

Department of Environmental Protection

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

David B. Struhs Secretary

TO: Jonathan Holtom	DATE: 6 Apr 04
•	. 850 922 6979
Number of Pages: 5 (including cover p	onge)
FROM: AlanZahm	
PROGRAM: AIR RESOURCES MGMT_ SECTIO	N Permitting
TELEPHONE # 407-893-3333, 3334 SC 325-3333, 3334	FAX #: 407-897-5963 SC 342-5963
COMMENTS:	,
Copy of Cogstal Fuels CAM Pla	n response
30 day review end 28 April	8
Garrett Clarens - (303) 626 - 820	9
	·

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

Printed on recycled paper.

Coastal Fuels Marketing, Inc.

A SUBSIDIARY OF TRANSMONTAIGNE

March 26, 2004

Mr. Alan Zahm Florida Department of Environmental Protection 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803 RECEIVED

Re:

CAM Plan for Title V Renewal

Cape Canaveral Terminal (Permit No. 0090029-003-AV)

Coastal Fuels Marketing Inc.

Dear Mr. Zahm,

Coastal Fuels Marketing Inc. (CFMI) owns and operates the Cape Canaveral Terminal, located in Cape Canaveral, Florida. The Title V permit, which this facility operates under, is currently being renewed. Please find attached the Compliance Assurance Monitoring (CAM) Plan for the Cape Canaveral Title V.

If you have any questions, or need further information, please call me at (303) 626-8209.

Sincerely,

COASTAL FUELS MARKETING INC.

Garrett Clemons

Environmental Analyst Regulatory Compliance

	Indicator No. 1					
I. Indicator	Presence of Flame					
Monitoring Approach	Flame presence is monitored using a thermocouple.					
II. Indicator Range	An excursion is defined when the thermocouple indicates that the flame is absent or below 300 degrees Fahrenheit during loading.					
III. Performance Criteria						
A. Data Representativeness	The thermocouple is wired into the flare to detect the presence of the flame.					
B. Verification of Operational Status	Loading occurs when the system is operational.					
C. QA/QC Practices and Criteria	A validation check is conducted at least once each week.					
D. Monitoring Frequency	The thermocouple operates continuously, when the VCU is operating					
E. Data Collection Procedures	If the thermocouple detects a low pilot light temperature, loading cannot occur, which in turn will notify terminal personnel of a problem.					
F. Averaging Period	NA					
IV. Flare Bypass Monitoring	If the thermocouple notifies that the flame is absent during loading, an automatic shutoff occurs at the loading rack, making loading impossible.					

Indicator No. 2				
Magnahelic Gauges readings.				
Magnahelic Gauges are used to verify that all vapor from loading operations are directed to the VCU (i.e no bypass of the collection system).				
An excursion is defined when the reading on the gauges is below 1.0 inches of water column during loading. Or when the reading of the gauge reaches 17.7 inches of water. If the pressure reaches 17.0 inches of water the loading rack immediately shuts down. The 17.0 inches of water reading serves as an early detection, keeping the pressure relief valve closed.				
The Magnahelic gauge is connected to the gas flow line.				
The Magnahelic gauge is calibrated yearly, and the operation of this gauge is conducted in accordance with the manufacturer's recommendation.				

C. QA/QC Practices and Criteria	Accuracy verification is done by reading the gauge, with a known pressure. This validation check would be conducted at least once each fiscal year.
D. Monitoring Frequency	It is checked daily and recorded weekly.
E. Data Collection Procedures	Terminal personnel manually record excursions.
F. Averaging Period	NA
IV. Collection System Bypass Monitoring	A bypass cannot occur.

The Coastal Fuels Marketing Inc. (CFMI) Cape Canaveral terminal is a petroleum bulk storage facility located in Cape Canaveral, Florida. The facility currently stores gasoline, asphalt, 6 oil, and distillate products. The facility operates 52 weeks a year, 7 days a week, 8,760 hours per year. A Zeeco VCU rated at 35 mg/L controls emissions from the loading of gasoline.

Flame presence is monitored using a thermocouple. After a tanker truck is hooked up at the loading rack, a remote signal is sent to the VCU programmable logic controller (PLC) to automatically ignite the pilot flame. A trial for ignition period is started and continues until the thermocouple is proven. During this time the pilot gas solenoid and flame front generator solenoid are held open. When the pilot has proven, a permission to load signal is given to the load rack resulting in a permissive position. The RCM electro hydraulic fail-safe actuator receives the same permission to load signal and opens up a hydraulic valve that allows the vapors to proceed to the igniter.

