STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION NOTICE OF PERMIT

In the Matter of an Application for Permit by:

Mr. James O. Vick, Director Environmental Affairs Gulf Power Company One Energy Place Pensacola, Florida 32520 DEP File No. 0090180-003-AC Oleander Power Project Unit 5 Brevard County

Enclosed is the Final Permit, number 0090180-003-AC, authorizing the construction of one GE 7FA simple cycle combustion turbine electrical generator and associated fuel oil storage tank at the existing Oleander Power Project in Cocoa, Brevard County. This permit is issued pursuant to Chapter 403, Florida Statutes.

Any party to this order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, F.S., by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Legal Office; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 (thirty) days from the date this Notice is filed with the Clerk of the Department.

Executed in Tallahassee, Florida.

Trina L. Vielhauer, Chief Bureau of Air Regulation

Juna Victain

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this Notice of Final Permit (including the Final Permit) and all copies were sent electronically (with Received Receipt) before the close of business on 11/17/06 to the persons listed:

James O. Vick, Gulf Power Company: jovick@southernco.com Kevin White, Gulf Power Company: kwhite@southernco.com

Mayor, City of Cocoa: mblake@cocoafl.org

Chair, Brevard County BCC: helen.voltz@brevardcounty.us
Gregg Worley, EPA Region 4: worley.gregg@epa.gov
John Bunyak, National Park Service: john_bunyak@nps.gov
Len Kozlov, DEP CD: leonard.kozlov@dep.state.fl.us
Thomas W. Davis, P.E., ECT, Inc.: tdavis@ectinc.com

Clerk Stamp

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to §120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

↑ (Dat

FINAL DETERMINATION

Oleander Power Project, L.P.
Simple Cycle Unit 5
Fuel Oil Storage Tank

DEP File No. 0090180-003-AC (PSD-FL-377)

On October 9, 2006 the Florida Department of Environmental Protection (Department) distributed an "Intent to Issue Air Construction Permit" authorizing the construction of a simple cycle combustion turbine electrical generator (nominal 190 MW) and associated fuel oil storage tank at the existing Oleander Power Project, L.C. Oleander Power Project is a subsidiary of Southern Power Company (SPC) located in the city of Cocoa, Brevard County.

The package included the Department's Draft Air Construction Permit, the "Intent to Issue Air Construction Permit," the "Technical Evaluation and Preliminary Determination," and the "Public Notice of Intent to Issue Air Construction Permit." The Department sent copies of the package to various persons, agencies, and municipalities. SPC published the Public Notice in the *Orlando Sentinel* on October 17, 2006 and provided to the Department the required proof of publication.

The Department received no comments from agencies or the public throughout the comment period regarding the Draft Air Construction Permit. Comments received from SPC are listed below (*italics*) followed by the Department's responses.

Any additions to permit conditions are double underlined and deletions are indicated by double strikethrough notation.

1) Previously, Southern Power requested the Startup, Shutdown, Malfunction language be changed to the rule based 2 hours in any 24 hour period (Rule 62-210.700, F.A.C.) and the following additional language included (currently contained in the Title V permit): "Operation below 50% output shall be limited to 2 hours per unit cycle." This additional language was requested to allow fuel switching in the turbine at a decreased load (below 50%), which is the facility's current standard operating procedure. Fuel switching at low load poses less risk of a unit trip.

Response

Rather than allowing two hours of excess emissions for startups, shutdowns, and malfunctions in any 24-hour period, the Department has allowed data exclusions of up to 30 minutes for each startup and shutdown, and up to two hours for documented malfunctions during an operating day. Such limitations can be found in other permits recently issued by the Department, and are a direct response to recommendations by EPA to limit excess emissions during these events. Documented malfunctions resulting in excess emissions are not expected to be a common occurrence with this unit.

The "additional language" requested by the applicant is contained in the current Title V operating permit for the facility. The Title V condition states: "Operation below 50% output shall be limited to 2 hours per unit cycle (breaker closed to breaker open)." The Title V permit doesn't specify what activities are included in the operation below 50% output. Therefore it must be assumed that all low load activities such as startup, shutdown, and fuel switching are included, thus limiting the sum of these activities to two hours per unit cycle. The Department is allowing reasonable data exclusions during these periods without limiting operation below 50% output. Lean premix (Low-NO_X) conditions can occur, under certain conditions, during operation below 50% load. For these reasons, the Department no longer considers the addition of the above language to be necessary or even beneficial.

Representatives from General Electric and an operator at another Florida facility with similar existing units were contacted to discuss the procedures involved in fuel switching. Data from the existing units at the Oleander facility during these events were also supplied by the applicant. Although, these units are capable of fuel switching quickly at higher loads, the likelihood of malfunctions and trips are much greater when doing so. A trip of the unit can be detrimental from a maintenance standpoint. Any environmental gains of attempting to switch fuels only marginally more quickly, could be offset by the additional startup required following a "trip" of the unit. Based on information obtained, the Department agrees that by reasonably balancing best management practices to minimize both environmental and maintenance impacts, fuel switching for this unit (including both gas-to-oil and oil-to-gas switches), may routinely require periods greater than 30 minutes.

The Department will modify Section III, Part A, Condition 24(e) to allow additional time for fuel switches. Additionally, the word "shutdown" will be replaced with "fuel switching" to correct a typing error. The condition will be modified as follows:

- e. Fuel Switching: Up to 30 60 minutes of CEMS data may be excluded for each oil-to-gas fuel switch. For fuel switches of less than 30 60 minutes in duration, only those minutes attributable to shutdown fuel switching may be excluded.
- 2) Specific Condition 28.f covers CEMS Availability. It is Southern Power's opinion that 95% monitor availability requirement should have a minimum number of operational hours boundary, due to the possibility of low operational hour units (i.e. peaking units) could easily exceed the > 95% availability threshold with just a few monitor issues. Although any future such issue could be handled by the Department taking enforcement discretion, such an event will penalize Southern Power in the annual Certification of Compliance. In order to alleviate this possible issue, Southern Power suggest a minimum of 760 operating hour as a threshold for the >95% availability requirement.

Response

Monitor downtime typically includes periods when the monitor is functioning properly, but is not collecting emissions data due to calibrations or other systems quality performance checks. The Department agrees that minimal operation could significantly increase monitor downtime on a percentage basis without properly reflecting the system's true availability.

The following changes will be made to Section III, Part A, Condition 28(f):

f. Availability: The quarterly excess emissions report shall identify monitor availability for each quarter in which the unit operated. Monitor availability for the CEMS shall be 95% or greater in any calendar quarter in which the unit operated for more than 760 hours. The quarterly excess emissions report shall be used to demonstrate monitor availability. In the event the applicable availability is not achieved, the permittee shall provide the Department with a report identifying the problems in achieving the required availability and a plan of corrective actions that will be taken to achieve 95% availability. The permittee shall implement the reported corrective actions within the next calendar quarter. Failure to take corrective actions or continued failure to achieve the minimum monitor availability shall be violations of this permit, except as otherwise authorized by the Department's Compliance Authority.

The final decision by the Department is to issue the permit with the changes noted.

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Colleen M. Castille Secretary

PERMITTEE:

Oleander Power Project, L.P. 555 Townsend Road Cocoa, Florida 32926

Authorized Representative:

James O. Vick, Director Environmental Affairs

Oleander Power Project

Simple Cycle Unit 5

Permit No. PSD-FL-377

Project No. 0090180-003-AC

Expires: June 1, 2008

PROJECT AND LOCATION

This permit authorizes the construction of a nominal 190 MW simple cycle combustion turbine electrical generator at the existing Oleander Power Project. The facility is located in Cocoa just off Interstate 95 and State Road 520 in Brevard County.

STATEMENT OF BASIS

This construction permit is issued under the provisions of Chapter 403 of the Florida Statutes (F.S.), Chapters 62-4, 62-204, 62-210, 62-212, 62-296, and 62-297 of the Florida Administrative Code (F.A.C.). The project was processed in accordance with the requirements of Rule 62-212.400, F.A.C., the preconstruction review program for the Prevention of Significant Deterioration (PSD) of Air Quality. The permittee is authorized to install the proposed equipment in accordance with the conditions of this permit and as described in the application, approved drawings, plans, and other documents on file with the Department of Environmental Protection (Department).

Joseph Kahn, Director

Division of Air Resource Management

FACILITY DESCRIPTION

The regulated emissions units at the existing Oleander Power Project include four nominal 190 MW simple cycle combustion turbines (Units 001 through 004) capable of firing either natural gas or low-sulfur fuel oil (0.05 percent sulfur), and two 1.8 million-gallon fuel oil storage tanks (Units 006 and 007).

PROJECT DESCRIPTION

The project is for the construction of one additional General Electric PG7241(FA) simple cycle combustion turbine electrical generator (Unit 5) equipped with evaporative cooling, capable of firing natural gas, with a nominal output of 190 megawatts. The project also includes the installation of one 900,000 gallon distillate fuel oil storage tank. Low sulfur fuel oil will be used as a backup fuel to the combustion turbine.

NEW EMISSIONS UNITS

This permit authorizes construction and installation of the following new emissions units:

EU ID NO.	EMISSION UNIT DESCRIPTION
005	Unit 5 - Consists of one General Electric PG7241 FA gas turbine electrical generator (nominal 190 MW) equipped with evaporative inlet air cooling.
008	Unit 8- One 900,000 gallon distillate fuel oil storage tank.

REGULATORY CLASSIFICATION

Title I, Part C, Clean Air Act (CAA): The facility is a PSD-major facility pursuant to Rule 62-212, F.A.C.

Title I, Section 111, CAA: Unit 5 is subject to the New Source Performance Standards of 40 CFR 60, Subpart KKKK (Standards of Performance for Stationary Combustion Turbines).

Title I, Section 112, CAA: The facility is not a "Major Source" of hazardous air pollutants (HAPs).

Title IV, CAA: The facility operates units subject to the Acid Rain provisions of the Clean Air Act.

Title V, CAA: The facility is a Title V or "Major Source of air pollution" in accordance with Chapter 62-213, F.A.C. because the potential emissions of at least one regulated pollutant exceed 100 tons per year. Regulated pollutants include pollutants such as carbon monoxide (CO), nitrogen oxides (NO_X), particulate matter (PM/PM_{10}) , sulfur dioxide (SO_2) , sulfuric acid mist (SAM), and volatile organic compounds (VOC).

CAIR: As an electric generating unit, Unit 5 may be subject to the Clean Air Interstate Rule pending the finalization of DEP rules.

PERMITTING AUTHORITY

All documents related to applications for permits to construct, operate or modify an emissions unit shall be submitted to the Bureau of Air Regulation of the Florida Department of Environmental Protection (DEP) at 2600 Blair Stone Road (MS #5505), Tallahassee, Florida 32399-2400. Copies of all such documents shall also be submitted to the Compliance Authority.

COMPLIANCE AUTHORITY

All documents related to compliance activities such as reports, tests, and notifications shall be submitted to the Department of Environmental Protection Central District, 3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767.

SECTION I - GENERAL INFORMATION

APPENDICES

The following Appendices are attached as part of this permit.

Appendix A NSPS Subparts A, Identification of General Provisions

Appendix BD Final BACT Determinations and Emissions Standards

Appendix GC General Conditions

Appendix KKKK NSPS Subpart KKKK Requirements for Stationary Combustion Turbines

Appendix SC Standard Conditions

RELEVANT DOCUMENTS:

The documents listed below are not a part of this permit, however they are specifically related to this permitting action and are on file with the Department.

- Application for Air Construction Permit received on May 4, 2006;
- Department's Request for Additional Information dated June 2, 2006;
- Applicant's Response to Request for Additional Information Received July 13, 2006 (complete);
- Department's Intent to Issue and Public Notice Package distributed October 10, 2006;
- Department's Final Determination and Best Available Control Technology Determination issued concurrently with this Final Permit.

SECTION II. ADMINISTRATIVE REQUIREMENTS

- 1. <u>General Conditions</u>: The permittee shall operate under the attached General Conditions listed in Appendix GC of this permit. General Conditions are binding and enforceable pursuant to Chapter 403 of the Florida Statutes. [Rule 62-4.160, F.A.C.]
- 2. Applicable Regulations, Forms and Application Procedures: Unless otherwise indicated in this permit, the construction and operation of the subject emissions unit shall be in accordance with the capacities and specifications stated in the application. The facility is subject to all applicable provisions of: Chapter 403 of the Florida Statutes (F.S.); Chapters 62-4, 62-204, 62-210, 62-212, 62-213, 62-296, and 62-297 of the Florida Administrative Code (F.A.C.); and the Title 40, Parts 51, 52, 60, 63, 72, 73, and 75 of the Code of Federal Regulations (CFR), adopted by reference in Rule 62-204.800, F.A.C. The terms used in this permit have specific meanings as defined in the applicable chapters of the Florida Administrative Code. The permittee shall use the applicable forms listed in Rule 62-210.900, F.A.C. and follow the application procedures in Chapter 62-4, F.A.C. Issuance of this permit does not relieve the permittee from compliance with any applicable federal, state, or local permitting or regulations.

