

RECEIVED

JUL 14 2006

BUREAU OF AIR REGULATION

Mr. Jeff Koerner FDEP North Permitting Section Division of Air Resource Management 2600 Blair Stone Road MS 5500

Tallahassee, Florida 32399-2400

AC/AV

Re:

Crystal River Facility - Title V Permit 0170004-011-AV - Coal Yard Modification

Air Construction Permit Application

Dear Mr. Koerner:

July 12, 2006

Attached is an air construction permit application to modify the coal yard at Crystal River. The coal yard modification consists of replacing the existing barge unloading system, consisting of a clamshell on traveling gantry, with a modern hydraulic crane with a clamshell bucket on a traveling gantry. Additionally, we plan to increase the coal capacity of the coal crushers and conveyors conveying coal to units 1 and 2 from 600 TPH to 900 TPH. This will decrease the time required to bunker coal to units 1 and 2 allowing more time for maintenance to this critical conveying system.

Thank you for your help in this matter. Please contact me at (727) 820-5295 if you have any questions.

Sincerely,

Dave Meyer

Senior Environmental Specialist

Strain & West

xc: Mr. Bob Soich (cover letter)

Gibson, Victoria

From:

Koerner, Jeff

Sent:

Friday, July 14, 2006 3:32 PM

To:

Gibson, Victoria; Adams, Patty; Arif, Syed

Cc:

Holtom, Jonathan

Subject:

Crystal River - AC/AV Application to Increase Coal Unloading/Crushing Capacity

Vickie, Patty, Syed,

We received an application from PEF on July 14th. I assigned this to Jonathan for processing.

Thanks!

Jeff Koerner, BAR - Air Permitting North Florida Department of Environmental Protection 850/921-9536

Jeff propoley sessed on the one copy Jeff gave hen to Jonathan.

AIR CONSTRUCTION PERMIT APPLICATION COAL YARD MODIFICATION PROJECT CRYSTAL RIVER ENERGY COMPLEX CRYSTAL RIVER, CITRUS COUNTY, FLORIDA

Submitted to:

Progress Energy Florida 100 Central Avenue St. Petersburg, Florida 33701

Submitted by:

Golder Associates Inc. 5100 West Lemon Street Suite 114 Tampa, Florida 33609

Distribution:

4 Copies Department of Environmental Protection

2 Copies Progress Energy Florida2 Copies Golder Associates Inc.

July 2006 053-9556

PART I – FDEP APPLICATION FOR AIR PERMI	PART I –	FDEP	APPL	JICATION	FOR .	AIR	PERMI
---	----------	-------------	------	----------	-------	-----	--------------

р	Δ	R	Т	П	_]	Pς	D	Δ	PΙ	ы	I	\cap	Α	т	Ī	വ	١	J
	$\overline{}$. 1 🔪		4 6	_		1/	7			41	. .	_				1 7	4

1.0	EXISTING FACILITY DESCRIPTION	1
2.0	PROPOSED PROJECT	3
3.0	EMISSIONS	4
4.0	RULE APPLICABILITY	5
5.0	PSD REVIEW	6

LIST OF TABLES

Table 1 Coal Yard Drop Operations
 Table 2 Coal Yard Emissions
 Table 3 Unpaved Road Emissions
 Table 4 Typical Fuel Analysis Coal

LIST OF FIGURES

Figure 1 Coal Yard Layout Figure 2 Crane Drawing

PART I

FDEP APPLICATION FOR AIR PERMIT

Department of Environmental Protection Sermit - Long Form

Air Construction Permit - Use this form to apply for an air construction permit at a facility operating underca, federally enforceable state air operation permit (FESOP) or Title V air permit. Also use this form to apply for an air construction permit:

- For a proposed project subject to prevention of significant deterioration (PSD) review, nonattainment area' (NAA) new source review, or maximum achievable control technology (MACT) review; or
- Where the applicant proposes to assume a restriction on the potential emissions of one or more pollutants to escape a federal program requirement such as PSD review, NAA new source review, Title V, or MACT; or
- Where the applicant proposes to establish, revise, or renew a plantwide applicability limit (PAL).

Air Operation Permit – Use this form to apply for:

- An initial federally enforceable state air operation permit (FESOP); or
- An initial/revised/renewal Title V air operation permit.

Air Construction Permit & Title V Air Operation Permit (Concurrent Processing Option) - Use this form to apply for both an air construction permit and a revised or renewal Title V air operation permit incorporating the proposed project.

To ensure accuracy, please see form instructions.

j	lden	tif	icat	tion	of	Fa	icility	,
-						_		,

1.	Facility Owner/Company Name: PROGRESS ENERGY FLORIDA, INC.							
2.	Site Name: CRYSTAL RIVER POWER PLANT							
3.	Facility Identification Number: 0170004							
4.	Facility Location: Street Address or Other Locator: NORTH OF CRYSTAL RIVER, WEST OF U.S. 19							
	City: CRYSTAL RIVER County: CITRUS Zip Code: 34428							
5.	Relocatable Facility? 6. Existing Title V Permitted Facility? ☐ Yes ☒ No ☒ Yes ☐ No							
<u>Ap</u>	plication Contact							
1.	Application Contact Name: DAVE MEYER, SENIOR ENVIRONMENTAL SPECIALIST							
2.	Application Contact Mailing Address Organization/Firm: PROGRESS ENERGY FLORIDA							
	Street Address: 100 CENTRAL AVE CX1B							
	City: ST. PETERSBURG State: FL Zip Code: 33701							
3.	Application Contact Telephone Numbers							
	Telephone: (727) 820-5295 ext. Fax: (727) 820-5229							
4.	Application Contact Email Address: DAVE.MEYER@PGNMAIL.COM							
Ap	plication Processing Information (DEP Use)							
1.	Date of Receipt of Application: 1-44-06 3. PSD Number (if applicable):							
2.	Project Number(s): 017004 - 014-AC 4. Siting Number (if applicable):							

0170004-015-AV

Purpose of Application

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 2/2/06 2 7/11/2006

Scope of Application

Emissions Unit ID Number	Description of Emissions Unit	Air Permit Type	Air Permit Proc. Fee
016	Material-Handling Activities for Coal Fired Steam Units		NA
·			
		-	
····			-
Application	Processing Fee		

Check one: Attached - Amount: \$_____ \times N

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

1. Owner/Authorized Representative Name:

BERNIE M. CUMBIE, MANAGER, CRYSTAL RIVER FOSSIL PLANT & FUEL OPERATIONS

2. Owner/Authorized Representative Mailing Address...

Organization/Firm: PROGRESS ENERGY

Street Address: 100 CENTRAL AVE CN77

City: ST PETERSBURG State: FL Zip Code: 33701

3. Owner/Authorized Representative Telephone Numbers...

Telephone: (352) 563-4484 ext. Fax: (352) 563-4496

4. Owner/Authorized Representative Email Address: BERNIE.CUMBIE@PGNMAIL.COM

5. Owner/Authorized Representative Statement:

I, the undersigned, am the owner or authorized representative of the facility addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other requirements identified in this application to which the facility is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit.