CFMI has chosen to use a temperature range for the pilot light as the indicator that the VCU is running properly. Loading can not occur unless the pilot light on the VCU is at 300 F. CFMI has enclosed the latest testing information on the VCU, conducted on August 26, 2003. During this test the VCU was in normal operation, with the pilot light being at least 300 F. The VCU was rated at 9.01 mg/L, well under the permit limitation of 35 mg/L.

Each loading rack vapor recovery line has a maximum allowable vapor pressure of 17.7 inches of water. The maximum pressure observed during the last test was 3.5 inches of water. If the pressure should happen to reach 17.7 inches of water there is a pressure relief valve. However, the pressure will not reach 17.7 inches of water. If the pressure reaches 17.0 inches of water the loading rack immediately shuts down. Since the pressure relief valves are set to open at 17.7 inches of water, 17.0 inches of water serves as an early warning, therefore the pressure relief valve will not open. Terminal personnel manually monitor the pressure relief valves. A magnahelic gauge is also in place to measure the pressure. An automatic shut down is also associated with the magnahelic gauge.

≯ . q

If the pressure exceeds 17.0 inches of water the loading operations are automatically shutdown until the problem is corrected.

As mentioned above if the pilot light on the VCU goes below 300 degrees Fahrenheit the unit will automatically shut down. If the magnahelic gauge reads a pressure of 17.0 inches of water, loading is automatically shut down. Loading cannot occur at this facility unless the VCU is running properly. CFMI maintains written documentation of malfunctions that occur to the VCU, and corrective action.

Manufactures routine maintenance requirements include keeping the flame detection system adjusted for the smoothest, most reliable operation, and ensuring that the flame signal current is above the manufacturers minimum acceptable level.

Records relevant to the above requirements which are specified by the current Title V permit are maintained on site. Terminal personnel keep monthly records of the operational status of the VCU. This operational status includes: malfunctions, corrective actions, calibration reports, excursions, and maintenance.

5 · q

£969-768-704

mengong niA

Apr 06 04 02:38p

RECEIVE

BUREAU OF AIR REQUILATION

Coastal Fuels Marketing, Inc.

A SUBSIDIARY OF TRANSMONTAIGNE

January 28, 2004

Mr. Jonathan Holtom Northwest District Branch Office 2815 Remington Green Circle Suite A Tallahassee, Florida 32308-1513

Re:

CAM Plan

Title V Permit Renewal Cape Canaveral Terminal Coastal Fuels Marketing Inc.

Dear Mr. Holtom,

On January 7, 2004, Coastal Fuels Marketing Inc. (CFMI) received your letter requesting additional information for the CFMI Cape Canaveral CAM Plan. Please find attached the requested information to complete the CAM Plan.

If you have any questions, or need any further information, please call me at (303) 626-8209.

Sincerely,

COASTAL FUELS MARKETING INC.

Garrett Clemons

Environmental Analyst

Regulatory Compliance

JAN 2 9 2004

ULP TALLAHASSEE BRANCH OFFICE

DEP TALLAHASSEE

CYCLE CONTRACTOR

Monitoring Approach Justification

I. <u>Background and Applicability</u>

The Coastal Fuels Marketing Inc. (CFMI) Cape Canaveral terminal is a petroleum bulk storage facility located in Cape Canaveral, Florida. The facility currently stores gasoline, asphalt, 6 oil, and distillate products. The facility operates 52 weeks a year, 7 days a week, 8,760 hours per year. A Zeeco VCU rated at 35 mg/L controls emissions from the loading of gasoline.

II. Monitoring Approach

Flame presence is monitored using a thermocouple. After a tanker truck is hooked up at the loading rack, a remote signal is sent to the VCU programmable logic controller (PLC) to automatically ignite the pilot flame. A trial for ignition period is started and continues for 5 minutes or until the thermocouple is proven. During this time the pilot gas solenoid and flame front generator solenoid are held open. When the pilot has proven, a permission to load signal is given to the load rack resulting in a permissive position. The RCM electro hydraulic fail-safe actuator receives the same permission to load signal and opens up a hydraulic valve that allows the vapors to proceed to the igniter.