 [Rules 62-204.800, 62-210.300 and 62-210.900, F.A.C.]
- 3. Construction and Expiration: Authorization to construct shall expire if construction is not commenced within 18 months after receipt of the permit, if construction is discontinued for a period of 18 months or more, or if construction is not completed within a reasonable time. This provision does not apply to the time period between construction of the approved phases of a phased construction project except that each phase must commence construction within 18 months of the commencement date established by the Department in the permit. The Department may extend the 18-month period upon a satisfactory showing that an extension is justified. In conjunction with an extension of the 18-month period to commence or continue construction (or to construct the project in phases), the Department may require the permittee to demonstrate the adequacy of any previous determination of Best Available Control Technology (BACT) for emissions units regulated by the project. For good cause, the permittee may request that this PSD air construction permit be extended. Such a request shall be submitted to the Department's Bureau of Air Regulation at least sixty (60) days prior to the expiration of this permit. [Rules 62-4.070(4), 62-4.080, 62-210.300(1), and 62-212.400(12), F.A.C.]
- 4. New or Additional Conditions: For good cause shown and after notice and an administrative hearing, if requested, the Department may require the permittee to conform to new or additional conditions. The Department shall allow the permittee a reasonable time to conform to the new or additional conditions, and on application of the permittee, the Department may grant additional time. [Rule 62-4.080, F.A.C.]

5. Source Obligation.

- a. At such time that a particular source or modification becomes a major stationary source or major modification (as these terms were defined at the time the source obtained the enforceable limitation) solely by virtue of a relaxation in any enforceable limitation which was established after August 7, 1980, on the capacity of the source or modification otherwise to emit a pollutant, such as a restriction on hours of operation, then the requirements of subsections 62-212.400(4) through (12), F.A.C., shall apply to the source or modification as though construction had not yet commenced on the source or modification.
- b. At such time that a particular source or modification becomes a major stationary source or major modification (as these terms were defined at the time the source obtained the enforceable limitation) solely by exceeding its projected actual emissions, then the requirements of subsections 62-212.400(4) through (12), F.A.C., shall apply to the source or modification as though construction had not yet commenced on the source or modification.

[Rule 62-212.400(12), F.A.C.]

SECTION II. ADMINISTRATIVE REQUIREMENTS

- 6. <u>Modifications</u>: No emissions unit or facility subject to this permit shall be constructed or modified without obtaining an air construction permit from the Department. Such permit shall be obtained prior to beginning construction or modification. This permit authorizes construction of the referenced facilities. [Chapters 62-210 and 62-212, F.A.C.]
- 7. Application for Title IV Permit: At least 24 months before the date on which the new unit begins serving an electrical generator greater than 25 MW, the permittee shall submit an application for a Title IV Acid Rain Permit to the Department's Bureau of Air Regulation in Tallahassee and a copy to the Region 4 Office of the U.S. Environmental Protection Agency in Atlanta, Georgia. [40 CFR 72]
- 8. <u>Title V Permit</u>: This permit authorizes construction of the permitted emissions unit and initial operation to determine compliance with Department rules. A Title V operation permit is required for regular operation of the permitted emission units. The permittee shall apply for and obtain a Title V operation permit in accordance with Rule 62-213.420, F.A.C. To apply for a Title V operation permit, the applicant shall submit the appropriate application form, compliance test results, and such additional information as the Department may by law require. The application shall be submitted to the Department's Bureau of Air Regulation and a copy to the Compliance Authority.

 [Rules 62-4.030, 62-4.050, 62-4.220, and Chapter 62-213, F.A.C.]

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

The specific conditions of this subsection apply to the following emissions unit after construction is complete.

E.U. ID	Emission Unit Description	
005	Unit 5 - Consists of one General Electric PG7241 FA gas turbine electrical generator (nominal 190 MW) equipped with evaporative inlet air cooling.	

APPLICABLE STANDARDS AND REGULATIONS

- 1. <u>BACT Determinations</u>: A determination of the Best Available Control Technology (BACT) was made for nitrogen oxides (NO_X), and particulate matter (PM/PM₁₀). [Rule 62-210.200 (BACT), F.A.C.]
- 2. NSPS Requirements: This unit shall comply with the applicable New Source Performance Standards (NSPS) in 40 CFR 60, including: Subpart A (General Provisions) and Subpart KKKK (Standards of Performance for Stationary Gas Turbines). See Appendix A and Appendix KKKK of this permit. The BACT emissions standards for NO_X and the fuel sulfur specifications for PM/PM₁₀ are as stringent as, or more stringent than the NO_X and SO₂ limits imposed by the applicable NSPS provisions. Some separate reporting and monitoring may be required by the individual subparts. [Rule 62-204.800(7)(b), F.A.C.; 40 CFR 60, Subparts A and KKKK]

EQUIPMENT DESCRIPTION

3. Combustion Turbine: The permittee is authorized to install, tune, operate, and maintain one General Electric Model PG7241FA gas turbine-electrical generator set with a nominal generating capacity of 190 MW. The combustion turbine will be equipped with GE's DLN combustor, and an inlet air filtration system with evaporative coolers. The combustion turbine will be designed for operation in simple cycle mode and will have dual-fuel capability. [Application; Design]

CONTROL TECHNOLOGY

- 4. <u>DLN Combustion</u>: The permittee shall operate and maintain the General Electric DLN 2.6 combustion system (or better) to control NO_X emissions from the combustion turbine when firing natural gas. Prior to the initial emissions performance tests required for the gas turbine, the DLN combustors and automated gas turbine control system shall be tuned to achieve the permitted levels for NO_X. Thereafter, the system shall be maintained and tuned in accordance with the manufacturer's recommendations or determined best practices. [Design; Rule 62-212.400(10)(BACT), F.A.C.]
- 5. Wet Injection: The permittee shall install, operate, and maintain a water injection system to reduce NO_X emissions from the combustion turbine when firing distillate fuel oil. Prior to the initial emissions performance tests, the water injection system shall be tuned to achieve sufficiently low NO_X values to meet the NO_X limits of this permit. Thereafter, the system shall be maintained and tuned in accordance with the manufacturer's recommendations or determined best practices.
 [Applicant request; Rule 62-212.400(10)(BACT), F.A.C.]

PERFORMANCE REQUIREMENTS

- 6. <u>Hours of Operation</u>: The combustion turbine may operate no more than 3,390 hours per calendar year. Restrictions on individual methods of operation are specified in separate conditions. [Rules 62-210.200(PTE, and BACT) and 62-212.400 (PSD), F.A.C.]
- 7. Permitted Capacity: The nominal heat input rate to the combustion turbine is 1,722 MMBtu per hour when firing natural gas and 1,920 MMBtu per hour when firing fuel oil (based on a compressor inlet air temperature of 59° F, the lower heating value (LHV) of each fuel, and 100% load). Heat input rates will vary depending upon gas turbine characteristics, ambient conditions, alternate methods of operation, and

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

evaporative cooling. The permittee shall provide manufacturer's performance curves (or equations) that correct for site conditions to the Permitting and Compliance Authorities within 45 days of completing the initial compliance testing. Operating data may be adjusted for the appropriate site conditions in accordance with the performance curves and/or equations on file with the Department. [Rule 62-210.200(PTE), F.A.C.]

- 8. <u>Authorized Fuels</u>: The combustion turbine shall fire natural gas as the primary fuel, which shall contain no more than 1.5 grains of sulfur per 100 standard cubic feet of natural gas. As a restricted alternate fuel, the combustion turbine may fire low sulfur fuel oil containing no more than 0.05% sulfur by weight. The gas turbine shall fire no more than 500 hours of fuel oil, during any calendar year. [Rules 62-210.200(PTE, and BACT) and 62-212.400 (PSD, and PSD Avoidance), F.A.C.]
- 9. Simple Cycle, Intermittent Operation: The turbine shall operate only in simple cycle mode not to exceed the permitted hours of operation allowed by this permit. This restriction is based on the permittee's request, which formed the basis of the PSD applicability and BACT determination and resulted in the emission standards specified in this permit. For any request to convert this unit to combined cycle operation by installing/connecting to heat recovery steam generators, including changes to the fuel quality or quantity related to combined cycle conversion which may cause an increase in short or long-term emissions, the permittee may be required to submit a full PSD permit application complete with a new proposal of the best available control technology as if the unit had never been built. [Rules 62-212.400(12) and 62-212.400(BACT), F.A.C.].

EMISSIONS AND TESTING REQUIREMENTS

10. Emission Standards: Emissions from the combustion turbine shall not exceed the following standards.

Pollutant	Emission Standard c	Averaging Time	Compliance Method	Basis	
NO _X	9.0 ppmvd @ 15% O ₂	24-hr rolling	CEMS	DACT	
(Gas)	62.5 lb/hr	3 1-hr runs	Stack Test	BACT	
NO _X	42.0 ppmvd @ 15% O ₂	4-hr rolling	CEMS	NSPS	
(Oil)	336.8 lb/hr	3 1-hr runs	Stack Test		
PM/PM ₁₀ ^a	10 % Opacity	6-minute block	Visible Emissions Test		
	1.5 gr S/100 SCF of gas/ 0.05 % S fuel oil	N/A	Record Keeping	BACT	
SO ₂ ^b	1.5 gr S/100 SCF of gas/ 0.05 % S fuel oil	N/A	Record Keeping	PSD Avoidance	

- a. The fuel sulfur specifications combined with the efficient combustion design and operation of the combustion turbine represent BACT for PM/PM₁₀ emissions. Compliance with the visible emissions standard shall serve as an indicator of good combustion.
- b. The fuel sulfur specifications and limited hours of operation effectively limit the potential emissions of SO₂ and sulfuric acid mist (SAM) from the gas turbine.
- c. The mass emission rate standards are based on a turbine inlet condition of 59°F and 100 percent full load operation. Mass emission rate may be adjusted from actual test conditions in accordance with the performance curves and/or equations on file with the Department.

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

{Permitting Note: In combination with the annual restriction on hours of operation, the above emissions standards effectively limit annual potential emissions from the combustion turbine to: 174.5 tons/year of NO_{X_1} , 34.5 tons/year of PM/PM_{10} , and 37.1 tons/year of SO_{2} .}

[Rules 62-4.070(3), 62-210.200 (BACT), 62-212.400(PSD and PSD Avoidance), F.A.C, and 40 CFR 60, Subpart KKKK]

- 11. <u>Nitrogen Oxides (NO_X)</u>: Emissions of NO_X from the CT shall not exceed the following standards on a continuous basis and as measured by the required CEMS for the averaging period specified, and as measured during the required stack tests.
 - a. While firing natural gas:
 - 9.0 ppmvd @ 15% O₂ on a 24-hour rolling average (as measured by the required CEMS and defined by this permit)
 - 62.5 /lb/hr (3 1-hr run stack test)
 - b. While firing fuel oil:
 - 42.0 ppmvd @ 15% O₂ on a 4-hr rolling average (as measured by the required CEMS and defined by subpart KKKK attached as an Appendix to this permit)

336.8 lb/hr (3 1-hr run stack test)

[Rules 62-4.070(3), 62-210.200 (BACT), 62-212.400(PSD), F.A.C, and 40 CFR 60.4380]

12. Sulfur Dioxide (SO₂):

- a. While firing natural gas: The fuel sulfur specifications, established in condition 8 of this subsection, of 1.5 grains per 100 standard cubic feet effectively limit the potential emissions of SO₂ from the combustion turbine while firing natural gas.
- b. While firing fuel oil: The fuel sulfur specification, established in condition 8 of this subsection, of 0.05 % sulfur by weight effectively limit the potential emissions of SO₂ from the combustion turbine while firing fuel oil.

[Rules 62-4.070(3), and 62-212.400 (PSD Avoidance), F.A.C]

13. Particulate Matter (PM/PM₁₀): The fuel sulfur specifications, established in condition 8 of this subsection, combined with the efficient combustion, design, and operation of the combustion turbine represent BACT for PM/PM10 emissions. Compliance with the fuel specifications and visible emissions standard shall serve as indicators of good combustion. Visible emissions shall not exceed 10 % opacity as observed during the required 30-minute visible emissions tests.

[Rules 62-4.070(3), 62-210.200 (BACT), 62-212.400(PSD), and 62-297.310(4)(a)2, F.A.C]

- 14. <u>Unconfined Particulate Emissions</u>: During the construction period, unconfined particulate matter emissions shall be minimized by dust suppressing techniques such as covering, confining, or applying water or chemicals to the affected areas, as necessary. [Rule 62-296.320(4)(c), F.A.C.]
- 15. <u>Test Methods</u>: Required tests shall be performed in accordance with the following reference methods.

Method	Description of Method and Comments		
7E	Determination of NOx Emissions (Instrumental).		
9	Visual Determination of Opacity		
20	Determination of NOx, SO ₂ , and Diluent Emissions from Stationary Gas Turbines		

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

The methods are described in 40 CFR 60, Appendix A, and adopted by reference in Rule 62-204.800, F.A.C. No other methods may be used for compliance testing unless prior written approval is received from the administrator of the Department's Emissions Monitoring Section in accordance with an alternate sampling procedure pursuant to 62-297.620, F.A.C. [Rules 62-204.800, F.A.C.; 40 CFR 60, Appendix A]

- 16. Testing Requirements: Initial tests shall be conducted between 90% and 100% of permitted capacity; otherwise, this permit shall be modified to reflect the true maximum capacity as constructed. Subsequent annual tests shall be conducted between 90% and 100% of permitted capacity in accordance with the requirements of Rule 62-297.310(2), F.A.C. Tests shall be conducted for each pollutant while firing each fuel in the CT. For each run during tests for visible emissions, emissions of NO_X recorded by the CEMS shall also be reported. Data collected from the reference method during the required CEMS quality assurance RATA tests may substitute for annual compliance tests for NO_X, provided the owner or operator indicates this intent in the submitted test protocol, and obtains approval prior to testing. If the RATA is conducted at less than permitted capacity, and the data is used for annual compliance, the requirements of 62-297.310(2) (Operating Rate During Testing) still apply. The mass emission rate standards are based on a turbine inlet condition of 59°F and 100 percent full load operation. Mass emission rate may be adjusted from actual test conditions in accordance with the performance curves and/or equations on file with the Department. [Rule 62-297.310(2), and (7)(a), F.A.C.; and 40 CFR 60.8]
- 17. <u>Initial Compliance Demonstration</u>: Initial compliance stack tests while firing natural gas shall be conducted within 60 days after achieving the maximum production rate, but not later than 180 days after the initial startup. Initial testing on fuel oil shall be conducted within 60 days of any fuel oil firing in the CT. In accordance with the test methods specified in this permit, the combustion turbine shall be tested to demonstrate initial compliance with the emission standards for NO_X and with the visible emissions standard. The permittee shall provide the Compliance Authority with any other initial emissions performance tests conducted to satisfy vendor guarantees including CO and particulate tests. [Rules 62-4.070, 62-297.310(7)(a), F.A.C. and 40 CFR 60.8]
- 18. Subsequent Compliance Testing: Annual compliance tests for NO_X, and visible emissions shall be conducted during each federal fiscal year (October 1st, to September 30th). If normal operation on fuel oil is less than 400 hours per calendar year, then subsequent compliance testing on fuel oil is not required for that year. If normal operation on fuel oil exceeds 400 hours per year, the Department shall require compliance testing for NO_X and visible emissions while firing fuel oil.