Signature

Date

053-9556

6/29/2006

DEP Form No. 62-210.900(1) – Form
Effective: 2/2/06 4

Application Responsible Official Certification

Complete if applying for an initial/revised/renewal Title V permit or concurrent processing of an air construction permit and a revised/renewal Title V permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

1.	Application Responsible Official Name:								
2.	options, as applicable): For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or								
	decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C.								
	 ☐ For a partnership or sole proprietorship, a general partner or the proprietor, respectively. ☐ For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. 								
3.	☐ The designated representative at an Acid Rain source. Application Responsible Official Mailing Address								
	Organization/Firm:								
	Street Address:								
	City: State: Zip Code:								
4.	Application Responsible Official Telephone Numbers								
_	Telephone: () - ext. Fax: () -								
5.	Application Responsible Official Email Address:								
6.	Application Responsible Official Certification:								
	I, the undersigned, am a responsible official of the Title V source addressed in this air								
	permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and								
	complete and that, to the best of my knowledge, any estimates of emissions reported in this								
	application are based upon reasonable techniques for calculating emissions. The air								
	pollutant emissions units and air pollution control equipment described in this application								
	will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the								
	Department of Environmental Protection and revisions thereof and all other applicable								
	requirements identified in this application to which the Title V source is subject. I								
	understand that a permit, if granted by the department, cannot be transferred without								
	authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, I certify that the								
	facility and each emissions unit are in compliance with all applicable requirements to								
	which they are subject, except as identified in compliance plan(s) submitted with this								
	application.								
	Signature Date								

DEP Form No. 62-210.900(1) – Form Effective: 2/2/06

 Professional Engineer Name: SCOTT OSBOURN Registration Number: 57557 Professional Engineer Mailing Address Organization/Firm: Golder Associates Inc.** Street Address: 5100 West Lemon St., Suite 114	
2. Professional Engineer Mailing Address Organization/Firm: Golder Associates Inc.** Street Address: 5100 West Lemon St., Suite 114 City: Tampa State: FL Zip Code: 33609	
2. Professional Engineer Mailing Address Organization/Firm: Golder Associates Inc.** Street Address: 5100 West Lemon St., Suite 114 City: Tampa State: FL Zip Code: 33609	
Organization/Firm: Golder Associates Inc.** Street Address: 5100 West Lemon St., Suite 114 City: Tampa State: FL Zip Code: 33609	
City: Tampa State: FL Zip Code: 33609	
3. Professional Engineer Telephone Numbers	
Telephone: (813) 287-1717 ext.211 Fax: (813) 287-1716	
4. Professional Engineer Email Address: SOSBOURN@GOLDER.COM	
5. Professional Engineer Statement:	
I, the undersigned, hereby certify, except as particularly noted herein*, that:	
(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emission, unit(s) and the air pollution control equipment described in this application for air permit, whe properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and	en
(2) To the best of my knowledge, any emission estimates reported or relied on in this applicati are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.	or an
(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square , so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in application to which the unit is subject, except those emissions units for which a compliance p and schedule is submitted with this application.	this
(4) If the purpose of this application is to obtain an air construction permit (check here ⊠, if some concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here □ so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision found to be in conformity with sound engineering principles applicable to the control of emission of the air pollutants characterized in this application.	if and
(5) If the purpose of this application is to obtain an initial air operation permit or operation perevision or renewal for one or more newly constructed or modified emissions units (check here if so), I further certify that, with the exception of any changes detailed as part of this application each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.	? □, │
Signature $\frac{\delta/2\delta/\delta\delta^2}{Date}$ Date	BOUR
Part Norw	% `*
(seal)	47
* Attach any exception to certification statement. ** Board of Professional Engineers Certificate of Authorization #00001670	

DEP Form No. 62-210.900(1) – Form Effective: 2/2/06

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	Facility UTM Coordinates			Facility Latitude/Lo				
	Zone 17 East	(km) 334.3		Latitude (DD/MM/	SS) 28/57/34			
	Nort	h (km) 3204.5	Longitude (DD/MM/SS) 82/42/01					
3.	Governmental	4. Facility Status	5.	Facility Major	6. Facility SIC(s):			
	Facility Code:	Code:		Group SIC Code:				
l	0	Α		49				
7.	Facility Comment:	•			-			

Facility Contact

1.	Facility Contact Name: DAVE MEYER, SENIOR ENVIRONMENTA	AL SPECIALIS	Γ	
2.	Facility Contact Mailing Address			
	•	v		
	Organization/Firm: PROGRESS ENERG	T		
	Street Address: 100 CENTRAL AVE C	CX1B		
	City: ST PETERSBURG	State: FL	Zip Code: 33701	
3.	Facility Contact Telephone Numbers:			
	Telephone: (727) 820-5295 ext	Fax:	(727) 820-5229	
4.	Facility Contact Email Address: DAVE.	MEYER@PGNI	MAIL.COM	

Facility Primary Responsible Official

Complete if an "application responsible official" is identified in Section I. that is not the facility "primary responsible official."

1.	Facility Primary Respo	nsible Official Name:							
2.	Facility Primary Responsible Official Mailing Address Organization/Firm:								
	Street Address:								
	City:	State:		Zip Code:					
3.	Facility Primary Respo	nsible Official Telephor	ne Numbers						
	Telephone: () -	ext.	Fax: () -					
4.	Facility Primary Respo	nsible Official Email A	ddress:						

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 2/2/06 7 7/11/2006

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

1. [☐ Small Business Stationary Source ☐ Unknown
2. [Synthetic Non-Title V Source
3. [Title V Source
4. [Major Source of Air Pollutants, Other than Hazardous Air Pollutants (HAPs)
5. [Synthetic Minor Source of Air Pollutants, Other than HAPs
6. [2	Major Source of Hazardous Air Pollutants (HAPs)
7. [Synthetic Minor Source of HAPs
8. [2	One or More Emissions Units Subject to NSPS (40 CFR Part 60)
9. [One or More Emissions Units Subject to Emission Guidelines (40 CFR Part 60)
10. [One or More Emissions Units Subject to NESHAP (40 CFR Part 61 or Part 63)
11. [Title V Source Solely by EPA Designation (40 CFR 70.3(a)(5))
12. F	acility Regulatory Classifications Comment:

DEP Form No. 62-210.900(1) – Form Effective: 2/2/06 8

List of Pollutants Emitted by Facility

1. Pollutant Emitted	2. Pollutant Classification	3. Emissions Cap [Y or N]?
СО	A	N
NOx	A	N
PB	A	N
PM	A	N
PM10	A	N
SO2	A	N
voc	A	N
		-