Rationale for Monitoring

CFMI has chosen to use a temperature range as the indicator that the VCU is running properly. Loading can not occur unless the pilot light on the VCU is at 300 F. CFMI has enclosed the latest testing information on the VCU, conducted on August 26, 2003. During this test the VCU was in normal operation, with the pilot light being at least 300 F. The VCU was rated at 9.01 mg/L, well under the permit limitation of 35 mg/L.

Each loading rack vapor recovery line has a maximum allowable vapor pressure of 17.7 inches of water. The maximum pressure observed during the last test was 3.5 inches of water. If the pressure should happen to reach 17.7 inches of water there is a pressure relief valve. However, the pressure will not reach 17.7 inches of water. If the pressure reaches 17.0 inches of water the loading rack immediately shuts down. Since the pressure relief valves are set to open at 17.7 inches of water, 17.0 inches of water serves as an early warning, therefore the pressure relief valve will not open. Terminal personnel manually monitor the pressure relief valves. A magnahelic gauge is also in place to measure the pressure. An automatic shut down is also associated with the magnahelic gauge. If the pressure exceeds 17.0 inches of water the loading operations are automatically shutdown until the problem is corrected.

JAN 2 9 2004

Indicator Range

As mentioned above if the pilot light on the VCU goes below 300 degrees Fahrenheit the unit will automatically shut down. If the magnahelic gauge reads a pressure of 17.0 inches of water, loading is automatically shut down. Loading cannot occur at this facility unless the VCU is running properly. CFMI maintains written documentation of malfunctions that occur to the VCU, and corrective action.

Monitoring Frequency

The thermocouple operates continuously, when the VCU is operating.

QA/QC Procedures

Manufactures routine maintenance requirements include keeping the flame detection system adjusted for the smoothest, most reliable operation, and ensuring that the flame signal current is above the manufacturers minimum acceptable level.

III. Record Keeping

Records relevant to the above requirements which are specified by the current Title V permit are maintained on site. Terminal personnel keep monthly records of the operational status of the VCU. This operational status includes: malfunctions, corrective actions, calibration reports, excursions, and maintenance.

IV. Periodic Reporting

Periodic reporting includes the following: date, time, duration of excursions, and corrective action.

JAN 2 9 2004 DEP TALLAHASSEE BRANCH OFFICE

Coastal Fuels Marketing, Inc.

A SUBSIDIARY OF TRANSMONTAIGNE

December 11, 2003

Mr. Jonathan Holtom Florida DEP Northwest District Office 2815 Remington Green Circle Suite A Tallahassee, Florida 32308-1513 DEC 1 2 2003

DEP TALLAHASSEE BRANCH OFFICE

Re:

Requested Information for CAM

Cape Canaveral Terminal (Project No. 0090029-006-AV)

Coastal Fuels Marketing Inc.

Dear Mr. Holtom,

Coastal Fuels marketing Inc. (CFMI) owns and operates the Cape Canaveral terminal, located in Cape Canaveral, Florida. CFMI is currently renewing the Title V permit for this facility. On November 25, 2003, CFMI received a memorandum requesting more information to complete the Compliance Assurance Monitoring (CAM) Plan.

Please find attached the requested information. If you have any questions, or need further information, please call me at (303) 626-8209.

Sincerely,

COASTAL FUELS MARKETING INC.

Garrett Clemons

Environmental Analyst Regulatory Compliance

cc: Mr. Alan Zahm, Florida DEP Central District

Monitoring Approach Justification

I. Background

The Coastal Fuels Marketing Inc. (CFMI) Cape Canaveral terminal is a petroleum bulk storage facility located in Cape Canaveral, Florida. The facility currently stores gasoline, asphalt, 6 Oil, and distillate products. The facility operates 52 weeks a year, 7 days a week, 8,760 hours per year.

II. Rationale for Selection of Performance Indicators

CFMI has chosen to use a temperature range as the indicator that the VCU is running properly. The VCU will automatically shut down if the operating temperature goes below 750 degrees Fahrenheit. CFMI has enclosed the latest testing information on the VCU, conducted on August 26, 2003.

Each loading rack vapor recovery line has a maximum allowable vapor pressure of 17.7 inches of water. The maximum pressure observed during the last test was 3.5 inches of water. If the pressure should happen to exceed 17.7 inches of water there is a pressure relief valve. Terminal personnel manually monitor the pressure relief valves. A magnahelic gauge is also in place to measure the pressure. An automatic shut down is also associated with the magnahelic gauge. If the pressure exceeds 17.7 inches of water the loading operations are automatically shutdown until the problem is corrected.