 [Rules 62-4.070, 62-210.200(BACT), and 62-297.310(7)(a)4, F.A.C.]
- Continuous Compliance: Continuous compliance with the permit standard for emissions of NO_X shall be demonstrated with data collected from the required continuous monitoring system. [Rules 62-4.070, and 62-210.200(BACT), F.A.C.]
- 20. Special Compliance Tests: When the Department, after investigation, has good reason (such as complaints, increased visible emissions or questionable maintenance of control equipment) to believe that any applicable emission standard contained in a Department rule or in a permit issued pursuant to those rules is being violated, it shall require the owner or operator of the emissions unit to conduct compliance tests which identify the nature and quantity of pollutant emissions from the emissions unit and to provide a report on the results of said tests to the Department. [Rule 62-297.310(7)(b), F.A.C.]

EXCESS EMISSIONS

{Permitting Note: The following conditions apply only to the SIP-based emissions standards specified in Condition No 10 and 11 of this subsection. Rule 62-210.700, F.A.C. (Excess Emissions) cannot vary or supersede any federal provision of the NSPS, NESHAP, or Acid Rain programs.}

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

21. Definitions:

- a. Startup is defined as the commencement of operation of any emissions unit which has shut down or ceased operation for a period of time sufficient to cause temperature, pressure, chemical or pollution control device imbalances, which result in excess emissions.
- b. Shutdown is the cessation of the operation of an emissions unit for any purpose.
- c. *Malfunction* is defined as any unavoidable mechanical and/or electrical failure of air pollution control equipment or process equipment or of a process resulting in operation in an abnormal or unusual manner.

{Permitting Note: The applicant has described startup of this unit as the period from 0 to 50% load, and shutdown as the period beginning at 50 % load to no load operation.}

[Rule 62-210.200(165, 242, and 258), F.A.C.]

- 22. Excess Emissions Prohibited: Excess emissions caused entirely or in part by poor maintenance, poor operation or any other equipment or process failure that may reasonably be prevented during startup, shutdown or malfunction shall be prohibited. All such preventable emissions shall be included in any compliance determinations based on CEMS data. [Rule 62-210.700(4), F.A.C.]
- 23. <u>Data Exclusion Procedures for SIP Compliance</u>: As per the procedures in this condition, limited amounts of CEMS emissions data, as specified in condition 24, may be excluded from the corresponding SIP-based compliance demonstration, provided that best operational practices to minimize emissions are adhered to, the duration of data excluded is minimized, and the procedures for data exclusion listed below are followed. As provided by the authority in Rule 62-210.700(5), F.A.C., these conditions replace the provisions in Rule 62-210.700(1), F.A.C.
 - a. Limiting Data Exclusion. If the compliance calculation using all valid CEMS emission data indicates that the emission unit is in compliance, then no CEMS data shall be excluded from the compliance demonstration.
 - b. Event Driven Exclusion. There must be an underlying event (startup, shutdown, malfunction, or fuel switching) in order to exclude data. If there is no underlying event, then no data may be excluded.
 - c. Continuous Exclusion. Data shall be excluded on a continuous basis. Data from discontinuous periods shall not be excluded for the same underlying event.

[Rule 62-210.700 F.A.C.]

- 24. <u>Allowable Data Exclusions</u>: The following data may be excluded from the corresponding SIP-based compliance demonstration for each of the events listed below in accordance with the Data Exclusion Procedures of condition 23:
 - a. Startup: Up to 30 minutes of CEMS data may be excluded for each combustion turbine startup. For startups of less than 30 minutes in duration, only those minutes attributable to startup may be excluded.
 - b. *Shutdown:* Up to 30 minutes of CEMS data may be excluded for each combustion turbine shutdown. For shutdowns of less than 30 minutes in duration, only those minutes attributable to shutdown may be excluded.
 - c. *Malfunction*: Up to two hours (in any operating day) of CEMS data may be excluded due to a documented malfunction. A "documented malfunction" means a malfunction that is documented within one working day of detection by contacting the Compliance Authority by telephone, facsimile transmittal, or electronic email.

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

- d. *DLN Tuning*: CEMS data collected during initial or other DLN tuning sessions may be excluded from the compliance demonstrations provided the tuning session is performed in accordance with the manufacturer's specifications or determined best practices. Prior to performing any tuning session, the permittee shall provide the Compliance Authority with an advance notice of at least one (1) day that details the activity and proposed tuning schedule. The notice may be by telephone, facsimile transmittal, or electronic mail. [Design; Rule 62-4.070(3), F.A.C.]
- e. Fuel Switching: Up to 60 minutes of CEMS data may be excluded for each fuel switch. For fuel switches of less than 60 minutes in duration, only those minutes attributable to fuel switching may be excluded.

All valid emissions data (including data collected during startup, shutdown, malfunction, DLN tuning, and fuel switching) shall be used to report emissions for the Annual Operating Report.

[Rules 62-210.200(BACT), 62-210.370, and 62-210.700, F.A.C.]

25. <u>Notification Requirements</u>: The owner or operator shall notify the Compliance Authority within one working day of discovering any emissions that demonstrate non-compliance for a given averaging period. [Rule 62-4.070, F.A.C.]

CONTINUOUS MONITORING REQUIREMENTS

- 26. <u>CEM Systems</u>: Subject to the following, the permittee shall install, calibrate, operate, and maintain a continuous emission monitoring system (CEMS) to measure and record the emissions of NO_X from the combustion turbine in terms of the applicable standards. The monitoring system shall be installed, and functioning within the required performance specifications by the time of the initial compliance demonstration.
 - a. NO_X Monitor: Each NO_X monitor shall be certified pursuant to the specifications of 40 CFR 75. Quality assurance procedures shall conform to the requirements of 40 CFR 75. The annual and required RATA tests required for the NO_X monitor shall be performed using EPA Method 20 or 7E in Appendix A of 40 CFR 60.
 - b. Diluent Monitor: The oxygen (O₂) or carbon dioxide (CO₂) content of the flue gas shall be monitored at the location where NO_X is monitored to correct the measured emissions rates to 15% oxygen. If a CO₂ monitor is installed, the oxygen content of the flue gas shall be calculated using F-factors that are appropriate for the fuel fired. Each monitor shall comply with the performance and quality assurance requirements of 40 CFR 75.

[Rules 62-4.070(3), 62-210.200(BACT), F.A.C., and 40 CFR 60, Subpart 75]

- 27. <u>Moisture Correction</u>: If necessary, the owner or operator shall determine the moisture content of the exhaust gas and develop an algorithm to enable correction of the monitoring results to a dry basis (0% moisture). [Rules 62-4.070(3), 62-210.200(BACT), F.A.C]
- 28. CEMS Data Requirements for BACT Standards:

{Permitting Note: The following conditions apply only to the SIP-based NO_X emissions standards specified in Condition Nos. 10-11 of this section. These requirements cannot vary or supersede any federal provision of the NSPS, or Acid Rain programs. Additional reporting and monitoring may be required by the individual subparts.}

a. Data Collection: Except for continuous monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments, emissions shall be monitored and recorded during all operation including startup, shutdown, and malfunction.

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

- b. Operating Hours and Operating Days: An hour is the 60-minute period beginning at the top of each hour. Any hour during which an emissions unit is in operation for more than 15 minutes is an operating hour for that emission unit. A day is the 24-hour period from midnight to midnight. Any day with at least one operating hour for an emissions unit is an operating day for that emission unit.
- c. Valid Hour: Each CEMS shall be designed and operated to sample, analyze, and record data evenly spaced over the hour at a minimum of one measurement per minute. All valid measurements collected during an hour shall be used to calculate a 1-hour block average that begins at the top of each hour.
 - 1) Hours that are not operating hours are not valid hours.
 - 2) For each operating hour, the 1-hour block average shall be computed from at least two data points separated by a minimum of 15 minutes. If less than two such data points are available, there is insufficient data and the 1-hour block average is not valid.
 - 3) During fuel switching an hour in which fuel oil is fired is attributed towards compliance with the permit standards for oil firing.
- d. Rolling 24-Hour Average: Compliance shall be determined after each valid hourly average is obtained by calculating the arithmetic average of that valid hourly average and the preceding 23 valid hourly averages.
- e. Data Exclusion: Each CEMS shall monitor and record emissions during all operations including episodes of startup, shutdown, malfunction, DLN tuning, and fuel switches. Some of the CEMS emissions data recorded during these episodes may be excluded from the corresponding CEMS compliance demonstration subject to the provisions of conditions 23 and 24 of this subsection.
- f. Availability: The quarterly excess emissions report shall identify monitor availability for each quarter in which the unit operated. Monitor availability for the CEMS shall be 95% or greater in any calendar quarter in which the unit operated for more than 760 hours. In the event the applicable availability is not achieved, the permittee shall provide the Department with a report identifying the problems in achieving the required availability and a plan of corrective actions that will be taken to achieve 95% availability. The permittee shall implement the reported corrective actions within the next calendar quarter. Failure to take corrective actions or continued failure to achieve the minimum monitor availability shall be violations of this permit, except as otherwise authorized by the Department's Compliance Authority.

[Rules 62-4.070(3) and 62-210.200(BACT), F.A.C.]

CEMS REQUIREMENTS FOR ANNUAL EMISSIONS

29. CEMS Annual Emissions Requirement: The owner or operator shall use data from the NO_X CEMS when calculating annual emissions for purposes of computing actual emissions, baseline actual emissions, and net emissions increase, as defined at Rule 62-210.200, F.A.C., and for purposes of computing emissions pursuant to the reporting requirements of Rule 62-210.370(3), F.A.C. In computing the emissions of a pollutant, the owner or operator shall account for the emissions during periods of startup and shutdown of the emissions unit. [Rules 62-210.200, and 62-210.370(3), F.A.C.]

REPORTING AND RECORD KEEPING REQUIREMENTS

30. Monitoring of Capacity: The permittee shall monitor and record the operating rate of the combustion turbine on a daily average basis, considering the number of hours of operation during each day (including the times of startup, shutdown, malfunction, DLN tuning, and fuel switching). Such monitoring shall be made by monitoring daily rates of consumption and heat content of each allowable fuel in accordance with the provisions of 40 CFR 75 Appendix D. [Rules 62-4.070(3) and 62-210.200(BACT), F.A.C.]

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

- 31. Monthly Operations Summary: By the 15th calendar day of each month, the permittee shall record the following for each fuel in a written or electronic log for the combustion turbine for the previous month of operation: fuel consumption, hours of operation on each fuel, and the updated calendar year totals for each. Information recorded and stored as an electronic file shall be available for inspection and printing within at least three days of a request by the Department. The fuel consumption shall be monitored in accordance with the provisions of 40 CFR 75 Appendix D. [Rules 62-4.070(3) and 62-210.200(BACT), F.A.C.]
- 32. <u>Fuel Sulfur Records</u>: The permittee shall demonstrate compliance with the fuel sulfur limits specified in this permit by maintaining the following records of the sulfur contents.
 - a. Natural Gas Sulfur Limit: Compliance with the fuel sulfur limit for natural gas shall be demonstrated by keeping reports obtained from the vendor indicating the average sulfur content of the natural gas being supplied from the pipeline for each month of operation. Methods for determining the sulfur content of the natural gas shall be ASTM methods D4084-82, D4468-85, D5504-01, D6228-98 and D6667-01, D3246-81 or more recent versions.
 - b. Distillate Fuel Oil Sulfur Limit: Compliance with the distillate fuel oil sulfur limit shall be demonstrated by taking a sample, analyzing the sample for fuel sulfur, and reporting the results to each Compliance Authority before initial startup. Sampling the fuel oil sulfur content shall be conducted in accordance with ASTM D4057-88, Standard Practice for Manual Sampling of Petroleum and Petroleum Products, and one of the following test methods for sulfur in petroleum products: ASTM methods D5453-00, D129-91, D1552-90, D2622-94, or D4294-90. More recent versions of these methods may be used. For each subsequent fuel delivery, the permittee shall maintain a permanent file of the certified fuel sulfur analysis from the fuel vendor. At the request of the Compliance Authority, the permittee shall perform additional sampling and analysis for the fuel sulfur content.

The above methods shall be used to determine the fuel sulfur content in conjunction with the provisions of 40 CFR 75 Appendix D. [Rules 62-4.070(3) and 62-4.160(15), F.A.C.]