B. EMISSIONS CAPS

Facility-Wide or Multi-Unit Emissions Caps

Pollutant Subject to Emissions Cap	2. Facility Wide Cap [Y or N]? (all units)	3. Emissions Unit ID No.s Under Cap (if not all units)	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
					
7. Facility	-Wide or Multi-	Unit Emissions Ca	p Comment:		

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Facility Plot Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date:
2.	Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date:
3.	
A	dditional Requirements for Air Construction Permit Applications
1.	Area Map Showing Facility Location: ☐ Attached, Document ID: ☐ Not Applicable (existing permitted facility)
2.	Description of Proposed Construction, Modification, or Plantwide Applicability Limit (PAL): ☑ Attached, Document ID: PART II
3.	Rule Applicability Analysis: Attached, Document ID: PART II
4.	List of Exempt Emissions Units (Rule 62-210.300(3), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable (no exempt units at facility)
5.	Fugitive Emissions Identification:
6.	Air Quality Analysis (Rule 62-212.400(7), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
7.	Source Impact Analysis (Rule 62-212.400(5), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
8.	☐ Attached, Document ID: ☐ Not Applicable
9.	Additional Impact Analyses (Rules 62-212.400(8) and 62-212.500(4)(e), F.A.C.): Attached, Document ID: Not Applicable
10	D. Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable

Additional Requirements for FESOP Applications 1. List of Exempt Emissions Units (Rule 62-210.300(3)(a) or (b)1., F.A.C.): ☐ Not Applicable (no exempt units at facility) Attached, Document ID: Additional Requirements for Title V Air Operation Permit Applications 1. List of Insignificant Activities (Required for initial/renewal applications only): Attached, Document ID:____ ☐ Not Applicable (revision application) 2. Identification of Applicable Requirements (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought): Attached, Document ID: Not Applicable (revision application with no change in applicable requirements) 3. Compliance Report and Plan (Required for all initial/revision/renewal applications): ☐ Attached, Document ID: Note: A compliance plan must be submitted for each emissions unit that is not in compliance with all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing. 4. List of Equipment/Activities Regulated under Title VI (If applicable, required for initial/renewal applications only): Attached, Document ID: ☐ Equipment/Activities On site but Not Required to be Individually Listed ☐ Not Applicable 5. Verification of Risk Management Plan Submission to EPA (If applicable, required for initial/renewal applications only): Attached, Document ID: ☐ Not Applicable 6. Requested Changes to Current Title V Air Operation Permit: ☐ Attached, Document ID:_ ☐ Not Applicable **Additional Requirements Comment**

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 2/2/06 12 7/11/2006

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application — Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 13 7/11/2006

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)								
	 ☑ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☐ The emissions unit addressed in this Emissions Unit Information Section is an 								
			missions unit.						
En	nissions Unit	Des	cription and Sta	tus					
1.	Type of Emis	ssio	ns Unit Addresse	d in	this Sectio	n: (Check one)		·
	process o	r pr		acti	vity, which	pro	es, as a single em duces one or more stack or vent).		-
	process o	r pr		d a	ctivities wh	ich l	nas at least one de		ons unit, a group of ble emission point
							es, as a single em hich produce fugi		
	Description of the steam units.		missions Unit Ad	ldre	ssed in this	Sec	tion: Material-han d	dling	g activities for coal-
3.	Emissions U	nit I	dentification Nur	nbe	r: EU016				
4.	Emissions Unit Status Code:	5.	Commence Construction Date: 8/15/06	6.	Initial Startup Date:	7.	Emissions Unit Major Group SIC Code: 49	8.	Acid Rain Unit? ☐ Yes ☒ No
9.	Package Unit Manufacture					Mod	del Number:		
10.	Generator N	amo	eplate Rating:		MW				
11.	11. Emissions Unit Comment: This emission unit consists of transport and storage of coal, flyash, and bottom ash for FFSG Units 1, 2, 4, and 5.								

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 14 7/11/2006

Emissions Unit Control Equipment

1. Control Equipment/Method(s) Description:	
Don't amount in the second of	
Dust suppression by water sprays	
Miscellaneous control devices - enclosures	
Dust suppression - traffic control	
Data dapprocessor warms control	
(Refer to Condition H.3 of the current TV Permit No. 0170004-009-AV, which reference	ces
Progress Energy's Best Management Plan (BMP) for particulate emissions)	
· · · · · · · · · · · · · · · · · · ·	
2. Control Device or Method Code(s): 061	

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughp	out Rate: 3,118,925 TPY coal	for Units 1 and 2.
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate:	million Btu/hr	
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operating	g Schedule:	
		24hours/day	7days/week
		52weeks/year	8760hours/year
•	Operating Capacity/Schedule C 5,076,991 TPY coal for Units 4 a ocess throughput rate is based o ating value.	ind 5. 8,195,916 TPY for all ui	
pro	5,076,991 TPY coal for Units 4 a ocess throughput rate is based o	ind 5. 8,195,916 TPY for all ui	

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

I .	4		
al crushing	g, various conveyors	and transfer points,	
nission Uni	its with this Emission		
ck Height: feet		7. Exit Diameter: feet	
ual Volum acfm	imetric Flow Rate: 10. Water Vapor: %		
e:	12. Nonstack Emission Various feet	on Point Height:	
	14. Emission Point L Latitude (DD/MN Longitude (DD/N	M/SS)	
perature.			
• • • • • • • • • • • • • • • • • • •	al crushin vities, stor	feet ual Volumetric Flow Rate: acfm 12. Nonstack Emissic Various feet 14. Emission Point L Latitude (DD/M) Longitude (DD/M)	

DEP Form No. 62-210.900(1) – Form Effective: 02/02/06

EMISSIONS UNIT INFORMATION

Section [1]
MATERIAL-HANDLING ACTIVITIES

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1.	. Segment Description (Process/Fuel Type): Coal Transport for Units 1 and 2.								
2.	Source Classification Code (SCC): 3. SCC Units: Tons Transferred								
4.	Maximum Hourly Rate: 900	5.	Maximum A 3.118,925	Annual Rate:	6.	Estimated Annual Activity Factor:			
7.	Maximum % Sulfur:	8.	Maximum 9	% Ash:	9.	Million Btu per SCC Unit:			
C6,	Segment Comment: Propose to increase coal c., C7, and C8) from 600 TPH topper to Boiler Units 1 and 2 its 1 and 2.	to 90	0 TPH. Thes	e conveyors trai	nspo	rt coal from the reclaim			
Seg	ment Description and Ra	te:	Segment 2 o	f <u>2</u>					
1.	Segment Description (Proc Coal Transport for Units 4		, , , , , , , , , , , , , , , , , , ,						
2.	Source Classification Code	e (SC	CC):	3. SCC Units: Tons Trans		d			
4.	Maximum Hourly Rate: 2,500	5.	Maximum A 5,076,991	Annual Rate:	6.	Estimated Annual Activity Factor:			
7.	Maximum % Sulfur:	8.	Maximum 9	% Ash:	9.	Million Btu per SCC Unit:			
to E	Segment Comment: Propose to increase barge Boilers Units 4 and 5 are alro se conveyors are needed. It	eady	rated for a c	apacity of 2,500	TPH.	, therefore no changes to			

