length (XL)
                                         No default ! XL = .0!
                               (in meters)
     Average building height (HBL)
                                          No default ! HBL = .0!
                               (in meters)
     Average building width (WBL)
                                          No default | WBL = .0 !
                               (in meters)
                                            No default ! WML = .0 !
     Average line source width (WML)
                               (in meters)
     Average separation between buildings (DXL) No default ! DXL = .0 !
                               (in meters)
                                                 No default ! FPRIMEL = .0!
     Average buoyancy parameter (FPRIMEL)
                               (in m**4/s**3)
 !END!
 Subgroup (15b)
      BUOYANT LINE SOURCE: CONSTANT DATA
 Source Beg. X Beg. Y
                              End. X End. Y Release Base
                                                                    Emission
       Coordinate Coordinate Coordinate Height Elevation
 No.
                (km)
        (km)
                         (km)
                                  (km)
                                          (m)
                                                  (m)
 -----
   Data for each source are treated as a separate input subgroup
    and therefore must end with an input group terminator.
   b
    An emission rate must be entered for every pollutant modeled.
    Enter emission rate of zero for secondary pollutants that are
```

Page: 20

modeled, but not emitted. Units are specified by ILNTU (e.g. 1 for g/s). Subgroup (15c) **BUOYANT LINE SOURCE: VARIABLE EMISSIONS DATA** Use this subgroup to describe temporal variations in the emission rates given in 15b. Factors entered multiply the rates in 15b. Skip sources here that have constant emissions. IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0 Constant 0 = Diurnal cycle (24 scaling factors: hours 1-24) 1 = 2 = Monthly cycle (12 scaling factors: months 1-12) Hour & Season (4 groups of 24 hourly scaling factors, 3 = where first group is DEC-JAN-FEB) Speed & Stab. (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 5 = Temperature (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUPS: 16a, 16b, 16c -- Volume source parameters Subgroup (16a) Number of volume sources with parameters provided in 16b,c (NVL1) No default ! NVL1 = 0 ! Units used for volume source emissions below in 16b (IVLU) Default: 1 ! IVLU = 3 ! g/s 1 = 2 = kg/hr 3 = lb/hr 4 = tons/yr Odour Unit * m**3/s (vol. flux of odour compound) 5 = Odour Unit * m**3/min 6 = metric tons/yr Number of source-species combinations with variable emissions scaling factors (NSVL1) Default: 0 ! NSVL1 = 0 ! provided below in (16c) Number of volume sources with variable location and emission (NVL2) parameters No default ! NVL2 = 0 ! (If NVL2 > 0, ALL parameter data for these sources are read from the VOLEMARB.DAT file(s)) ND!

Subgroup (16b)

VOLUN		a E: CONSTAN'	T DATA						
X UTM Coordinate			evation Sigm	nitial E a y Siç			s		
			SO2	SO4	NOX	HNO3	NO3	PM10	CC
and therefo		re treated as d with an input			jroup	•			
Enter emis	sion rate of out not emitt	be entered fo zero for secor ed. Units are	ndary pollutar	nts that a	eled. are				
Subgroup (16	c)								
VOLUN	ME SOURCE	a :: VARIABLE	EMISSIONS	DATA					
rates giver Skip sourc	n in 16b. Fa es here that	escribe tempo ctors entered have constar ameters, use	multiply the r nt emissions.	ates in 1 For mo	6b. re elat	orate			
IVARY de (IVARY) 0 = 1 = 2 =	Constant Diurnal cyc	type of variat Default de (24 scaling cle (12 scaling	: 0 factors: hou	s 1-24)					
3 = 4 =	Hour & Sea wh Speed & S firs	ason (4 group lere first group tab. (6 groups st group is Sta	s of 24 hourly o is DEC-JAN of 6 scaling ability Class A	scaling I-FEB) factors,	factor				
5 =	bo Temperatu cla 0,	d the speed c unds (m/s) de re (12 scalin isses have up 5, 10, 15, 20, , 50, 50+)	fined in Grou g factors, who per bounds (p 12 ere temp C) of:	oeratui	e e			
		are treated as d with an inpu			ogroup				
INPUT GROU	JPS: 17a &	17b Non-gri	dded (discret	 e) recep	tor info	ormation	า		
Subgroup (17	7 a)								
		- 113 RECEP RECEPTORS							
Number o	f non-gri dde	d receptors (N	NREC) No de	efault !	NREC	= 214 1			
!END!									