33. Emissions Performance Test Reports: A report indicating the results of any required emissions performance test shall be submitted to the Compliance Authority no later than 45 days after completion of the last test run. The test report shall provide sufficient detail on the tested emission unit and the procedures used to allow the Department to determine if the test was properly conducted and if the test results were properly computed. At a minimum, the test report shall provide the applicable information listed in Rule 62-297.310(8)(c), F.A.C. and in Appendix SC of this permit. [Rule 62-297.310(8), F.A.C.].

34. Excess Emissions Reporting:

- a. Malfunction Notification: If emissions in excess of a standard (subject to the specified averaging period) occur due to malfunction, the permittee shall notify the Compliance Authority within (1) working day of: the nature, extent, and duration of the excess emissions; the cause of the excess emissions; and the actions taken to correct the problem. In addition, the Department may request a written summary report of the incident.
- b. SIP Quarterly Report: Within 30 days following the end of each calendar-quarter, the permittee shall submit a report to the Compliance Authority summarizing periods of NO_X emissions in excess of the BACT permit standard following the NSPS format in 40 CFR 60.7(c), Subpart A. A summary of data excluded from SIP compliance calculations should also be provided. In addition, the report shall summarize the NO_X CEMS system monitor availability for the previous quarter.
- c. NSPS Reporting: Within 30 days following the calendar quarter, the permittee shall submit the written reports required by 40 CFR 60 Subpart KKKK (Standards of Performance for Stationary Combustion Turbines) for the previous semi-annual period to the Compliance Authority.

A. Unit 5 Simple Cycle Combustion Turbine (EU 005)

{Note: If there are no periods of excess emissions as defined in 40 CFR, Part 60, Subpart KKKK, a statement to that effect may be submitted with the SIP Quarterly Report to suffice for the NSPS Semi-Annual Report.}

[Rules 62-4.130, 62-204.800, 62-210.700(6) and 62-212.400(BACT), F.A.C., and 40 CFR 60.7 and 60.4375]

35. <u>Annual Operating Report</u>: The permittee shall submit an annual report that summarizes the actual operating hours and emissions from this facility in accordance with 62-210.370. Annual operating reports shall be submitted to the Compliance Authority by March 1st of each year. [Rule 62-210.370(2), F.A.C.]

SECTION IV – UNREGULATED EMISSIONS UNITS

A. Fuel Oil Storage Tank (EU 008)

ID	Emission Unit Description
008	Unit 8- One 900,000 gallon distillate fuel oil storage tank.

NSPS APPLICABILITY

NSPS Subpart Kb Applicability: The distillate fuel oil storage tank is not subject to Subpart Kb which applies to storage vessels with a capacity greater than or equal to 75 cubic meters that is used to store volatile organic liquids for which construction, reconstruction, or modification is commenced after July 23, 1984. Tanks with a capacity greater than or equal to 151 cubic meters (40,000 gallons) storing a liquid with a maximum true vapor pressure less than 3.5 kPa, are exempt from the General Provisions (40 CFR 60, Subpart A) and from the provisions of NSPS Subpart Kb. The fuel oil storage tank (EU 008) has a capacity greater than 151 cubic meters and the vapor pressure of the low sulfur fuel oil is less than 3.5 kPa, therefore NSPS Kb, including the monitoring requirements, does not apply to this unit.

[40 CFR 60.110b(a) and (b), and 60.116b(c); Rule 62-204.800(7)(b), F.A.C.]

SECTION IV. APPENDICES

CONTENTS

Appendix A NSPS Subpart A, Identification of General Provisions
Appendix BD Final BACT Determinations and Emissions Standards

Appendix GC General Conditions

Appendix KKKK NSPS Subpart KKKK Requirements for Stationary Combustion Turbines

Appendix SC Standard Conditions

SECTION IV. APPENDIX A

NSPS SUBPART A, IDENTIFICATION OF GENERAL PROVISIONS

Emissions units subject to a New Source Performance Standard of 40 CFR 60 are also subject to the applicable requirements of Subpart A, the General Provisions, including:

- § 60.1 Applicability.
- § 60.2 Definitions.
- § 60.3 Units and abbreviations.
- § 60.4 Address.
- § 60.5 Determination of construction or modification.
- § 60.6 Review of plans.
- § 60.7 Notification and Record Keeping.
- § 60.8 Performance Tests.
- § 60.9 Availability of information.
- § 60.10 State Authority.
- § 60.11 Compliance with Standards and Maintenance Requirements.
- § 60.12 Circumvention.
- § 60.13 Monitoring Requirements.
- § 60.14 Modification.
- § 60.15 Reconstruction.
- § 60.16 Priority List.
- § 60.17 Incorporations by Reference.
- § 60.18 General Control Device Requirements.
- § 60.19 General Notification and Reporting Requirements.

Individual subparts may exempt specific equipment or processes from some or all of these requirements. The general provisions may be provided in full upon request.

SECTION IV. APPENDIX BD

FINAL BACT DETERMINATIONS AND EMISSIONS STANDARDS

The Department establishes the following standards as the Best Available Control Technology for the simple cycle combustion turbine Unit 5 at the Oleander Power Project.

BACT Determinations – Oleander Power Project Unit 5

Pollutant	Fuel	Emission Standard/Limit ^c	Averaging Time	Compliance Method	Basis
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gas	9.0 ppmvd @ 15% O ₂	24-hr rolling	CEMS	DACT
NO _X		62.5 lb/hr	3-hr	Stack Test	BACT
	Gas/Oil	10 % Opacity	6-minute block	Stack Test	
PM/PM ₁₀ a		1.5 gr S/100 SCF of gas/0.05 % S Oil	N/A	Record Keeping	BACT
SO ₂ ^b	Gas/Oil	1.5 gr S/100 SCF of gas/0.05 % S Oil	N/A	Record Keeping	BACT Avoidance

- a. The fuel sulfur specifications combined with the efficient combustion design and operation of the gas turbine represents (BACT) for PM/PM10 emissions.
- b. The fuel sulfur specifications effectively limit the potential emissions of SO2 and sulfuric acid mist (SAM) from the gas.
- c. The mass emission rate standards are based on a turbine inlet condition of 59°F and 100 percent full load operation. Mass emission rate may be adjusted from actual test conditions in accordance with the performance curves and/or equations on file with the Department.

SECTION IV. APPENDIX GC

GENERAL CONDITIONS

The permittee shall comply with the following general conditions from Rule 62-4.160, F.A.C.

- 1. The terms, conditions, requirements, limitations, and restrictions set forth in this permit are "Permit Conditions" and are binding and enforceable pursuant to Sections 403.161, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), Florida Statutes, the issuance of this permit does not convey and vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit is not a waiver or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at a reasonable time, access to the premises, where the permitted activity is located or conducted to:
 - a. Have access to and copy and records that must be kept under the conditions of the permit;
 - b. Inspect the facility, equipment, practices, or operations regulated or required under this permit, and,
 - c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. A description of and cause of non-compliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the non-compliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the non-compliance.

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Sections 403.73 and 403.111, Florida

SECTION IV. APPENDIX GC

GENERAL CONDITIONS

Statutes. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.

- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 62-4.120 and 62-730.300, F.A.C., as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. This permit also constitutes:
 - a. Determination of Best Available Control Technology (X);
 - b. Determination of Prevention of Significant Deterioration (X);
 - c. Compliance with National Emssion Standards for Hazardous Air Pollutants (Not Applicable); and
 - d. Compliance with New Source Performance Standards (X).
- 14. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application or this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - 1) The date, exact place, and time of sampling or measurements;
 - 2) The person responsible for performing the sampling or measurements;
 - 3) The dates analyses were performed;
 - 4) The person responsible for performing the analyses;
 - 5) The analytical techniques or methods used; and
 - 6) The results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

This subpart establishes emission standards and compliance schedules for the control of emissions from stationary combustion turbines that commenced construction, modification or reconstruction after February 18, 2005.

Applicability

§ 60.4305 Does this subpart apply to my stationary combustion turbine?

- (a) If you are the owner or operator of a stationary combustion turbine with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour, based on the higher heating value of the fuel, which commenced construction, modification, or reconstruction after February 18, 2005, your turbine is subject to this subpart. Only heat input to the combustion turbine should be included when determining whether or not this subpart is applicable to your turbine. Any additional heat input to associated heat recovery steam generators (HRSG) or duct burners should not be included when determining your peak heat input. However, this subpart does apply to emissions from any associated HRSG and duct burners.
- (b) Stationary combustion turbines regulated under this subpart are exempt from the requirements of subpart GG of this part. Heat recovery steam generators and duct burners regulated under this subpart are exempted from the requirements of subparts Da, Db, and Dc of this part.

§ 60.4310 What types of operations are exempt from these standards of performance?

- (a) Emergency combustion turbines, as defined in §60.4420(i), are exempt from the nitrogen oxides (NOX) emission limits in §60.4320.
- (b) Stationary combustion turbines engaged by manufacturers in research and development of equipment for both combustion turbine emission control techniques and combustion turbine efficiency improvements are exempt from the NOX emission limits in §60.4320 on a case-by-case basis as determined by the Administrator.
- (c) Stationary combustion turbines at integrated gasification combined cycle electric utility steam generating units that are subject to subpart Da of this part are exempt from this subpart.
- (d) Combustion turbine test cells/stands are exempt from this subpart.

Emission Limits

§ 60.4315 What pollutants are regulated by this subpart?

The pollutants regulated by this subpart are nitrogen oxide (NOX) and sulfur dioxide (SO2).

§ 60.4320 What emission limits must I meet for nitrogen oxides (NOX)?

- (a) You must meet the emission limits for NOX specified in Table 1 to this subpart.
- (b) If you have two or more turbines that are connected to a single generator, each turbine must meet the emission limits for NOX.

§ 60.4325 What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)?

You must meet the emission limits specified in Table 1 to this subpart. If your total heat input is greater than or equal to 50 percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you are burning that fuel. Similarly, when your total heat input is greater than 50 percent distillate oil and fuels other than natural gas, you must meet the corresponding limit for distillate oil and fuels other than natural gas for the duration of the time that you burn that particular fuel.

§ 60.4330 What emission limits must I meet for sulfur dioxide (SO2)?

- (a) If your turbine is located in a continental area, you must comply with either paragraph (a)(1) or (a)(2) of this section. If your turbine is located in Alaska, you do not have to comply with the requirements in paragraph (a) of this section until January 1, 2008.
 - (1) You must not cause to be discharged into the atmosphere from the subject stationary combustion turbine any gases which contain SO2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb/MWh)) gross output, or
 - (2) You must not burn in the subject stationary combustion turbine any fuel which contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If your turbine simultaneously fires multiple fuels, each fuel must meet this requirement.
- (b) If your turbine is located in a noncontinental area or a continental area that the Administrator determines does not have access to natural gas and that the removal of sulfur compounds would cause more environmental harm than benefit, you must comply with one or the other of the following conditions:
 - (1) You must not cause to be discharged into the atmosphere from the subject stationary combustion turbine any gases which contain SO2 in excess of 780 ng/J (6.2 lb/MWh) gross output, or

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

(2) You must not burn in the subject stationary combustion turbine any fuel which contains total sulfur with potential sulfur emissions in excess of 180 ng SO2/J (0.42 lb SO2/MMBtu) heat input. If your turbine simultaneously fires multiple fuels, each fuel must meet this requirement.

General Compliance Requirements

§ 60.4333 What are my general requirements for complying with this subpart?

- (a) You must operate and maintain your stationary combustion turbine, air pollution control equipment, and monitoring equipment in a manner consistent with good air pollution control practices for minimizing emissions at all times including during startup, shutdown, and malfunction.
- (b) When an affected unit with heat recovery utilizes a common steam header with one or more combustion turbines, the owner or operator shall either:
 - (1) Determine compliance with the applicable NOX emissions limits by measuring the emissions combined with the emissions from the other unit(s) utilizing the common heat recovery unit; or
 - (2) Develop, demonstrate, and provide information satisfactory to the Administrator on methods for apportioning the combined gross energy output from the heat recovery unit for each of the affected combustion turbines. The Administrator may approve such demonstrated substitute methods for apportioning the combined gross energy output measured at the steam turbine whenever the demonstration ensures accurate estimation of emissions related under this part.

Monitoring

§ 60.4335 How do I demonstrate compliance for NOX if I use water or steam injection?

- (a) If you are using water or steam injection to control NOX emissions, you must install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine when burning a fuel that requires water or steam injection for compliance.
- (b) Alternatively, you may use continuous emission monitoring, as follows:
 - (1) Install, certify, maintain, and operate a continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or carbon dioxide (CO2)) monitor, to determine the hourly NOX emission rate in parts per million (ppm) or pounds per million British thermal units (lb/MMBtu); and
 - (2) For units complying with the output-based standard, install, calibrate, maintain, and operate a fuel flow meter (or flow meters) to continuously measure the heat input to the affected unit; and
 - (3) For units complying with the output-based standard, install, calibrate, maintain, and operate a watt meter (or meters) to continuously measure the gross electrical output of the unit in megawatt-hours; and
 - (4) For combined heat and power units complying with the output-based standard, install, calibrate, maintain, and operate meters for useful recovered energy flow rate, temperature, and pressure, to continuously measure the total thermal energy output in British thermal units per hour (Btu/h).

§ 60.4340 How do I demonstrate continuous compliance for NOX if I do not use water or steam injection?