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 18 7/11/2006

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
РМ	061		WP
PM10	061		WP

POLLUTANT DETAIL INFORMATION Page[1] of [1] PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: PM	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
14.7 lb/hour 4	3tons/year	□Y€	es 🖾 No
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: See Part II		,	7. Emissions Method Code:
Reference:		:	3
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
26.6 tons/year	From:	Го:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected	Monitorii ırs □ 10	_
10. Calculation of Emissions: See Tables 1 through 3 of Part II. Hourly rate assumed operation.	is based on the	daily rate	and 24 hr/day
11. Potential Fugitive and Actual Emissions CorpsD applicability is based on past actual vs.		i.	

POLLUTANT DETAIL INFORMATION Page [1] of [1]

PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: PM10	2. Total Perc	ent Efficie	ency of Control:			
3. Potential Emissions:		4. Syntl	netically Limited?			
5.81lb/hour 15.	3tons/year	☐ Ye	es 🖾 No			
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):					
6. Emission Factor: See Part II Reference:			7. Emissions Method Code: 3			
8.a. Baseline Actual Emissions (if required): 9.64 tons/year	8.b. Baseline From:	24-month To:	Period:			
9.a. Projected Actual Emissions (if required): tons/year	l Monitori ars □ 10	ng Period: years				
10. Calculation of Emissions: See Tables 1 through 3 of Part II. Hourly rate is based on daily rate and 24 hr/day assumed operation.						
11. Potential Fugitive and Actual Emissions Comment: PSD applicability is based on past actual vs. future potential.						

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1.	Visible Emissions Subtype: VE20	2. Basis for Allowable⊠ Rule	Opacity: Other
3.	Allowable Opacity:		· ·
	• •	ceptional Conditions:	%
	Maximum Period of Excess Opacity Allowe		min/hour
4	Method of Compliance: EPA Method 9		
٦,	Method of Compilation, at A method o		
5.	Visible Emissions Comment:		
1			
			<u></u>
<u>Vis</u>	sible Emissions Limitation: Visible Emission	ons Limitation of _	
	Visible Emissions Limitation: Visible Emissions Subtype:	ons Limitation of 2. Basis for Allowable of Rule	
1.	Visible Emissions Subtype:	2. Basis for Allowable	Opacity:
1.	Visible Emissions Subtype: Allowable Opacity:	2. Basis for Allowable ☐ Rule	Opacity: Other
1.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex	2. Basis for Allowable Rule	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe	2. Basis for Allowable Rule	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex	2. Basis for Allowable Rule	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other
 3. 4. 	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule	Opacity: Other

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Drawing 11127 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Not Applicable ■ Not Applicable Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) – Form 053-9556 Effective: 02/02/06 24 7/11/2006

EMISSIONS UNIT INFORMATION Section [1]

MATERIAL-HANDLING ACTIVITIES

Additional Requirements for Air Construction Permit Applications

1.	1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),				
	F.A.C.; 40 CFR 63.43(d) and (e))				
	☐ Attached, Document ID: ⊠ Not Applicable				
2.	Good Engineering Practice Stack Height Analysis (Rule 62-212.400(4)(d), F.A.C., and				
	Rule 62-212.500(4)(f), F.A.C.)				
	☐ Attached, Document ID: ☐ Not Applicable				
3.	Description of Stack Sampling Facilities (Required for proposed new stack sampling facilities only)				
	☐ Attached, Document ID: ☐ Not Applicable				
Ad	ditional Requirements for Title V Air Operation Permit Applications				
<u> </u>	Identification of Applicable Requirements				
	☐ Attached, Document ID: ☐ Not Applicable				
2. (Compliance Assurance Monitoring				
	Attached, Document ID: Not Applicable				
3.	Alternative Methods of Operation				
	☐ Attached, Document ID: ☐ Not Applicable				
4.	Alternative Modes of Operation (Emissions Trading)				
	☐ Attached, Document ID: ☐ Not Applicable				
5.	Acid Rain Part Application				
	☐ Certificate of Representation (EPA Form No. 7610-1)				
	Copy Attached, Document ID:				
	☐ Acid Rain Part (Form No. 62-210.900(1)(a))				
	Attached, Document ID:				
	Previously Submitted, Date:				
	☐ Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)				
	Attached, Document ID:				
	Previously Submitted, Date:				
	☐ New Unit Exemption (Form No. 62-210.900(1)(a)2.)				
	Attached, Document ID:				
	Previously Submitted, Date:				
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)				
	Attached, Document ID:				
	Previously Submitted, Date:				
]	Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)				
	Attached, Document ID:				
	Previously Submitted, Date:				
	Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)				
	☐ Attached, Document ID: ☐ Previously Submitted, Date:				
	Not Applicable				

EMISSIONS UNIT INFORMATION Section [1] MATERIAL-HANDLING ACTIVITIES Additional Requirements Comment

PART II

PSD APPLICATION FOR THE PROPOSED COAL YARD MODIFICATIONS PROGRESS ENERGY'S CRYSTAL RIVER ENERGY COMPLEX.

1.0 EXISTING FACILITY DESCRIPTION

Crystal River Energy Complex consists of four coal-fired fossil fuel steam generating (FFSG) units with electrostatic precipitators; two natural draft cooling towers for FFSG Units 4 and 5; helper mechanical cooling towers for FFSG Units 1, 2 and Nuclear Unit 3; coal, fly ash, and bottom ash handling facilities, and relocatable diesel fired generator(s).