а

-----Subgroup (17b)

NON-GRIDDED (DISCRETE) RECEPTOR DATA

Ground X UTM Y UTM Height b Coordinate Coordinate Elevation Above Ground Receptor No. (km) (m) (m)

RECEPTORS OBTAINED FROM THE NPS/FWS EXTRACTION PROGRAM ALL RECEPTORS ARE IN 40-97 LCC

113 RECEPTORS INCLUDES ALL	CHASSAHOWITZKA NWA	RECEPTORS

113 RECEF	TORS INCLUDES ALL	CHASSAHC	WITZKA	NWA RECEPTO
1!X=	1408.318, -1154.049,	0.000,	1000.0	!END!
2 ! X =	1409.130, -1153.920,	1.000,	0.0001	IENDI
3!X=	1409.941, -1153.791,	1.000,	0.000!	!END!
4 ! X =	1410.753, -1153.661,	3.000,	0.0001	IEND!
51X=	1407.359, -1153.254,	0.000,	0.000!	!END!
6!X=	1408.171, -1153.124,	0.000,	0.000!	IEND!
7 ! X =	1408.983, -1152.995,	1.000,	0.000!	!END!
8 ! X =	1409.794, -1152.866,	1.000,	0.0001	IEND!
9!X=	1410.606, -1152.737,	2.000,	0.0001	!END!
10 ! X =	1406.401, -1152.458, 1407.212, -1152.329.	0.000,	0.0001	
11 ! X = 12 ! X =	1407.212, -1152.329, 1408.024, -1152.200.	0.000,	0.0001	
12! X =	1408.835, -1152.200,	0.000, 1.000,	0.000!	
14 ! X =	1409.647, -1151.941,	1.000,	0.0001	· ·
15 ! X =	1410.458, -1151.812,	2.000,	0.0001	
16 ! X =	1406.254, -1151.533,	0.000,	0.000!	
17 ! X =	1407.065, -1151.404,	0.000,	0.000!	
18 ! X =	1407.877, -1151.275,	1.000,	0.0001	
19 ! X =	1408.688, -1151.146,	1.000,	0.000!	
20 ! X =	1409.500, -1151.017,	1.000,	0.0001	_
21 X =	1410.311, -1150.888,	2.000,	0.000!	
22 ! X =	1406.918, -1150.480,	0.000,	0.0001	!END!
23 ! X =	1407.730, -1150.351,	1.000,	0.000!	!END!
24 ! X =	1408.541, -1150.221,	1.000,	1000.0	IENDI
25 ! X =	1409.352, -1150.092,	1.000,	0.000!	!END!
26 ! X =	1410.164, -1149.963,	2.000,	0.000!	
27 ! X =	1406.771, -1149.555,	0.000,	0.000!	
28 ! X =	1407.582, -1149.426,	0.000,	0.000!	
29 X =	1408.394, -1149.297,	1.000,	0.000!	
30 ! X =	1409.205, -1149.168,	1.000,	0.000!	
31 ! X =	1410.016, -1149.038,	3.000,	1000.0	
32 ! X = 33 ! X =	1406.624, -1148.631, 1407.435, -1148.501,	0.000,	0.000!	
34 ! X =	1408.247, -1148.372,	1.000, 1.000,	0.0001	
35!X=	1409.058, -1148.243,	1.000,	0.000!	!END!
36 ! X =	1409.869, -1148.114,	2.000,	0.000!	
37 ! X =	1406.477, -1147.706,	0.000,	0.000!	
38 ! X =	1407.288, -1147.577,	0.000,	0.000!	
39 X =	1408.099, -1147.448,	0.000,	0.000!	
40 ! X =	1408.911, -1147.319,	1.000,	0.000!	
41 ! X =	1409.722, -1147.189,	1.000,	0.000!	!END!
42 X =	1410.385, -1146.136,	2.000,	0.000!	!END!
43 ! X =	1410.238, -1145.211,	1.000,	0.000!	
44 ! X =	1411.049, -1145.082,	2.000,	0.000!	
45 ! X =	1404.414, -1145.190,	0.000,	0.0001	
46 ! X =	1405.225, -1145.061,	0.000,	0.000!	!END!
47 ! X =	1406.036, -1144.933,	0.000,	(0.000)	END!
48 ! X =	1406.847, -1144.804,	0.000,	0.000!	!END!
49!X=	1407.658, -1144.675,	0.000,	0.0001	!END!