- (a) If you are not using water or steam injection to control NOX emissions, you must perform annual performance tests in accordance with \$60.4400 to demonstrate continuous compliance. If the NOX emission result from the performance test is less than or equal to 75 percent of the NOX emission limit for the turbine, you may reduce the frequency of subsequent performance tests to once every 2 years (no more than 26 calendar months following the previous performance test). If the results of any subsequent performance test exceed 75 percent of the NOX emission limit for the turbine, you must resume annual performance tests.
- (b) As an alternative, you may install, calibrate, maintain and operate one of the following continuous monitoring systems:
 - (1) Continuous emission monitoring as described in §§60.4335(b) and 60.4345, or
 - (2) Continuous parameter monitoring as follows:
 - (i) For a diffusion flame turbine without add-on selective catalytic reduction (SCR) controls, you must define parameters indicative of the unit's NOX formation characteristics, and you must monitor these parameters continuously.
 - (ii) For any lean premix stationary combustion turbine, you must continuously monitor the appropriate parameters to determine whether the unit is operating in low-NOX mode.
 - (iii) For any turbine that uses SCR to reduce NOX emissions, you must continuously monitor appropriate parameters to verify the proper operation of the emission controls.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

(iv) For affected units that are also regulated under part 75 of this chapter, with state approval you can monitor the NOX emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19, the requirements of this paragraph (b) may be met by performing the parametric monitoring described in section 2.3 of part 75 appendix E or in §75.19(c)(1)(iv)(H).

§ 60.4345 What are the requirements for the continuous emission monitoring system equipment, if I choose to use this option?

If the option to use a NOX CEMS is chosen:

- (a) Each NOX diluent CEMS must be installed and certified according to Performance Specification 2 (PS 2) in appendix B to this part, except the 7-day calibration drift is based on unit operating days, not calendar days. With state approval, Procedure 1 in appendix F to this part is not required. Alternatively, a NOX diluent CEMS that is installed and certified according to appendix A of part 75 of this chapter is acceptable for use under this subpart. The relative accuracy test audit (RATA) of the CEMS shall be performed on a lb/MMBtu basis
- (b) As specified in §60.13(e)(2), during each full unit operating hour, both the NOX monitor and the diluent monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained with each monitor for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required for each monitor to validate the NOX emission rate for the hour.
- (c) Each fuel flowmeter shall be installed, calibrated, maintained, and operated according to the manufacturer's instructions. Alternatively, with state approval, fuel flowmeters that meet the installation, certification, and quality assurance requirements of appendix D to part 75 of this chapter are acceptable for use under this subpart.
- (d) Each watt meter, steam flow meter, and each pressure or temperature measurement device shall be installed, calibrated, maintained, and operated according to manufacturer's instructions.
- (e) The owner or operator shall develop and keep on-site a quality assurance (QA) plan for all of the continuous monitoring equipment described in paragraphs (a), (c), and (d) of this section. For the CEMS and fuel flow meters, the owner or operator may, with state approval, satisfy the requirements of this paragraph by implementing the QA program and plan described in section 1 of appendix B to part 75 of this chapter.

§ 60.4350 How do I use data from the continuous emission monitoring equipment to identify excess emissions?

For purposes of identifying excess emissions:

- (a) All CEMS data must be reduced to hourly averages as specified in §60.13(h).
- (b) For each unit operating hour in which a valid hourly average, as described in §60.4345(b), is obtained for both NOX and diluent monitors, the data acquisition and handling system must calculate and record the hourly NOX emission rate in units of ppm or lb/MMBtu, using the appropriate equation from method 19 in appendix A of this part. For any hour in which the hourly average O2 concentration exceeds 19.0 percent O2 (or the hourly average CO2 concentration is less than 1.0 percent CO2), a diluent cap value of 19.0 percent O2 or 1.0 percent CO2 (as applicable) may be used in the emission calculations.
- (c) Correction of measured NOX concentrations to 15 percent O2 is not allowed.
- (d) If you have installed and certified a NOX diluent CEMS to meet the requirements of part 75 of this chapter, states can approve that only quality assured data from the CEMS shall be used to identify excess emissions under this subpart. Periods where the missing data substitution procedures in subpart D of part 75 are applied are to be reported as monitor downtime in the excess emissions and monitoring performance report required under §60.7(c).
- (e) All required fuel flow rate, steam flow rate, temperature, pressure, and megawatt data must be reduced to hourly averages.
- (f) Calculate the hourly average NOX emission rates, in units of the emission standards under §60.4320, using either ppm for units complying with the concentration limit or the following equation for units complying with the output based standard:
 - (1) For simple-cycle operation:

$$E = \frac{(NO_x)_{\bullet} * (HI)_{\bullet}}{P}$$
 (Eq. 1)

Where

E = hourly NOX emission rate, in lb/MWh, (NOX)h = hourly NOX emission rate, in lb/MMBtu,

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

(HI)h = hourly heat input rate to the unit, in MMBtu/h, measured using the fuel flowmeter(s), e.g., calculated using Equation D-15a in appendix D to part 75 of this chapter, and

P = gross energy output of the combustion turbine in MW.

(2) For combined-cycle and combined heat and power complying with the output-based standard, use Equation 1 of this subpart, except that the gross energy output is calculated as the sum of the total electrical and mechanical energy generated by the combustion turbine, the additional electrical or mechanical energy (if any) generated by the steam turbine following the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is not used to generate additional electricity or mechanical output, expressed in equivalent MW, as in the following equations:

$$P = (Pe) + (Pe) + Ps + Po$$
 (Eq. 2)

Where:

P = gross energy output of the stationary combustion turbine system in MW.

(Pe)t = electrical or mechanical energy output of the combustion turbine in MW,

(Pe)c = electrical or mechanical energy output (if any) of the steam turbine in MW, and

Ps =
$$\frac{Q * H}{3.413 \times 10^6 \text{ Btu/MWh}}$$
 (Eq. 3)

Where:

Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to generate additional electric or mechanical output, in MW.

Q = measured steam flow rate in lb/h,

 $H = \text{enthalpy of the steam at measured temperature and pressure relative to ISO conditions, in Btu/lb, and 3.413 x 106 = conversion from Btu/h to MW.$

Po = other useful heat recovery, measured relative to ISO conditions, not used for steam generation or performance enhancement of the combustion turbine.

(3) For mechanical drive applications complying with the output-based standard, use the following equation:

$$E = \frac{(NO_x)_{m}}{BL * AL} \qquad (Eq. 4)$$

Where

E = NOX emission rate in lb/MWh,

(NOX)m = NOX emission rate in 1b/h,

BL = manufacturer's base load rating of turbine, in MW, and

AL = actual load as a percentage of the base load.

- (g) For simple cycle units without heat recovery, use the calculated hourly average emission rates from paragraph (f) of this section to assess excess emissions on a 4-hour rolling average basis, as described in §60.4380(b)(1).
- (h) For combined cycle and combined heat and power units with heat recovery, use the calculated hourly average emission rates from paragraph (f) of this section to assess excess emissions on a 30 unit operating day rolling average basis, as described in §60.4380(b)(1).

§ 60.4355 How do I establish and document a proper parameter monitoring plan?

- (a) The steam or water to fuel ratio or other parameters that are continuously monitored as described in §§60.4335 and 60.4340 must be monitored during the performance test required under §60.8, to establish acceptable values and ranges. You may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and other relevant information to define the acceptable parametric ranges more precisely. You must develop and keep onsite a parameter monitoring plan which explains the procedures used to document proper operation of the NOX emission controls. The plan must:
 - (1) Include the indicators to be monitored and show there is a significant relationship to emissions and proper operation of the NOX emission controls,

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

- (2) Pick ranges (or designated conditions) of the indicators, or describe the process by which such range (or designated condition) will be established.
- (3) Explain the process you will use to make certain that you obtain data that are representative of the emissions or parameters being monitored (such as detector location, installation specification if applicable).
- (4) Describe quality assurance and control practices that are adequate to ensure the continuing validity of the data,
- (5) Describe the frequency of monitoring and the data collection procedures which you will use (e.g., you are using a computerized data acquisition over a number of discrete data points with the average (or maximum value) being used for purposes of determining whether an exceedance has occurred), and
- (6) Submit justification for the proposed elements of the monitoring. If a proposed performance specification differs from manufacturer recommendation, you must explain the reasons for the differences. You must submit the data supporting the justification, but you may refer to generally available sources of information used to support the justification. You may rely on engineering assessments and other data, provided you demonstrate factors which assure compliance or explain why performance testing is unnecessary to establish indicator ranges. When establishing indicator ranges, you may choose to simplify the process by treating the parameters as if they were correlated. Using this assumption, testing can be divided into two cases:
 - (i) All indicators are significant only on one end of range (e.g., for a thermal incinerator controlling volatile organic compounds (VOC) it is only important to insure a minimum temperature, not a maximum). In this case, you may conduct your study so that each parameter is at the significant limit of its range while you conduct your emissions testing. If the emissions tests show that the source is in compliance at the significant limit of each parameter, then as long as each parameter is within its limit, you are presumed to be in compliance.
 - (ii) Some or all indicators are significant on both ends of the range. In this case, you may conduct your study so that each parameter that is significant at both ends of its range assumes its extreme values in all possible combinations of the extreme values (either single or double) of all of the other parameters. For example, if there were only two parameters, A and B, and A had a range of values while B had only a minimum value, the combinations would be A high with B minimum and Λ low with B minimum. If both A and B had a range, the combinations would be A high and B high, A low and B low, A low and B high. For the case of four parameters all having a range, there are 16 possible combinations.
- (b) For affected units that are also subject to part 75 of this chapter and that have state approval to use the low mass emissions methodology in §75.19 or the NOX emission measurement methodology in appendix E to part 75, you may meet the requirements of this paragraph by developing and keeping onsite (or at a central location for unmanned facilities) a QA plan, as described in §75.19(e)(5) or in section 2.3 of appendix E to part 75 of this chapter and section 1.3.6 of appendix B to part 75 of this chapter.

§ 60.4360 How do I determine the total sulfur content of the turbine's combustionfuel?

You must monitor the total sulfur content of the fuel being fired in the turbine, except as provided in \$60.4365. The sulfur content of the fuel must be determined using total sulfur methods described in \$60.4415. Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than half the applicable limit. ASTM D4084, D4810, D5504, or D6228, or Gas Processors Association Standard 2377 (all of which are incorporated by reference, see \$60.17), which measure the major sulfur compounds, may be used.

§ 60.4365 How can I be exempted from monitoring the total sulfur content of the fuel?

You may elect not to monitor the total sulfur content of the fuel combusted in the turbine, if the fuel is demonstrated not to exceed potential sulfur emissions of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input for units located in continental areas and 180 ng SO2/J (0.42 lb SO2/MMBtu) heat input for units located in noncontinental areas or a continental area that the Administrator determines does not have access to natural gas and that the removal of sulfur compounds would cause more environmental harm than benefit. You must use one of the following sources of information to make the required demonstration:

- (a) The fuel quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum total sulfur content for oil use in continental areas is 0.05 weight percent (500 ppmw) or less and 0.4 weight percent (4.000 ppmw) or less for noncontinental areas, the total sulfur content for natural gas use in continental areas is 20 grains of sulfur or less per 100 standard cubic feet and 140 grains of sulfur or less per 100 standard cubic feet for noncontinental areas, has potential sulfur emissions of less than less than 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input for continental areas and has potential sulfur emissions of less than less than 180 ng SO2/J (0.42 lb SO2/MMBtu) heat input for noncontinental areas; or
- (b) Representative fuel sampling data which show that the sulfur content of the fuel does not exceed 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input for continental areas or 180 ng SO2/J (0.42 lb SO2/MMBtu) heat input for noncontinental areas. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

§ 60.4370 How often must I determine the sulfur content of the fuel?

The frequency of determining the sulfur content of the fuel must be as follows:

- (a) Fuel oil. For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank).
- (b) Gaseous fuel. If you elect not to demonstrate sulfur content using options in §60.4365, and the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel must be determined and recorded once per unit operating day.
- (c) Custom schedules. Notwithstanding the requirements of paragraph (b) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (c)(1) and (c)(2) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.4330.
 - (1) The two custom sulfur monitoring schedules set forth in paragraphs (c)(1)(i) through (iv) and in paragraph (c)(2) of this section are acceptable, without prior Administrative approval:
 - (i) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (c)(1)(ii), (iii), or (iv) of this section, as applicable.
 - (ii) If none of the 30 daily measurements of the fuel's total sulfur content exceeds half the applicable standard, subsequent sulfur content monitoring may be performed at 12-month intervals. If any of the samples taken at 12-month intervals has a total sulfur content greater than half but less than the applicable limit, follow the procedures in paragraph (c)(1)(iii) of this section. If any measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section.
 - (iii) If at least one of the 30 daily measurements of the fuel's total sulfur content is greater than half but less than the applicable limit, but none exceeds the applicable limit, then:
 - (A) Collect and analyze a sample every 30 days for 3 months. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section. Otherwise, follow the procedures in paragraph (c)(1)(iii)(B) of this section.
 - (B) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(ii) of this section. Otherwise, follow the procedures in paragraph (c)(1)(iii)(C) of this section.
 - (C) Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section. Otherwise, continue to monitor at this frequency.
 - (iv) If a sulfur content measurement exceeds the applicable limit, immediately begin daily monitoring according to paragraph (c)(1)(i) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than the applicable limit, are obtained. At that point, the applicable procedures of paragraph (c)(1)(ii) or (iii) of this section shall be followed.
 - (2) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur samplingschedule, as follows:
 - (i) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf, no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.
 - (ii) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf. but none of the sulfur content values (when converted to weight percent sulfur) exceeds half the applicable limit, then the minimum required sampling frequency shall be one sample at 12 month intervals.
 - (iii) If any sample result exceeds half the applicable limit, but none exceeds the applicable limit, follow the provisions of paragraph (c)(1)(iii) of this section.
 - (iv) If the sulfur content of any of the 720 hourly samples exceeds the applicable limit, follow the provisions of paragraph (c)(1)(iv) of this section.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

Reporting

§ 60.4375 What reports must I submit?