The facility also includes miscellaneous unregulated/insignificant emissions units and/or activities. A summary of the emission units is as follows:

E.U. ID				
No.	Brief Description			
001	Fossil Fuel Steam Generator (FFSG), Unit 1			
002	FFSG, Unit 2			
004	FFSG, Unit 4			
003	FFSG, Unit 5			
006	Fly ash transfer (Source 1) from FFSG Unit 1			
008	Fly ash storage silo (Source 3) for FFSG Units 1 and 2			
009	Fly ash transfer (Source 4) from FFSG Unit 2			
010	Fly ash transfer (Source 5) from FFSG Unit 2			
014	Bottom ash storage silo for FFSG Units 1 and 2, with associated vacuum blower			
	exhausts and bin vent filter (total of three emission points)			
7775047,	Relocatable diesel generator(s) will have a maximum (combined) heat input of 25.74			
001	MMBtu/hour while being fueled by 186.3 gallons of new No. 2 fuel oil per hour with			
	a maximum (combined) rating of 2460 kilowatts.			
013	Cooling towers for FFSG Units 1, 2, and 3, used to reduce plant discharge water			
	temperature			
015	Cooling towers for FFSG Units 4 and 5 used to reduce plant discharge water			
	temperature			
016	Material handling activities for coal-fired steam units			

Unregulated Emissions Units and/or Activities			
017 Fuel and lube oil tanks and vents			
018 Sewage treatment, water treatment, lime storage			
019 Three 3500 kW diesel generators associated with Unit 3			

Insignificant Emission Units

- 1. Vehicle diesel and gasoline tanks.
- 2. Diesel fire pump and tank at Unit 1.
- 3. Diesel fire pump and tank at Unit 3 (FWP-7)
- 4. Diesel pump driver for emergency feedwater (1,670 BHP)
- 5. Diesel generator for security bldg and system (backup)
- 6. 260 kW emergency diesel generator at Unit 3 technical support center.
- 7. Unit 3 diesel generator air compressor.
- 8. Unit 3 halon fire protection system.
- 9. Fire pump house emergency diesel generator units and electric generator units.
- 10. Laboratory facilities
- 11. CEM equipment and calibration gas storage and venting.
- 12. Surface coating of less than 6.0 gallons per day.
- 13. Brazing, soldering and welding.
- 14. Grounds maintenance.
- 15. Miscellaneous gas and diesel engines.
- 16. Miscellaneous material handling facilities.
- 17. Parts washers.
- 18. Miscellaneous material cleaning equipment (e.g., self contained and sand blasting).

2.0 PROPOSED PROJECT

Progress Energy proposes to make modifications to Emission Unit (EU) 016. This emission unit designation represents material handling activities for the coal-fired steam units, including the storage and transport of coal, fly ash and bottom ash handling for fossil fuel steam generator (FFSG) Units 1, 2, 4 and 5, not addressed by other emissions units. This proposed project only affects the coal handling and storage activities associated with EU 016. A description of the existing activities and the proposed modifications follows.

Coal is brought into the facility by barge and rail car. Coal is conveyed from both barge and rail to storage and to the boilers via various conveyors and crusher stations. Once received at the boilers, coal is stored in silos. The current coal conveyor system is shown in Drawing No. 11127-2-009.

The proposed modifications include the following:

- Replace the barge unloading system, consisting of a clamshell on traveling gantry, with a modern hydraulic crane with a clamshell bucket on a traveling gantry (see Drawing No. 11127-2-009). This modification will increase the speed of unloading coal barges. The current system is rated at approximately 1,500 TPH and 16,000 TPD. The modification will increase this rate to a nominal 2,500 TPH and 32,000 TPD. The annual coal usage and plant bunkering is based on the capacity of the boilers and these proposed changes will not change the operation of the boilers and as such will not increase the average annual coal unloading. There may be some variation in coal shipments (up or down) due to on site inventory adjustments.
- Increase the coal capacity of the coal crushers and conveyors C9, C4, C5, C6, C7, and C8 from 600 TPH to 900 TPH. This will decrease the time required to fill the existing Unit Nos. 1 and 2 coal silos but will not affect the existing boiler operating parameters.

The potential to emit is based on the maximum potential coal utilization for the coal-fired units (Units 1, 2, 4 and 5) and the lower range of the coal heating value. As a comparison, the PM emissions are based on 8.2 million tons of coal per year (i.e., 3.1 million tons for Units 1 and 2 and 5.1 million tons for Units 4 and 5), while the maximum potential capability at 1,500 TPH is 13.14 million TPY and at 2,500 TPH is 21.9 million TPY. Indeed, the conveyor system rate change will primarily allow the transfer of coal from the barge to the storage area at a faster rate and will not significantly increase the annual rate, as this is limited by the utilization of the coal-fired units (the boiler heat input and the heating value of the coal).

3.0 EMISSIONS

Emissions from the proposed modifications are particulate matter (PM) and PM₁₀. All conveyors are enclosed and are assumed to result in negligible fugitive emissions. Fugitive PM/PM₁₀ emissions occur during drop operations from conveyor to conveyor and from conveyor to pile. A summary of the drop operations associated with the coal handling system is provided in Table 1. A summary of the past actual and future potential emissions is provided in Table 2. Table 3 presents a summary of coal yard vehicle traffic emissions. The net PM/PM₁₀ emission changes associated with the proposed modifications are as follows:

	Past Actual Coal Yard Drop Operations (TPY)	Past Actual Traffic (TPY)	Future Potential Coal Yard Operations (TPY)	Future Traffic (TPY)	Net Change (TPY)	PSD Threshold (TPY)
PM	12.38	14.2	16.9	26.2	16.5	25
PM ₁₀	5.94	3.7	8.1	7.2	5.7	15

4.0 RULE APPLICABILITY

The facility is currently permitted under Title V Permit No. 0170004-009-AV. The facility is a major source of hazardous air pollutants (HAPs).

Emission Unit 016 is regulated partially under Power Plant Siting Certification PA 77-09; NSPS 40 CFR 60 Subpart Y (Units 4 and 5 only); and PSD permit AC 09-162037, PSD-FL-139.

5.0 PSD REVIEW

Under Federal and State of Florida PSD review requirements, all major new or modified sources of air pollutants regulated under the Clean Air Act (CAA) must be reviewed and a pre-construction permit issued. EPA has approved Florida's State Implementation Plan (SIP), which contains PSD regulations; therefore, PSD approval authority has been granted to the FDEP.

A "major facility" is defined as any one of 28 named source categories that have the potential to emit 100 TPY or more, or any other stationary facility that has the potential to emit 250 TPY or more of any pollutant regulated under the CAA. "Potential to emit" means the capability, at maximum design capacity, to emit a pollutant after the application of control equipment. Once a new source is determined to be a "major facility" for a particular pollutant, any pollutant emitted in amounts greater than the PSD significant emission rates is subject to PSD review. For an existing source for which a modification is proposed, the modification is subject to PSD review if the net increase in emissions due to the modification is greater than the PSD significant emission rates.

As demonstrated in the above table, the maximum annual emissions increase due to the proposed modifications will not exceed the respective PSD significant emission rate for PM/PM₁₀. Therefore, PSD review is not applicable to the project.