50 ! X = 51 ! X =	1410.091, -1144.287, 1410.901, -1144.158,	1.000, 1.000,	0.000!	!END!
52 ! X =	1411.712, -1144.028,	1.000,	0.000!	IEND!
53 ! X =	1403.457, -1144.395,	0.000,	0.000!	!END!
54 ! X =	1404.268, -1144.266,	0.000,	0.0001	IEND!
55 ! X =	1405.078, -1144.137,	0.000,	0.000!	!END!
56!X=	1405.889, -1144.008,	0.000.	0.000!	!END!
57 ! X =	1406.700, -1143.879,	0.000,	0.000!	!END!
58 ! X =	1407.511, -1143.750,	0.000,	0.000!	!END!
59 ! X =	1411.565, -1143.104,	1.000,	0.000!	!END!
60 ! X =	1402.499, -1143.599,	0.000,	0.000!	!END!
61 ! X =	1403.310, -1143.470,	0.000,	0.000!	!END!
62 ! X =	1404.121, -1143.341,	0.000,	0.000!	!END!
63 ! X =	1404.931, -1143.213,	1.000,	1000.0	!END!
64 ! X =	1405.742, -1143.084,	1.000,	0.000!	!END!
65!X=	1406.553, -1142.955,	1.000,	0.000!	!END!
66 ! X =	1407.364, -1142.826,	0.000,	0.000!	(END!
67 X =	1400.731, -1142.931,	0.000,	0.000!	!END!

68 ! X =	1401.542, -1142.803,	0.000,	0.000! !END!
69 ! X =	1402.353, -1142.674,	1.000,	0.000! !END!
70 ! X =	1403.163, -1142.546,	0.000,	0.000! !END!
71 ! X =	1403.974, -1142.417,	1.000,	0.0001 !END!
72 X =	1404.785, -1142.288,	1.000,	0.0001 IEND!
73 I X =	1405.595, -1142.159,	1.000	0.0001 IENDI
74 I X =	1406.406, -1142.030,	1.000,	0.0001 ENDI
75 X =	1407.217, -1141.901,	1.000,	0.000! !END!
76 ! X =	1402.206, -1141.750,	0.000,	0.0001 IENDI
77 ! X =	1403.017, -1141.621,	1.000,	0.000! !END!
78 ! X =	1403.827, -1141.493,	1.000,	0.0001 ENDI
79 ! X =	1404.638, -1141.364,	1.000,	0.000! IEND!
80 ! X =	1405.448, -1141.235,	1.000,	0.000! !END!
81 ! X =	1406.259, -1141.106,	1.000,	0.000! !END!
82 ! X =	1407.069, -1140.977,	1.000,	0.000! !END!
83 ! X =	1402.870, -1140.697,	0.000,	0.000! !END!
84 X =	1403.680, -1140.568,	0.000,	0.0001 !END!
85 ! X =	1404.491, -1140.439,	1.000,	0.000! !END!
86 ! X = 87 ! X =	1405.301, -1140.311,	1.000,	0.000! !END!
88 ! X =	1406.112, -1140.182, 1406.922, -1140.053,	1.000,	0.000! !END!
89 X =	1407.733, -1139.924,	1.000, 1.000,	0.000! !END!
90!X=	1402.723, -1139.772,	0.000,	0.000 END 0.000 END
91 ! X =	1403.534, -1139.644,	0.000,	0.0001 [END]
92 X =	1404.344, -1139.515,	1.000,	0.000! !END!
93 ! X =	1405.154, -1139.386,	1.000,	0.000! !END!
94 ! X =	1405.965, -1139.257,	1.000,	0.000! !END!
95 ! X =	1406.775, -1139.128,	0.000,	0.000! IEND!
96 X =	1402.576, -1138.848,	0.000,	0.000! !END!
97 X =	1403.387, -1138.719,	1.000,	0.000! !END!
98 ! X =	1404.197, -1138.591,	1.000,	0.000! !END!
99 ! X =	1405.007, -1138.462,	0.000,	0.0001 !END!
100 ! X =	1405.818, -1138.333,	0.000,	0.000! !END!
101 X ≃	1406.628, -1138.204,	1.000,	0.000! END
102 ! X =	1402.430, -1137.924,	0.000,	0.000! END
103 ! X =	1403.240, -1137.795,	1.000,	0.000! END!
104 X =	1404.050, -1137.666,	1.000,	0.000! !END!
105 ! X =	1404.860, -1137.538,	1.000,	0.000! END!