- (a) For each affected unit required to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content under this subpart, you must submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions must be reported for all periods of unit operation, including start-up, shutdown, and malfunction.
- (b) For each affected unit that performs annual performance tests in accordance with §60.4340(a), you must submit a written report of the results of each performance test before the close of business on the 60th day following the completion of the performance test.

§ 60.4380 How are excess emissions and monitor downtime defined for NOX?

For the purpose of reports required under §60.7(c), periods of excess emissions and monitor downtime that must be reported are defined as follows:

- (a) For turbines using water or steam to fuel ratio monitoring:
 - (1) An excess emission is any unit operating hour for which the 4-hour rolling average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.4320, as established during the performance test required in §60.8. Any unit operating hour in which no water or steam is injected into the turbine when a fuel is being burned that requires water or steam injection for NOX control will also be considered an excess emission.
 - (2) A period of monitor downtime is any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.
 - (3) Each report must include the average steam or water to fuel ratio, average fuel consumption, and the combustion turbine load during each excess emission.
- (b) For turbines using continuous emission monitoring, as described in §§60.4335(b) and 60.4345:
 - (1) An excess emissions is any unit operating period in which the 4-hour or 30-day rolling average NOX emission rate exceeds the applicable emission limit in §60.4320. For the purposes of this subpart, a "4- hour rolling average NOX emission rate" is the arithmetic average of the average NOX emission rate in ppm or ng/J (lb/MWh) measured by the continuous emission monitoring equipment for a given hour and the three unit operating hour average NOX emission rates immediately preceding that unit operating hour. Calculate the rolling average if a valid NOX emission rate is obtained for at least 3 of the 4 hours. For the purposes of this subpart, a "30-day rolling average NOX emission rate" is the arithmetic average of all hourly NOX emission data in ppm or ng/J (lb/MWh) measured by the continuous emission monitoring equipment for a given day and the twenty-nine unit operating days immediately preceding that unit operating day. A new 30-day average is calculated each unit operating day as the average of all hourly NOX emissions rates for the preceding 30 unit operating days if a valid NOX emission rate is obtained for at least 75 percent of all operating hours.
 - (2) A period of monitor downtime is any unit operating hour in which the data for any of the following parameters are either missing or invalid: NOX concentration, CO2 or O2 concentration, fuel flow rate, steam flow rate, steam temperature, steam pressure, or megawatts. The steam flow rate, steam temperature, and steam pressure are only required if you will use this information for compliance purposes.
 - (3) For operating periods during which multiple emissions standards apply, the applicable standard is the average of the applicable standards during each hour. For hours with multiple emissions standards, the applicable limit for that hour is determined based on the condition that corresponded to the highest emissions standard.
- (c) For turbines required to monitor combustion parameters or parameters that document proper operation of the NOX emission controls:
 - (1) An excess emission is a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.
 - (2) A period of monitor downtime is a unit operating hour in which any of the required parametric data are either not recorded or are invalid.

§ 60.4385 How are excess emissions and monitoring downtime defined for SO2?

If you choose the option to monitor the sulfur content of the fuel, excess emissions and monitoring downtime are defined as follows:

(a) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit's storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the combustion turbine exceeds the applicable limit and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

- (b) If the option to sample each delivery of fuel oil has been selected, you must immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit's storage tank) if the sulfur content of a delivery exceeds 0.05 weight percent. You must continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and you must evaluate excess emissions according to paragraph (a) of this section. When all of the fuel from the delivery has been burned, you may resume using the as-delivered sampling option.
- (c) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

§ 60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research and development turbine?

- (a) If you operate an emergency combustion turbine, you are exempt from the NOX limit and must submit an initial report to the Administrator stating your case.
- (b) Combustion turbines engaged by manufacturers in research and development of equipment for both combustion turbine emission control techniques and combustion turbine efficiency improvements may be exempted from the NOX limit on a case-by-case basis as determined by the Administrator. You must petition for the exemption.

§ 60.4395 When must I submit my reports?

All reports required under §60.7(c) must be postmarked by the 30th day following the end of each 6-month period.

Performance Tests

§ 60.4400 How do I conduct the initial and subsequent performance tests, regarding NOX?

- (a) You must conduct an initial performance test, as required in §60.8. Subsequent NOX performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test).
 - (1) There are two general methodologies that you may use to conduct the performance tests. For each test run:
 - (i) Measure the NOX concentration (in parts per million (ppm)), using EPA Method 7E or EPA Method 20 in appendix A of this part. For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in appendix A of this part, and measure and record the electrical and thermal output from the unit. Then, use the following equation to calculate the NOX emission rate:

$$E = \frac{1.194 \times 10^{-7} * (NO_x)_e * Q_{sub}}{P}$$
 (Eq. 5)

Where

E = NOX emission rate, in lb/MWh

 $1.194 \times 10-7 = \text{conversion constant. in lb/dscf-ppm}$

(NOX)c = average NOX concentration for the run, in ppm

Qstd = stack gas volumetric flow rate, in dscf/hr

P = gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to $\S60.4350(f)(2)$; or

- (ii) Measure the NOX and diluent gas concentrations, using either EPA Methods 7E and 3A, or EPA Method 20 in appendix A of this part. Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the NOX emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in §60.4350(f) to calculate the NOX emission rate in lb/MWh.
- (2) Sampling traverse points for NOX and (if applicable) diluent gas are to be selected following EPA Method 20 or EPA Method 1 (non-particulate procedures), and sampled for equal time intervals. The sampling must be performed with a traversing single-hole probe, or, if feasible, with a stationary multihole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

- (3) Notwithstanding paragraph (a)(2) of this section, you may test at fewer points than are specified in EPA Method 1 or EPA Method 20 in appendix A of this part if the following conditions are met:
 - (i) You may perform a stratification test for NOX and diluent pursuant to
 - (A) [Reserved], or
 - (B) The procedures specified in section 6.5.6.1(a) through (c) of appendix A of part 75 of this chapter.
 - (ii) Once the stratification sampling is completed, you may use the following alternative sample point selection criteria for the performance test:
 - (A) If each of the individual traverse point NOX concentrations is within ± 10 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ± 5 ppm or ± 0.5 percent CO2 (or O2) from the mean for all traverse points, then you may use three points (located either 16.7, 50.0 and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The three points must be located along the measurement line that exhibited the highest average NOX concentration during the stratification test: or
 - (B) For turbines with a NOX standard greater than 15 ppm @ 15% O2, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NOX concentrations is within ± 5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ± 3 ppm or ± 0.3 percent CO2 (or O2) from the mean for all traverse points: or
 - (C) For turbines with a NOX standard less than or equal to 15 ppm @ 15% O2, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NOX concentrations is within ± 2.5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ± 1 ppm or ± 0.15 percent CO2 (or O2) from the mean for all traverse points.
- (b) The performance test must be done at any load condition within plus or minus 25 percent of 100 percent of peak load. You may perform testing at the highest achievable load point, if at least 75 percent of peak load cannot be achieved in practice. You must conduct three separate test runs for each performance test. The minimum time per run is 20 minutes.
 - (1) If the stationary combustion turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel.
 - (2) For a combined cycle and CHP turbine systems with supplemental heat (duct burner), you must measure the total NOX emissions after the duct burner rather than directly after the turbine. The duct burner must be in operation during the performance test.
 - (3) If water or steam injection is used to control NOX with no additional post-combustion NOX control and you choose to monitor the steam or water to fuel ratio in accordance with §60.4335, then that monitoring system must be operated concurrently with each EPA Method 20 or EPA Method 7E run and must be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.4320 NOX emission limit.
 - (4) Compliance with the applicable emission limit in \$60.4320 must be demonstrated at each tested load level. Compliance is achieved if the three-run arithmetic average NOX emission rate at each tested level meets the applicable emission limit in \$60.4320.
 - (5) If you elect to install a CEMS, the performance evaluation of the CEMS may either be conducted separately or (as described in §60.4405) as part of the initial performance test of the affected unit.
 - (6) The ambient temperature must be greater than 0 °F during the performance test.

§ 60.4405 How do I perform the initial performance test if I have chosen to install a NOX-diluent CEMS?

If you elect to install and certify a NOX-diluent CEMS under §60.4345, then the initial performance test required under §60.8 may be performed in the following alternative manner:

- (a) Perform a minimum of nine RATA reference method runs, with a minimum time per run of 21 minutes, at a single load level, within plus or minus 25 percent of 100 percent of peak load. The ambient temperature must be greater than 0 °F during the RATA runs.
- (b) For each RATA run, concurrently measure the heat input to the unit using a fuel flow meter (or flow meters) and measure the electrical and thermal output from the unit.
- (c) Use the test data both to demonstrate compliance with the applicable NOX emission limit under §60.4320 and to provide the required reference method data for the RATA of the CEMS described under §60.4335.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

(d) Compliance with the applicable emission limit in §60.4320 is achieved if the arithmetic average of all of the NOX emission rates for the RATA runs, expressed in units of ppm or lb/MWh, does not exceed the emission limit.

§ 60.4410 How do I establish a valid parameter range if I have chosen to continuously monitor parameters?

If you have chosen to monitor combustion parameters or parameters indicative of proper operation of NOX emission controls in accordance with §60.4340, the appropriate parameters must be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.4355.

§ 60.4415 How do I conduct the initial and subsequent performance tests for sulfur?

- (a) You must conduct an initial performance test, as required in §60.8. Subsequent SO2 performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test). There are three methodologies that you may use to conduct the performance tests.
 - (1) If you choose to periodically determine the sulfur content of the fuel combusted in the turbine, a representative fuel sample would be collected following ASTM D5287 (incorporated by reference, see §60.17) for natural gas or ASTM D4177 (incorporated by reference, see §60.17) for oil. Alternatively, for oil, you may follow the procedures for manual pipeline sampling in section 14 of ASTM D4057 (incorporated by reference, see §60.17). The fuel analyses of this section may be performed either by you, a service contractor retained by you, the fuel vendor, or any other qualified agency. Analyze the samples for the total sulfur content of the fuel using:
 - (i) For liquid fuels, ASTM D129, or alternatively D1266, D1552, D2622, D4294, or D5453 (all of which are incorporated by reference, see §60.17); or
 - (ii) For gaseous fuels, ASTM D1072, or alternatively D3246, D4084, D4468, D4810, D6228, D6667, or Gas Processors Association Standard 2377 (all of which are incorporated by reference, see §60.17).
 - (2) Measure the SO2 concentration (in parts per million (ppm)), using EPA Methods 6, 6C, 8, or 20 in appendix A of this part. In addition, the American Society of Mechanical Engineers (ASME) standard, ASME PTC 19–10–1981–Part 10, "Flue and Exhaust Gas Analyses," manual methods for sulfur dioxide (incorporated by reference, see §60.17) can be used instead of EPA Methods 6 or 20. For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in appendix A of this part, and measure and record the electrical and thermal output from the unit. Then use the following equation to calculate the SO2 emission rate:

$$E = \frac{1.664 \times 10^{-7} * (SO_2)_c * Q_{ad}}{P}$$
 (Eq. 6)

Where:

E = SO2 emission rate, in lb/MWh

 $1.664 \times 10-7 = \text{conversion constant.}$ in lb/dscf-ppm

(SO2)c = average SO2 concentration for the run, in ppm

Qstd = stack gas volumetric flow rate, in dscf/hr

- P = gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to \$60.4350(f)(2); or
- (3) Measure the SO2 and diluent gas concentrations, using either EPA Methods 6, 6C, or 8 and 3A, or 20 in appendix A of this part. In addition, you may use the manual methods for sulfur dioxide ASME PTC 19–10–1981–Part 10 (incorporated by reference, see §60.17). Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the SO2 emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in §60.4350(f) to calculate the SO2 emission rate in lb/MWh.
- (b) [Reserved]

Definitions

§ 60.4420 What definitions apply to this subpart?

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

As used in this subpart, all terms not defined herein will have the meaning given them in the Clean Air Act and in subpart A (General Provisions) of this part.

Combined cycle combustion turbine means any stationary combustion turbine which recovers heat from the combustion turbine exhaust gases to generate steam that is only used to create additional power output in a steam turbine.

Combined heat and power combustion turbine means any stationary combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam for useful purposes other than additional electric generation, or directly uses the heat in the exhaust gases for a useful purpose.

Combustion turbine model means a group of combustion turbines having the same nominal air flow, combustor inlet pressure, combustor inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.

Combustion turbine test cell/stand means any apparatus used for testing uninstalled stationary or uninstalled mobile (motive) combustion turbines

Diffusion flame stationary combustion turbine means any stationary combustion turbine where fuel and air are injected at the combustor and are mixed only by diffusion prior to ignition.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary combustion turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.

Efficiency means the combustion turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output—based on the higher heating value of the fuel.

Emergency combustion turbine means any stationary combustion turbine which operates in an emergency situation. Examples include stationary combustion turbines used to produce power for critical networks or equipment, including power supplied to portions of a facility, when electric power from the local utility is interrupted, or stationary combustion turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do not include stationary combustion turbines used as peaking units at electric utilities or stationary combustion turbines at industrial facilities that typically operate at low capacity factors. Emergency combustion turbines may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are required by the manufacturer, the vendor, or the insurance company associated with the turbine. Required testing of such units should be minimized, but there is no time limit on the use of emergency combustion turbines.