TABLES

Table 1. Coal Yard Drop Operations

Segment	ID	Description	Drop	
Α				
Barge to Ur	nits 1 & 2		Drong	
	B-1	Clamshell to hopper	Drops 1	open
	B-2	Hopper to belt	2	0000
	B-3	Belt to C1	3	
	TP1-1	C1 to C2	4	
	TP3	C2 to C4A/B	5	
	C building	C4A/B to surge bin	6	
	C building	Surge bin to feeder		
	C building	Feeder to crusher	-	
	C building Plant	Crusher to C5 A/B	7 8	crusher
	Plant	C5 to surge hopper Surge hopper to C7	9	
	Plant	C7 to C8	10	
	Plant	C8 to Silo	11	
В				
Barge to gro	ound (SR) to Units 1	& 2		
	B-1	Clamshell to hopper	1	open
	B-2	Hopper to belt	2	•
	B-3	Belt to C1	3	
	TP1-1	C1 to C2	4	
	TP3	C2 to C3	5	
	SR	C3 to SR1	6	
	SR SR	SR1 to SR2 SR2 to coal pile	7 8	0000
	SR	Bucket wheel to SR2	9	open open
	SR	Belt to belt	10	open
	SR	Belt to C3	11	
	TP3	C3 to C4A/B	12	
	C building	C4A/B to surge bin	13	
	C building	Surge bin to feeder		
	C building	Feeder to crusher		
	C building	Crusher to C5 A/B	14	crusher
	Plant	C5 to surge hopper	15 16	
	Plant Plant	Surge hopper to C7 C7 to C8	16 17	
	Plant	C8 to Silo	18	
С	1 Idill	00 10 0110	10	
Barge to Un	nits 4 & 5 New			
	Source	Description		
		•		
	B-1	Clamshell to hopper	1	open
	B-2	Hopper to belt	2	
	B-3 TP1-1	Belt to C1 C1 to C2	3 4	
	TP3	C2 to C29A	5	
	TP 24-1	C29A TO C30A	6	
	TP25-1	C30A TO C31B	7	
	TP26-1	C31B TO C33A	8	
	TP27-1	C33A TO C35A/B	9	
	C building	C35A/B to surge bin	10	
	C building	Surge bin to c feeder		
	C building	Feeder to crusher		

Table 1. Coal Yard Drop Operations

Segment	ID	Description	Drop	
	C building	Crusher to C36A/B	11	crusher
	Plant	C36A/B to C502	12	
	Plant	C502 to C504	13	
	Plant	C504 to silo	14	
D				
Barge to gr	ound (SR) to Uni	ts 4 & 5		
	B-1	Clamshell to hopper	1	open
	B-2	Hopper to belt	2	0 0 0 1 1
	B-3	Belt to C1	3	
	TP1-1	C1 to C2	4	
			5	
	TP3	C2 to C29A		
	TP 24-1	C29A TO C30A	6	
	TP25-1	C30A TO C31B	7	
	TP26-1	C31B TO C33A	8	
	TP27-1	C33A TO C34	9	
	SR	C34 TO Hopper	10	
	SR	Hopper to belt	11	
	SR	Belt to belt	12	
	SR	Belt to coal pile	13	open
	SR	Bucket wheel to belt	14	open
	SR	Belt to belt	15	
	SR	Belt to C34	16	
	TP27-1	C34 TO C35A/B	17	
	C building	C35A/B to surge bin	18	
	C building	Surge bin to c feeder	10	
	C building C building	Feeder to crusher		
	C building	Crusher to C36A/B	19	orughor
				crusher
	Plant	C36A/B to C502	20	
	Plant	C502 to C504	21	
E	Plant	C504 to silo	22	
Rail to Unit	s 1 & 2		_	
	R unloader	Rail car to hopper	Drops 1	open
	R unloader	V feeder to C10	2	open
	R unloader	C10 to C11	3	
	TP23	C11 to C13	4	
	TP24	C13 to C29B	5	
	TP3	C29B to C4A/B	6	
	C building	C4A/B to surge bin	7	
	C building	Surge bin to feeder		
	C building	Feeder to crusher		
	C building	Crusher to C5 A/B	8	crusher
	Plant	C5 to surge hopper	9	
	Plant	Surge hopper to C7	10	
	Plant	C7 to C8	11	
	Plant	C8 to Silo	12	
F				
Rail to grou	nd (SR) to Units	1 & 2		
	R unloader	Rail car to hopper	1	open
	R unloader	V feeder to C10	2	open
	R unloader TP23	C10 to C11	3	
	1074	C11 to C13	4	
	TP24	C13 to C29B	5	

Table 1. Coal Yard Drop Operations

Segment	ID	Description	Drop	
	TP3	C29B to C3	6	
	SR	C3 to SR1	7	
	SR	SR1 to SR2	8	
	SR	SR2 to coal pile	9	open
	SR	Bucket wheel to SR2	10	open
	SR	Belt to belt	11	
	SR	Belt to C3	12	
	TP3	C3 to C4A/B	13	
	C building	C4 A/B to surge bin	14	
	C building	Surge bin to feeder		
	C building	Feeder to crusher		
	C building	Crusher to C5 A/B	15	crusher
	Plant	C5A/B to surge hopper	16	
	Plant	Surge hopper to C7	17	
	Plant	C7 to C8	18	
	Plant	C8 to Silo	19	
G	Ligiti	C0 t0 3110	ış	
Rail to Units	4 & 5			
	D la l	Dell sents because	_	
	R unloader	Rail car to hopper	1	open
	R unloader	V feeder to C10	2	
	R unloader	C10 to C11	3	
	TP23	C11 to C13	4	
	TP24	C13 to C30A	5	
	TP25-1	C30A TO C31B	6	
	TP26-1	C31B TO C33A	7	
	TP27-1	C33A TO C35A/B	8	
	C building	C35A/B to surge bin	9	
	C building	Surge bin to c feeder		
	C building	Feeder to crusher		
	C building	Crusher to C36A/B	10	crusher
	Plant	C36A/B to C502	11	
	Plant	C502 to C504	12	
	Plant	C504 to silo	13	
H Dail to aroun				
Rail to groun	d (SR) to Units 4 &	. 5		
	R unloader	Rail car to hopper	1	open
	R unloader	V feeder to C10	2	
	R unloader	C10 to C11	3	
	TP23	C11 to C13	4	
	TP24	C13 to C30A	5	
	TP25-1	C30A TO C31B	6	
	TP26-1	C31B TO C33A	7	
	TP27-1	C33A TO C34	8	
	SR	C34 TO Hopper	9	
	SR	Hopper to belt	10	
	SR	Belt to belt	11	
	SR	Belt to coal pile	12	onen
		Bucket wheel to belt	13	open open
	QD			UDEII
	SR			•
	SR	Belt to belt	14	
	SR SR	Belt to belt Belt to C34	14 15	•
	SR SR TP27-1	Belt to belt Belt to C34 C34 TO C35A/B	14 15 16	•
	SR SR TP27-1 C building	Belt to belt Belt to C34 C34 TO C35A/B C35A/B to surge bin	14 15	•
	SR SR TP27-1	Belt to belt Belt to C34 C34 TO C35A/B	14 15 16	•