106!X=	1405.671, -1137.409,	1.000,	0.000! !ENDI
107 ! X =	1406.481, -1137.280,	1.000,	0.000! !END!
108 ! X =	1402.283, -1136.999,	0.000,	0.000! !END!
109 ! X = 110 ! X =	1403.093, -1136.871,	1.000,	0.000! !END!
	1403.903, -1136.742,	1.000,	0.000! !END!
111 ! X = 112 ! X =		2.000,	0.000! !END!
112! X =	1405.524, -1136.485, 1406.334, -1136.356.	2.000,	0.000! IEND!
113: / -	1400.334, -1130.336,	2.000,	0.000! !END!
IO1 RECEP	TORS INCLUDES ALL ST	MARKS	NWA RECEPTORS
114!X=		1.0,	0.000! !END!
115!X=		1.0,	
116 ! X =	1212.312, -1027.376,	1.0,	0.000! !END!
117 ! X =	1213.112, -1027.265,	1.0,	0.000! !END!
118 ! X =	1212.183, -1026.452,	1.0,	0.0001 END1
119 ∣ X =	1212.983, -1026.341,	1.0,	0.000! !END!
120 ! X =	1210.455, -1025.751,	1.0,	0.000! !END!
121 ! X =	1211.255, -1025.640,	1.0,	0.000! !END!
122 ! X =	1212.055, -1025.529,	1.0,	0.000! !END!
123 ! X =	1212.855, -1025.417,	1.0,	0.000! !END!
124 ! X =	1211.127, -1024.716,	1.0,	0.000! !END!
125 ! X =	1237.268, -1013.511,	1.0,	0.000! !END!
126 ! X =	1238.067, -1013.398,	1.0,	0.000! !END!
127 ! X =	1238.866, -1013.284,	1.0,	0.000! !END!
128 ! X =	1239.665, -1013.171,	0.0,	0.000! !END!
129 ! X =	1256.438, -1010.767,	1.0,	0.000! !END!
130 X =	1237.137, -1012.588,	0.0,	0.000! !END!
131 ! X = 132 ! X =	1237.936, -1012.475, 1239.533, -1012.248,	1.0,	0.000! !END!
132 ! X =	1240.332, -1012.134,	1.0, 1.0,	0.000! !END!
133 ! X =	1256.305, -1009.845,	1.0,	0.000! !END! 0.000! !END!
135 ! X =	1237.805, -1011.552,	1.0,	0.000! !END!
136 ! X =	1240.201, -1011.211,	1.0,	0.000! !END!
137 ! X =	1240.999, -1011.097,	1.0,	0.000! !END!
138 ! X =	1241.798, -1010.983,	1.0,	0.000! !END!
139 ! X =	1243.395, -1010.755,	1.0,	0.000! !END!
140 ! X =	1244.194, -1010.641,	1.0,	0.000! !END!
141 ! X =	1245.791, -1010.413,	0.0,	0.000! !END!
142 ! X =	1246.589, -1010.299,	0.0,	0.000! !END!
143 ! X =	1254.575, -1009.152,	1.0,	0.000! !END!

144 | X = 1256.171, -1008.922, 1.0, 0.000! IEND! 1235.277, -1010.969, 145 | X = 0.000! !END! 0.0, 146 ! X = 1236.076, -1010.855, 1000.0 !END! 1.0, 147 ! X = 1236.875, -1010.742, 1.0, 0.0001 !END! 148 ! X = 1237.673, -1010.629, 0.000! !END! 1.0. 1238.472, -1010.515 149 | X = 0.0001 1.0, !END! 150 ! X = 1240.069, -1010.288, 0.0001 **IENDI** 1.0, 151 ! X = 1240.868, -1010.174, 0.0001 !END! 1.0. 1241.666, -1010.060, 0.000! IEND! 152 ! X = 1.0, 153 ! X = 1242.465, -1009.946, 1000.0 1.0, **IENDI** 154 ! X = 1243.263, -1009.832, 1000.0 !END! 1.0, 155 | X = 1244.860, -1009.604, 1.0, 0.0001 !END! 1245.659, -1009.490, 156 | X = 1.0. 0.0001 !END! 157 ! X = 1246.457, -1009.376, !END! 0.000! 1.0, 158 ! X = 1247.256, -1009.261, 1.0, 0.000I !END! 159 | X = 0.0001 1248.054, -1009.147, 1.0. !END! 160 | X = 1248.853, -1009.032, 0.0, 0.0001 !END! 161 | X = 1249.651, -1008.918, 0.0, 0.0001 IENDI 1250.450, -1008.803, 162 ! X = 0.0. 