Excess emissions means a specified averaging period over which either (1) the NOX emissions are higher than the applicable emission limit in §60.4320; (2) the total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.4330; or (3) the recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.

Gross useful output means the gross useful work performed by the stationary combustion turbine system. For units using the mechanical energy directly or generating only electricity, the gross useful work performed is the gross electrical or mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work performed is the gross electrical or mechanical output plus the useful thermal output (i.e., thermal energy delivered to a process).

Heat recovery steam generating unit means a unit where the hot exhaust gases from the combustion turbine are routed in order to extract heat from the gases and generate steam, for use in a steam turbine or other device that utilizes steam. Heat recovery steam generating units can be used with or without duct burners.

Integrated gasification combined cycle electric utility steam generating unit means a coal-fired electric utility steam generating unit that burns a synthetic gas derived from coal in a combined-cycle gas turbine. No solid coal is directly burned in the unit during operation. ISO conditions means 288 Kelvin, 60 percent relative humidity and 101.3 kilopascals pressure.

Lean premix stationary combustion turbine means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture before delivery to the combustor. Mixing may occur before or in the combustion chamber. A lean premixed turbine may operate in diffusion flame mode during operating conditions such as startup and shutdown, extreme ambient temperature, or low or transient load.

Natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, erhane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1,100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coalderived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, the Northern Mariana Islands, or offshore platforms.

Peak load means 100 percent of the manufacturer's design capacity of the combustion turbine at ISO conditions.

Regenerative cycle combustion turbine means any stationary combustion turbine which recovers heat from the combustion turbine exhaust gases to preheat the inlet combustion air to the combustion turbine.

Simple cycle combustion turbine means any stationary combustion turbine which does not recover heat from the combustion turbine exhaust gases to preheat the inlet combustion air to the combustion turbine, or which does not recover heat from the combustion turbine exhaust gases for purposes other than enhancing the performance of the combustion turbine itself.

Stationary combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), heat recovery system, and any ancillary components and sub-components comprising any simple cycle stationary combustion turbine, any regenerative/recuperative cycle stationary combustion turbine, any combined cycle combustion turbine, and any combined heat and power combustion turbine based system. Stationary means that the combustion turbine is not self propelled or intended to be propelled while performing its function. It may, however, be mounted on a vehicle for portability.

Unit operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Unit operating hour means a clock hour during which any fuel is combusted in the affected unit. If the unit combusts fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.

Useful thermal output means the thermal energy made available for use in any industrial or commercial process, or used in any heating or cooling application, i.e., total thermal energy made available for processes and applications other than electrical or mechanical generation. Thermal output for this subpart means the energy in recovered thermal output measured against the energy in the thermal output at 15 degrees Celsius and 101.325 kilopascals of pressure.

Table 1_to Subpart KKKK of Part 60_Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

Combustion turbine type	Combustion turbine heat input at peak load (HHV)	NOX emission standard
New turbine firing natural gas, electric generating	[le] 50 MMBtu/h	42 ppm at 15, percent O2 or 290 ng/J of useful output (2.3 lb/MWh).
New turbine firing natural gas, mechanical drive.	[le] 50 MMBtu/h	100 ppm at 15 percent O2 or 690 ng/J of useful output (5.5 lb/MWh).
New turbine firing natural gas.	> 50 MMBtu/h and [le] 850 MMBtu/h	25 ppm at 15 percent O2 or 150 ng/J of useful output (1.2 lb/MWh).
New, modified, or reconstructed turbine firing natural gas.	> 850 MMBtu/h	15 ppm at 15 percent O2 or 54 ng/J of useful output (0.43 lb/ MWh)
New turbine firing fuels other than natural gas, electric generating	[le] 50 MMBtu/h	96 ppm at 15 percent O2 or 700 . ng/J of useful output (5.5 lb/ MWh).
New turbine firing fuels other than natural gas, mechanical drive.	[le] 50 MMBtu/h	150 ppm at 15 percent O2 or 1.100 ng/J of useful output (8.7 lb/MWh).
New turbine firing fuels other than natural gas	> 50 MMBtu/h and [le] 850 MMBtu/h	74 ppm at 15 percent O2 or 460 ng/J of useful output (3.6 lb/MWh).
New, modified, or reconstructed turbine firing fuels other than	> 850 MMBtu/h	42 ppm at 15 percent O2 or 160 ng/J of useful output (1.3

NSPS SUBPART KKKK REQUIREMENTS FOR STATIONARY COMBUSTION TURBINES

natural gas.		lb/MWh).
Modified or reconstructed turbine.	[le] 50 MMBtu/h	150 ppm at 15 percent O2 or 1.100 ng/J of useful output (8.7 lb/MWh).
Modified or reconstructed turbine firing natural gas.	> 50 MMBtu/h and [le] 850 MMBtu/h.	42 ppm at 15 percent O2 or 250 ng/J of useful output (2.0 lb/MWh).
Modified or reconstructed turbine firing fuels other than natural gas.	> 50 MMBtu/h and [le] 850 MMBtu/h	96 ppm at 15 percent O2 or 590 ng/J of useful output (4.7 lb/MWh).
Turbines located north of the Arctic Circle (latitude 66.5 degrees north), turbines operating at less than 75 percent of peak load, modified and reconstructed offshore turbines, and turbine operating at temperatures less than 0 °F.	[le] 30 MW output.	150 ppm at 15 percent O2 or 1,100 ng/J of useful output (8.7 lb/MWh).
Turbines located north of the Arctic Circle (latitude 66.5 degrees north), turbines operating at less than percent of peak load, modified and reconstructed offshore turbines, and turbine operating at temperatures less than 0°F.	> 30 MW output.	96 ppm at 15 percent O2 or 590 ng/J of useful 75 output (4.7 lb/MWh).
Heat recovery units operating independent of the combustion turbine.	All sizes	54 ppm at 15 percent O2 or 110 ng/J of useful output (0.86 lb/MWh).

SECTION IV. APPENDIX SC

STANDARD CONDITIONS

Unless otherwise specified in the permit, the following conditions apply to all emissions units and activities at this facility.

EMISSIONS AND CONTROLS

- 1. Plant Operation Problems: If temporarily unable to comply with any of the conditions of the permit due to breakdown of equipment or destruction by fire, wind or other cause, the permittee shall notify each Compliance Authority as soon as possible, but at least within one working day, excluding weekends and holidays. The notification shall include: pertinent information as to the cause of the problem; steps being taken to correct the problem and prevent future recurrence; and, where applicable, the owner's intent toward reconstruction of destroyed facilities. Such notification does not release the permittee from any liability for failure to comply with the conditions of this permit or the regulations. [Rule 62-4.130, F.A.C.]
- 2. <u>Circumvention</u>: The permittee shall not circumvent the air pollution control equipment or allow the emission of air pollutants without this equipment operating properly. [Rule 62-210.650, F.A.C.]
- 3. Excess Emissions Allowed: Excess emissions resulting from startup, shutdown or malfunction of any emissions unit shall be permitted providing (1) best operational practices to minimize emissions are adhered to and (2) the duration of excess emissions shall be minimized but in no case exceed two hours in any 24 hour period unless specifically authorized by the Department for longer duration. [Rule 62-210.700(1), F.A.C.]
- 4. Excess Emissions Prohibited: Excess emissions caused entirely or in part by poor maintenance, poor operation, or any other equipment or process failure that may reasonably be prevented during startup, shutdown or malfunction shall be prohibited. [Rule 62-210.700(4), F.A.C.]
- 5. Excess Emissions Notification: In case of excess emissions resulting from malfunctions, the permitee shall notify the Department or the appropriate Local Program in accordance with Rule 62-4.130, F.A.C. A full written report on the malfunctions shall be submitted in a quarterly report, if requested by the Department. [Rule 62-210.700(6), F.A.C.]
- 6. <u>VOC or OS Emissions</u>: No person shall store, pump, handle, process, load, unload or use in any process or installation, volatile organic compounds or organic solvents without applying known and existing vapor emission control devices or systems deemed necessary and ordered by the Department. [Rule 62-296.320(1), F.A.C.]
- 7. Objectionable Odor Prohibited: No person shall cause, suffer, allow or permit the discharge of air pollutants, which cause or contribute to an objectionable odor. An "objectionable odor" means any odor present in the outdoor atmosphere which by itself or in combination with other odors, is or may be harmful or injurious to human health or welfare, which unreasonably interferes with the comfortable use and enjoyment of life or property, or which creates a nuisance. [Rules 62-296.320(2) and62-210.200(203), F.A.C.]
- 8. <u>General Visible Emissions</u>: No person shall cause, let, permit, suffer or allow to be discharged into the atmosphere the emissions of air pollutants from any activity equal to or greater than 20 percent opacity. [Rule 62-296.320(4)(b)1, F.A.C.]
- 9. <u>Unconfined Particulate Emissions</u>: During the construction period, unconfined particulate matter emissions shall be minimized by dust suppressing techniques such as covering and/or application of water or chemicals to the affected areas, as necessary. [Rule 62-296.320(4)(c), F.A.C.]

TESTING REQUIREMENTS

10. Required Number of Test Runs: For mass emission limitations, a compliance test shall consist of three complete and separate determinations of the total air pollutant emission rate through the test section of the stack or duct and three complete and separate determinations of any applicable process variables corresponding to the three distinct time periods during which the stack emission rate was measured; provided, however, that three complete and separate determinations shall not be required if the process variables are not subject to variation during a compliance test, or if three determinations are not necessary in order to calculate the unit's emission rate. The three required test runs shall be completed within one consecutive five-day period. In the event that a sample is lost or one of the three runs must be discontinued because of circumstances beyond the control of the owner or operator, and a valid third run cannot be obtained within the five-day period allowed for the test, the Secretary or his or her designee may accept the results of two complete runs as proof of compliance, provided that the arithmetic mean of the two complete runs is at least 20% below the allowable emission limiting standard. [Rule 62-297.310(1), F.A.C.]

SECTION IV. APPENDIX SC

STANDARD CONDITIONS

- 11. Operating Rate During Testing: Testing of emissions shall be conducted with the emissions unit operating at permitted capacity. Permitted capacity is defined as 90 to 100 percent of the maximum operation rate allowed by the permit. If it is impractical to test at permitted capacity, an emissions unit may be tested at less than the maximum permitted capacity; in this case, subsequent emissions unit operation is limited to 110 percent of the test rate until a new test is conducted. Once the unit is so limited, operation at higher capacities is allowed for no more than 15 consecutive days for the purpose of additional compliance testing to regain the authority to operate at the permitted capacity. [Rule 62-297.310(2), F.A.C.]
- 12. <u>Calculation of Emission Rate</u>: For each emissions performance test, the indicated emission rate or concentration shall be the arithmetic average of the emission rate or concentration determined by each of the three separate test runs unless otherwise specified in a particular test method or applicable rule. [Rule 62-297.310(3), F.A.C.]
- 13. Test Procedures: Tests shall be conducted in accordance with all applicable requirements of Chapter 62-297, F.A.C.
 - a. Required Sampling Time. Unless otherwise specified in the applicable rule, the required sampling time for each test run shall be no less than one hour and no greater than four hours, and the sampling time at each sampling point shall be of equal intervals of at least two minutes. The minimum observation period for a visible emissions compliance test shall be thirty (30) minutes. The observation period shall include the period during which the highest opacity can reasonably be expected to occur.
 - b. Minimum Sample Volume. Unless otherwise specified in the applicable rule or test method, the minimum sample volume per run shall be 25 dry standard cubic feet.
 - c. Calibration of Sampling Equipment. Calibration of the sampling train equipment shall be conducted in accordance with the schedule shown in Table 297.310-1, F.A.C.

[Rule 62-297.310(4), F.A.C.]

14. Determination of Process Variables

- a. Required Equipment. The owner or operator of an emissions unit for which compliance tests are required shall install, operate, and maintain equipment or instruments necessary to determine process variables, such as process weight input or heat input, when such data are needed in conjunction with emissions data to determine the compliance of the emissions unit with applicable emission limiting standards.
- b. Accuracy of Equipment. Equipment or instruments used to directly or indirectly determine process variables, including devices such as belt scales, weight hoppers, flow meters, and tank scales, shall be calibrated and adjusted to indicate the true value of the parameter being measured with sufficient accuracy to allow the applicable process variable to be determined within 10% of its true value.

[Rule 62-297.310(5), F.A.C.]