Table 1. Coal Yard Drop Operations

Segment	ID	Description	Drop
	C building	Crusher to C36A/B	18 crusher
	Plant	C36A/B to C502	19
	Plant	C502 to C504	20
	Plant	C504 to silo	21

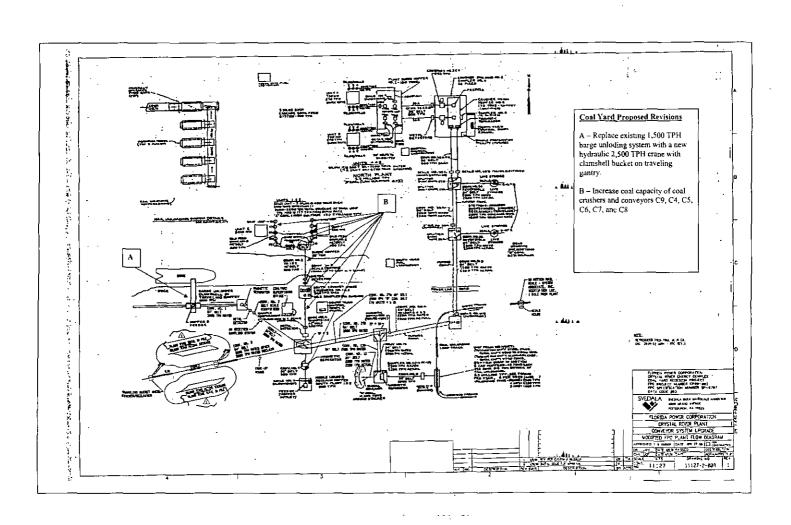
Table 2. Coal Yard Emissions - Past Actual and Future Potential

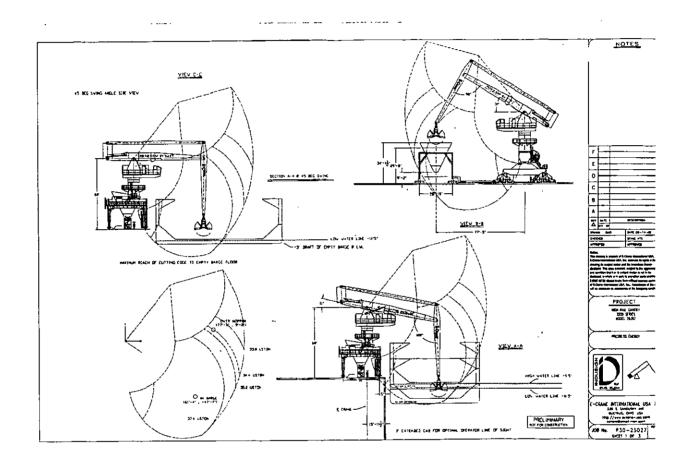
				Past Actual					New Configuration - plant at full load all year_									
Segment		Annual	Daily*	Annual Coal Throughput (TPY)	Daily Coal Throughput (TPD)	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	Daily Emissions TSP (LB/Day)	Daily Emissions PM10 (LB/Day)	Annual Coal Throughput (TPY)	Daily Coal Throughput (TPD)	Annual Emissions TSP (TPY)	Annual Emissions PM10 (TPY)	Daily Emissions TSP (LB/Day)	Daily Emissions PM10 (LB/Day)	AP-42 Equations		
Α	Barge to Units 1 & 2		-					(LUIDO)	(EU/DU)	11/1/	(11.0)	711 11		(LD/Day)	(LEVDay)			
	Drops inclosed	9	9	43,389	0	0.017	0.008	0.000	0.000	7,797	0	0.003	0.001	0.000	0.000	13.2.4 1/9		
	Drops open	1	1	43,389	0	0.019	0.009	0.000	0.000	7,797	0	0.003	0.002	0.000	0.000	13.2 4 1/95		
	Crusher			43,389	0	0.022	0.011	0.000	0.000	7,797	0	0.004	0.002	0.000	0.000			
В	Barge to ground to Uni	ts 18-2																
	Drops inclosed	14	6	824,391	0	0.493	0.233	0.000	0.000	148,149	0	0.089	0.042	0.000	0.000	13.2.4 1/9		
	Drops open	3	2	824.391	Ö	1.057	0.500	0.000	0.000	148,149	0	0.089	0.042	0.000	0.000	13.2.4 1/9:		
	Crusher			824,391	0	0.412	0.206	0.000	0.000	148,149	ő	0 074	0.037	0.000	0.000	13.2.4 1/3		
С	Barge to Units 4 & 5																	
•	Drops inclosed	12	12	1,093,338	13,000	0.561	0.265	19.957	9.439	2 402 200	40.000	4.405	0.500	10.057				
	Drops open	1	1	1,093,338	13,000	0.467	0.203	16,630	7.866	2,193,260 2,193,260	13,000 13,000	1.125 0.937	0.532 0.443	19.957 16.630	9.439 7.866	13.2.4 1/95		
	Crusher	•	•	1,093,338	13,000	0.547	0.273	13.000	6.500	2,193,260	13,000	1.097	0 548	13.000	7.866 6.500	13.2.4 1/9		
D	Barge to ground to Unit	te 1 2 5																
	Drops inclosed	18	11	538,510	3,000	0.414	0.196	4.222	4.007	4 400 470	40.000	4.405						
	Drops open	3	2	538,510	3,000	0.690	0.196	7.676	1.997 3.630	1,462,173 1,462,173	19,000	1.125	0.532	26.737	12.646	13 2.4 1/95		
	Crusher	v	•	538,510	0	0.269	0.327	0.000	0.000	1,462,173	19,000 0	1.875 0.731	0.887 0.366	48.612 0.000	22.992 0 000	13.2.4 1/95		
ε	Rail to Units 1 & 2																	
_	Drops inclosed	10	10	65,084	8,400	0.028	0.040	40.740										
	Drops open	1	1	65,084	8,400	0.028	0.013 0.013	10.746 10.746	5.082	148,149	8,400	0.063	0.030	10.746	5.082	13.2 4 1/95		
	Crusher	'	•	65,084	8,400	0.028	0 013	8.400	5.082 4.200	148,149 148,149	8,400 8,400	0.063 0.074	0.030 0.037	10.746 8.400	5.082 4.200	13.2 4 1/9		
F	Dail to assumed to 11-4-	40.0									-,		******	0.700	7.200			
r	Rail to ground to Units Drops inclosed	15.2	7	4 000 507	45.000	. 700												
	Drops open	3	2	1,236,587 1,236,587	15,850 15,850	0.793	0.375	14.193	6.713	2,814,830	15,850	1 805	0.853	14.193	6.713	13.2.4 1/95		
	Crusher	3	2	1,236,587	15,850	1.586 0.618	0.750	40.553	19.180	2,814,830	15,850	3 609	1.707	40.553	19.180	13.2 4 1/95		
	Ordanei			1,230,363	15,650	0.018	0.309	15.850	7.925	2.814,830	0	1.407	0.704	0.000	0.000			
G	Rail to Units 4 & 5																	
	Drops inclosed	11	11	1,640,007	0	0.771	0.365	0.000	0.000	852,934	0	0.401	0.190	0.000	0.000	13.2.4 1/95		
	Drops open	1	1	1,640,007	0	0.701	0.332	0.000	0.000	852,934	Ö	0.365	0.172	0 000	0.000	13.2.4 1/95		
	Crusher			1,640,007	0	0.820	0.410	0.000	0 000	852,934	0	0.426	0 213	0.000	0.000			
н	Rail to ground to Units	4 & 5																
	Drops inclosed	17	10	807,765	0	0.587	0.278	0.000	0.000	568,623	0	0.413	0 195	0.000	0.000	13.2.4 1/95		
	Drops open	3	2	807,765	0	1.036	0.490	0.000	0.000	568,623	Ö	0.729	0.345	0.000	0.000	13 2.4 1/95		
	Crusher			807,765	0	0.404	0.202	0.000	0.000	568,623	0	0.284	0.142	0.000	0 000	.5 2		
1	Pyrites																	
	Drops inclosed	10	10	2,600	65	0.001	0.001	0.083	0.039	2,600	120	0.001	0.001	0.154	0.073	13.2.4 1/95		
	Drops open	1	1	2,600	65	0.001	0.001	0.083	0.039	2,600	120	0.001	0.001	0.154	0.073	13.2.4 1/9:		
	Crusher			2,600	65	0.001	0.001	0.065	0.033	2,600	120	0.001	0.001	0.120	0.060	10.2.4 1/30 		
	Total					12.375	5.937	162.203	77.726			16.896	8.102	210.001	99.906	_		