0.0001 !END! 163 ! X = 1251.248, -1008.689, 0.0001 !END! 0.0, 1252.046, -1008.574, 0.000! !END! 164 ! X = 0.0, 165 | X = 1252.845, -1008.459, 0.0001 !END! 1.0, 1253.643, -1008.344, 166 ! X = 0.000! !END! 1.0. 1254.442, -1008.229, 167 ! X = 0.000! IENDI 1.0. 168 ! X = 1255.240, -1008.114, 0.0001 IEND! 1.0, 169 ! X = 1235.147, -1010.046, 0.0001 !END! 1.0, 170 ! X = 1235.945, -1009.932, 1.0, 0.000! !END! 171!X= 1236.744, -1009.819, 0.0001 !END! 1.0. 172 | X = 1237.542, -1009.705, 0.0001 IEND! 1.0, 173 ! X = 1238.341, -1009.592, 0.0001 !END! 1.0, 1240.736, -1009.251, 174!X= 0.000! !END! 1.0. 175 ! X = 1241.535, -1009.137, 0.0001 !END! 2.0, 176 ! X = 1247.922, -1008.224, 2.0, 1000.0 !END! 177 I X = 1248.720, -1008.110, 1.0. 0.0001 !END! !END! 178 ! X = 1249.519, -1007.995, 0.000! 1.0. 179 ! X = 1250.317, -1007.880, 0.000! !END! 1.0, 0.000! 180 ! X = 1251.115, -1007.766, !END! 1.0. 181 ! X = 1251.914, -1007.651, 1.0, 1000.0 !END! 82 I X = 1252.712, -1007.536, 0.0001 **!END!** 1.0, 183 ! X = 1253.510, -1007.421, 0.0001 !END! 1.0. !END! 184 ! X = 1254.309, -1007.306, 1.0, 0.0001 185 ! X = 1255.107, -1007.191, 1.0, 0.000! !END! 186 ! X = 1235.016, -1009.122, 0.000! !END! 1.0. 187 ! X = 1235.814, -1009.009, 2.0, 0.0001 !ENDI 188 ! X = 1236.613, -1008.896, 0.000! !END! 3.0, 189 ! X = 1237.411, -1008.782, 2.0. 0.000! !END! IEND! 1238.209, -1008.669, 190 ! X = 1.0, 0.0001 191 ! X = 1239.008, -1008.555, 0.000! !END! 1.0, 192 | X = 1251.781, -1006.728, 2.0, 0.0001 !END! 193 | X = 0.0001 !END! 1252.579, -1006.613, 3.0, 194 ! X = 1253.377, -1006.498, 3.0, 0.000! !END! 195 ! X = 1254.176, -1006.383, 0.000! IEND! 2.0, 1254.974, -1006.268, 0.000! !END! 196!X= 2.0, 197 ! X = 1255.772, -1006.153, 3.0, 0.0001 !END! 198 ! X = 0.000! !END! 1234.086, -1008.313, 1.0, !END! 199 ! X = 1234.885, -1008.199, 0.000! 1.0, 200 ! X = 1235.683, -1008.086, 2.0, 0.000! !END! 1236.481, -1007.973, 201 ! X = 0.000! !END! 2.0, IEND! 202 ! X = 1252.446, -1005.690, 0.000! 3.0, 203 | X = 1253.245, -1005.575, 2.0, 0.0001 !END! 1254.043, -1005.461, !END! 0.0001 204 ! X = 3.0, 205!X= 1254.841, -1005.346, 0.0001 !END! 3.0, 206 ! X = 1255.639, -1005.230, 3.0, 0.000! !END! 207 ! X = 1233.955, -1007.389, 0.000! !END! 1.0. 208 | X = 0.0001 !END! 1234.754, -1007.276, 1.0, 209 ! X = 1253.910, -1004.538, 3.0, 0.000! !END! 1254.708, -1004.423, 0.0001 !END! 210 ! X = 3.0, 211 ! X = !END! 1255.506, -1004.308, 3.0, 0.0001 212 ! X = 1233.825, -1006.466, 1.0, 0.000! !END! !END! 213 ! X = 1234.623, -1006.353, 0.000! 1.0 214 ! X = 1234.492, -1005.430, 0.000! !END! 1.0,

Data for each receptor are treated as a separate input subgroup and therefore must end with an input group terminator.

b Receptor height above ground is optional. If no value is entered,