- 15. <u>Sampling Facilities</u>: The permittee shall install permanent stack sampling ports and provide sampling facilities that meet the requirements of Rule 62-297.310(6), F.A.C.
- 16. <u>Test Notification</u>: The owner or operator shall notify the Department, at least 15 days prior to the date on which each formal compliance test is to begin, of the date, time, and place of each such test, and the test contact person who will be responsible for coordinating and having such test conducted for the owner or operator. [Rule 62-297.310(7)(a)9, F.A.C.]
- 17. Special Compliance Tests: When the Department, after investigation, has good reason (such as complaints, increased visible emissions or questionable maintenance of control equipment) to believe that any applicable emission standard contained in a Department rule or in a permit issued pursuant to those rules is being violated, it shall require the owner or operator of the emissions unit to conduct compliance tests which identify the nature and quantity of pollutant emissions from the emissions unit and to provide a report on the results of said tests to the Department. [Rule 62-297.310(7)(b), F.A.C.]
- 18. <u>Test Reports</u>: The owner or operator of an emissions unit for which a compliance test is required shall file a report with the Department on the results of each such test. The required test report shall be filed with the Department as soon as practical but no later than 45 days after the last sampling run of each test is completed. The test report shall provide

SECTION IV. APPENDIX SC

STANDARD CONDITIONS

sufficient detail on the emissions unit tested and the test procedures used to allow the Department to determine if the test was properly conducted and the test results properly computed. As a minimum, the test report, other than for an EPA or DEP Method 9 test, shall provide the following information:

- 1) The type, location, and designation of the emissions unit tested.
- 2) The facility at which the emissions unit is located.
- 3) The owner or operator of the emissions unit.
- 4) The normal type and amount of fuels used and materials processed, and the types and amounts of fuels used and material processed during each test run.
- 5) The means, raw data and computations used to determine the amount of fuels used and materials processed, if necessary to determine compliance with an applicable emission limiting standard.
- 6) The type of air pollution control devices installed on the emissions unit, their general condition, their normal operating parameters (pressure drops, total operating current and GPM scrubber water), and their operating parameters during each test run.
- 7) A sketch of the duct within 8 stack diameters upstream and 2 stack diameters downstream of the sampling ports, including the distance to any upstream and downstream bends or other flow disturbances.
- 8) The date, starting time and duration of each sampling run.
- 9) The test procedures used, including any alternative procedures authorized pursuant to Rule 62-297.620, F.A.C. Where optional procedures are authorized in this chapter, indicate which option was used.
- 10) The number of points sampled and configuration and location of the sampling plane.
- 11) For each sampling point for each run, the dry gas meter reading, velocity head, pressure drop across the stack, temperatures, average meter temperatures and sample time per point.
- 12) The type, manufacturer and configuration of the sampling equipment used.
- 13) Data related to the required calibration of the test equipment.
- 14) Data on the identification, processing and weights of all filters used.
- 15) Data on the types and amounts of any chemical solutions used.
- 16) Data on the amount of pollutant collected from each sampling probe, the filters, and the impingers, are reported separately for the compliance test.
- 17) The names of individuals who furnished the process variable data, conducted the test, analyzed the samples and prepared the report.
- 18) All measured and calculated data required to be determined by each applicable test procedure for each run.
- 19) The detailed calculations for one run that relate the collected data to the calculated emission rate.
- 20) The applicable emission standard, and the resulting maximum allowable emission rate for the emissions unit, plus the test result in the same form and unit of measure.
- 21) A certification that, to the knowledge of the owner or his authorized agent, all data submitted are true and correct. When a compliance test is conducted for the Department or its agent, the person who conducts the test shall provide the certification with respect to the test procedures used. The owner or his authorized agent shall certify that all data required and provided to the person conducting the test are true and correct to his knowledge.

[Rule 62-297.310(8), F.A.C.]

RECORDS AND REPORTS

- 19. Records Retention: All measurements, records, and other data required by this permit shall be documented in a permanent, legible format and retained for at least five (5) years following the date on which such measurements, records, or data are recorded. Records shall be made available to the Department upon request. [Rules 62-4.160(14) and 62-213.440(1)(b)2, F.A.C.]
- 20. <u>Annual Operating Report</u>: The permittee shall submit an annual report that summarizes the actual operating rates and emissions from this facility. Annual operating reports shall be submitted to the Compliance Authority by March 1st of each year. [Rule 62-210.370(2), F.A

From:

Harvey, Mary

Sent:

Monday, November 20, 2006 1:46 PM

To:

'worley.gregg@epa.gov'; 'kwhite@southernco.com'; 'jovick@southernco.com'

Cc:

Mulkey, Cindy; Adams, Patty

Subject:

FW:

Attachments: 377FPERMIT.PDF; 377FDETERM.PDF; 377FinalNotice.pdf; 377FAPP.PDF

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,

From:

Harvey, Mary

Sent:

Friday, November 17, 2006 3:34 PM

To:

'jovick@southernco.com'; 'kwhite@southernco.com'; 'mblake@cocoafl.org'; 'helen.voltz@brevardcounty.us';

'worley.gregg@epa.gov'; 'john_bunyak@nps.gov'; Kozlov, Leonard; 'TDAVIS@ECTINC.COM'

Cc:

Mulkey, Cindy; Adams, Patty; Gibson, Victoria

Subject:

Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Attachments: 0090180.003.AC.F_pdf.zip

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site; http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,

From: Harvey, Mary

Sent: Monday, November 20, 2006 2:47 PM

To: Mulkey, Cindy; Adams, Patty

Subject: FW:

From: Vick, James O. [mailto:JOVICK@southernco.com]

Sent: Monday, November 20, 2006 2:14 PM

To: Harvey, Mary Subject: RE:

We are in receipt of the permit.

From: Harvey, Mary [mailto:Mary.Harvey@dep.state.fl.us]

Sent: Monday, November 20, 2006 12:46 PM

To: worley.gregg@epa.gov; White, Kevin; Vick, James O.

Cc: Mulkey, Cindy; Adams, Patty

Subject: FW:

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,

From: Ha

Harvey, Mary

Sent:

Monday, November 20, 2006 3:43 PM

To:

Mulkey, Cindy; Adams, Patty

Subject: FW:

From: White, Kevin [mailto:KWHITE@southernco.com]

Sent: Monday, November 20, 2006 3:22 PM

To: Harvey, Mary Subject: RE:

I have received the Oleander Unit 5 AC permit.

Thank You

From: Harvey, Mary [mailto:Mary.Harvey@dep.state.fl.us]

Sent: Monday, November 20, 2006 12:46 PM

To: worley.gregg@epa.gov; White, Kevin; Vick, James O.

Cc: Mulkey, Cindy; Adams, Patty

Subject: FW:

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,

From: Harvey, Mary

Sent: Friday, November 17, 2006 3:58 PM

To: Adams, Patty; Mulkey, Cindy

Subject: FW: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

From: Tom Davis [mailto:tdavis@ectinc.com]
Sent: Friday, November 17, 2006 3:45 PM

To: Harvey, Mary

Subject: RE: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

From: Harvey, Mary [mailto:Mary.Harvey@dep.state.fl.us]

Sent: Friday, November 17, 2006 3:34 PM

To: jovick@southernco.com; kwhite@southernco.com; mblake@cocoafl.org; helen.voltz@brevardcounty.us;

worley.gregg@epa.gov; john_bunyak@nps.gov; Kozlov, Leonard; TDAVIS@ECTINC.COM

Cc: Mulkey, Cindy; Adams, Patty; Gibson, Victoria

Subject: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,

From:

Harvey, Mary

Sent:

Monday, November 20, 2006 9:31 AM

To:

Subject:

Adams, Patty; Mulkey, Cindy FW: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

From: Voltz, Helen P [mailto:Helen.Voltz@brevardcounty.us]

Sent: Friday, November 17, 2006 3:59 PM

To: Harvey, Mary

Subject: Read: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Your message

To: Helen.Voltz@brevardcounty.us

Subject:

was read on 11/17/2006 3:59 PM.

From:

Harvey, Mary

Sent:

Monday, November 20, 2006 9:27 AM

To:

Adams, Patty; Mulkey, Cindy

Subject:

FW: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Attachments:

0090180.003.AC.F pdf.zip

0090180.003.AC.F _pdf.zip (2 MB...

----Original Message----

From: John Bunyak@nps.gov [mailto:John Bunyak@nps.gov]

Sent: Friday, November 17, 2006 6:56 PM

To: Harvey, Mary

Cc: Dee Morse@nps.gov; Meredith Bond@fws.gov

Subject: Re: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Mary: Got it. Please add Dee Morse and Meredith Bond at the e-mail addresses above to your mailing list for future permit-related messages.

Thanks. John

"Harvey, Mary"

<Mary.Harvey@dep.s

To:

<jovick@southernco.com>,

<kwhite@southernco.com>, <mblake@cocoafl.org>,

tate.fl.us>

<helen.voltz@brevardcounty.us>,

<worley.gregg@epa.gov>, <john bunyak@nps.gov>, "Kozlov,

Leonard"

<Leonard.Kozlov@dep.state.fl.us>, <TDAVIS@ECTINC.COM>

11/17/2006 03:33

cc:

"Mulkey, Cindy"

<Cindy.Mulkey@dep.state.fl.us>, "Adams, Patty"

PM EST

<Patty.Adams@dep.state.fl.us>, "Gibson,

Subject: Environmental Affairs/Gulf Power

Victoria" < Victoria. Gibson@dep.state.fl.us>

Company #0090180-003-AC-FINAL

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record.

Thank you,
DEP, Bureau of Air Regulation
(See attached file: 0090180.003.AC.F_pdf.zip)

From:

Harvey, Mary

Sent:

Monday, November 20, 2006 9:27 AM

To:

Adams, Patty; Mulkey, Cindy

Subject:

FW: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

From: Mary L. Stearns [mailto:mstearns@cocoafl.org]

Sent: Monday, November 20, 2006 7:46 AM

To: Harvey, Mary

Subject: Not read: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Your message

To: mstearns@cocoafl.org

Subject:

was deleted without being read on 11/20/2006 7:46 AM.

THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

In Re:

OGC CASE NO.: 06-2056

DEP File No. 0090180-003-AC Draft Permit No. PSD-FL-377

Simple Cycle Combustion Turbine Unit 5

Oleander Power Project

Oleander Power Project, L.P. 555 Townsend Road Cocoa, FL 32926

Authorized Representative: James O. Vick c/o Gulf Power Company One Energy Place

Pensacola, FL 32520

Brevard County

NOTICE OF WITHDRAWAL OF REQUEST FOR EXTENSION OF TIME

Oleander Power Project, L.P., (Oleander) and James O. Vick (Vick), by and through undersigned counsel, hereby withdraw their Request for Extension of Time to file a Petition for Administrative Proceedings in accordance with Chapter 120, Florida Statutes. Oleander and Vick filed their request for extension of time on October 12, 2006 requesting an extension through November 27, 2006, and the order granting such extension was granted on October 17, 2006. This withdrawal is conditioned upon changes to the draft permit agreed to between the Department of Environmental Protection (DEP) and Oleander, which are reflected in the document attached as Exhibit A.

Respectfully submitted this 15th day of November, 2006.

HOPPING GREEN & SAMS, P.A.

Angela Morrison Uhland Florida Bar No. 0855766 123 South Calhoun Street

Post Office Box 6526 (32314)

Tallahassee, Florida 32301

(850) 222-7500

Attorney for Oleander Power Project, L.P.

and James O. Vick

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a copy of the foregoing has been furnished to the following by U.S. Mail on this 15th day of November, 2006:

Trina Vielhauer, Chief Bureau of Air Regulation Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

Patricia Comer, Esquire
Office of General Counsel
Department of Environmental Protection
3900 Commonwealth Blvd.
Tallahassee, FL 32399-2600

Implie Marin Ullum

Florida Department of Environmental Protection

TO:

Joseph Kahn, Director, DARM

Through:

Trina L. Vielhauer, Chief, BAR

From:

A.A. Linero/Cindy Mulkey, W/ Caf

DATE:

November 16, 2006

SUBJECT:

Oleander Power Project – Brevard County

Simple Cycle Combustion Turbine

DEP File No. 0090180-003-AC (PSD-FL-377)

Attached is the Final PSD Permit for the construction of a fifth simple cycle combustion turbine electrical generator (Unit 5) at the existing Oleander Power Project, a subsidiary of Southern Power Company (SPC). The original construction permit issued in 1999 to the previous owners, Constellation Energy, authorized the construction of five simple cycle units, only four of which were actually constructed. Constellation sold the plant to SPC who then decided to add the fifth unit. This permit "re-authorizes" construction of Unit 5. The existing four units have been operating for several years and we have no reason to believe that this is part of a phased project.

The unit is a nominal 190 MW General Electric 7FA. A determination of BACT was required for emissions of NO_X and PM/PM₁₀.

Unit 5 will fire natural gas as the primary fuel and No. 2 low sulfur fuel oil (0.05 % sulfur) as back-up fuel. The unit is permitted to operate a total of 3,390 hours per year with a maximum of 500 hours of fuel oil firing.

We have determined that BACT for NO_X is 9.0 ppmvd @15% O_2 . The limit will be achieved by use of inherently clean natural gas and use of Dry Low NO_X/CO combustors. A limit of 42 ppmvd NO_X @15% O_2 will apply while firing the back-up fuel oil.

Emissions of CO, PM/PM₁₀, SAM, SO₂, and VOCs will be minimized by the efficient, high-temperature combustion of clean fuels.

No comments were received from EPA or the public. Those received from Southern Company were discussed and are addressed in the attached Final Determination to Issue a PSD Permit.

We recommend your approval of the attached Final Notice and Permit.

AAL/cem

Attachments

From:

Harvey, Mary

Sent:

Monday, November 20, 2006 1:18 PM

To:

Adams, Patty; Mulkey, Cindy

Subject:

FW: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

From: Kozlov, Leonard

Sent: Monday, November 20, 2006 11:22 AM

To: Harvey, Mary

Subject: Read: Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Your message

To:

'jovick@southernco.com'; 'kwhite@southernco.com'; 'mblake@cocoafl.org'; 'helen.voltz@brevardcounty.us';

'worley.gregg@epa.gov'; 'john_bunyak@nps.gov'; Kozlov, Leonard; 'TDAVIS@ECTINC.COM'

Cc:

Mulkey, Cindy; Adams, Patty; Gibson, Victoria

Subject:

Environmental Affairs/Gulf Power Company #0090180-003-AC-FINAL

Sent:

11/17/2006 3:34 PM

was read on 11/20/2006 11:22 AM.