Note: AP-42 13.2.4: Ib/ton = k(0.0035) x {[(U/5)^1 3] / [(M/2)^1.4]} where: k = 0.35 for PM10 and 0.74 for TSP, M = 7% Moisture, U = 8.8 MPH for Annual Average and 12 MPH for Daily Average. The daily value is less because the coal is conveyed to ground.

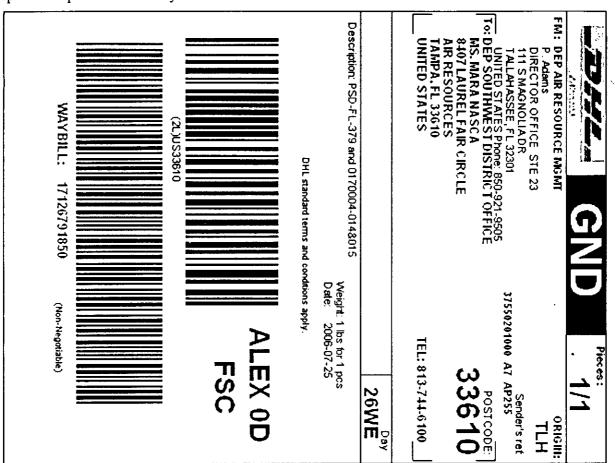
Table 3. Unpaved Road Emissions

		Past Actual Emissions								Future Potential Emissions								
		Vehicle Miles	Vehicle Miles	Hours Per	Hours Per					Vehicle Miles	Vehicle Miles	Hours Per	Hours Per					_
Original	Original	Traveled	Traveled	Year	Day	Ann	iual	Da	ily	Traveled	Traveled	Year	Day	Ann	ual	Da	iily	
Source	Description	Annual	Daily	Annual	Daily	TSP	PM10	TSP	PM10	Annual	Daily	Annual	Daily	TSP	PM10	TSP	PM10	AP-42
		VMT/YR	VMT/DAY	HR/YR	HR/DAY	TPY	TPY	L8/D	LB/D	VMT/YR	VMT/DAY	HR/YR	HR/DAY	TPY	TPY	LB/D	LB/D	
MR-4	FEL Traffic	5,475	15			2.762	0.710	15.132	3.888	21,900	60			11.047	2.838	60.529	15.553	13.2.2 12/03
		5,475	15			1.684	0.433	9.230	2.372	21,900	60			6.738	1.731	36.920	9.487	13.2.2 12/03
CP-3	Front end loader	5,475	15			2.762	0.710	15.132	3.888					0.000	0.000	0.000	0.000	13.2.2 12/03
		5,475	15			1.684	0.433	9.230	2.372					0.000	0.000	0.000	0.000	13.2.2 12/03
CP-4	Scraper	4,200	200			0.515	0.232	49.053	22.064	7,300	20			0.897	0.753	4.914	4.125	
CP-5	Bulldozer			724	2	3.120	0.741	17.239	4.092			730	2	3.146	0.747	17.239	4.092	11.9 10/98
	Water Truck	2,738	8			1.648	0.424	9.030	2.320	7,300	20			4.395	1.129	24.080	6.187	13.2.2 12/03
	Total					14.176	3.681	124.046	40.997					26.222	7.199	143.683	39.444	


Table 4


Typical Bituminous Coal Fuel Analysis

<u>Parameter</u>	<u>Value</u> <u>1&2</u>	Value 4&5
Moisture content (%)	7.5	7.1
Ash Content (%)	8.9	8.3
Sulfur content (%)	1.2	0.7 (maximum)
Heat content (Btu/lb)	11,300 to 13,200	11,300 to 13,200


Note: The values listed are general or typical values based on information obtained from the fuel suppliers.

FIGURES

The same of the second second

PEEL HERE **PEEL HERE** Please fold or cut in half DO NOT PHOTOCOPY Using a photocopy could delay the delivery of your package and will result in additional shipping charge SENDER'S RECEIPT Waybill #: Rate Estimate: Protection: 3.1 Not Required PSD-FL-379 and 0170004-0148015 17126791850 To(Company): DEP Southwest District Office Air Resources 8407 Laurel Fair Circle Description: Weight (lbs.): Dimensions: 0×0×0 Tampa, FL 33610 UNITED STATES Ship Ref: 37550201000 A7 AP255 Service Level: Ground (Est. delivery in 1 business day(s)) Ms. Mara Nasca 813-744-6100 Attention To: Phone#: Special Svc: Sent By: Phone#: P. Adams 850-921-9505 Date Printed: Bill Shipment To: Bill To Acct: 7/25/2006 Sender 778941286 DHL Signature (optional) Route _____ Date ___ Time For Tracking, please go to www dhl-usa com or call 1-800-225-5345 Thank you for shipping with DHL

▶ View pending shipments

Print waybill

Create new shipment