III. Rationale for Selection of Indicator Ranges

As mentioned above if the operating temperature of the VCU goes below 750 degrees Fahrenheit the unit will automatically shut down. If the magnahelic gauge reads a pressure greater than 17.7 inches of water, loading is automatically shut down. Loading cannot occur at this facility unless the VCU is running properly. CFMI maintains written documentation of malfunctions that occur to the VCU, and corrective action.

EMISSIONS TESTING of the COASTAL FUELS MARKETING. INC. PORT CANAVERAL TERMINAL VAPOR COMBUSTION UNIT Port Canaveral, FL

August 26, 2003

FDEP Permit No. 0090029-003-AV SES Reference No. 03S301

Conducted by:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475

Project Participants

Kenneth M. Roberts Mark S. Gierke Terry L. Wilson Dale A. Wingler

EMISSIONS TESTING

EMISSIONS TESTING of the COASTAL FUELS MARKETING. INC. PORT CANAVERAL TERMINAL VAPOR COMBUSTION UNIT

Port Canaveral, FL

August 26, 2003

TABLE OF CONTENTS

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. conducted a flare emissions test and visible emissions evaluation of the Coastal Fuels Marketing, Inc., Port Canaveral Terminal, Vapor Combustion Unit on August 26, 2003. This facility is located at Port Canaveral, Florida. Testing was performed to determine if the plant was operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP). Mr. Thomas Mulligan of the FDEP was present as an observer during a portion of the test.

2.0 SUMMARY OF RESULTS

The flare was found to be in compliance with applicable emission limiting standards. Results of the test are summarized in Table 1. Emissions from the vapor collection system due to the loading of liquid product into gasoline tank trucks is limited to 35 milligrams of volatile organic compounds per liter of gasoline loaded. The emission rate during the test was 9.01 milligrams of volatile organic compounds per liter of gasoline loaded, within the allowable limit. The maximum allowable vapor system pressure, measured at each loading rack vapor recovery line is 17.7 inches of water. The maximum pressure observed during the test was 3.5 inches of water. A visual determination of fugitive emissions was performed over a two hour period. The accumulated emission time was zero minutes, well within the maximum limit of 5 minutes during any 2 consecutive hours.

TABLE 1. EMISSIONS TEST SUMMARY

Company: COASTAL FUELS - PORT CANAVERAL

Source: VAPOR COMBUSTION UNIT

Date of Test Start Time (24-hr. clock) End Time (24-hr. clock) Inlet Gas Volume (SCM) Outlet Gas Volume (SCM) Average Barometric Pressure (in. Hg.) Average Static Pressure (in. H2O) Average Meter Temperature (`F) Gas Meter Correction Factor Total Loading Positions Total Trucks Checked Trucks With Leaks Trucks With No Leaks Total Gasoline Dispensed (gallons) Gasoline excluded Due to Leaks (gallons) Total Countable Gasoline Dispensed (liters)	08/26/2003 0635 1235 705 76,040 30.06 0.7 90 1 3 13 0 13 101,680 0 101,680 384,859
Average VOC Inlet Concentration, (ppm, as propane) Total mass of Inlet Hydrocarbons, (milligrams as carbon) Average VOC Outlet Concentration, (ppm, as propane) Average CO Outlet Concentration, (ppm) Average CO2 Outlet Concentration, (%) Total mass of Outlet Hydrocarbons, (milligrams as carbon) Average Efficiency, (%)	256,014 364,003,677 21.5 63.0 0.8 3,469,155 98.5
Emission rate (mg/l) Allowable Emission rate (mg/l)	9.0 1 35

3.0 PROCESS DESCRIPTION

The Coastal Fuels Marketing, Inc., Port Canaveral Terminal truck loading facility controlled by this vapor combustion unit includes one loading rack. Trucks are bottom filled to reduce the amount of vapors generated. The displaced vapors are routed through an air assisted flare. The amount of product loaded during the testing period was monitored by Coastal Fuels personnel and is included in Table 1.

4.0 TESTING PROCEDURES

4.1 Methods

Flare testing and analyses were conducted in accordance with procedures described in 40 CFR 60.503 and 60.18. Volumetric flowrate at the inlet and outlet were determined in accordance with EPA Method 2B - Determination of Exhaust Gas Volume Flow Rate from Gasoline Vapor Incinerators, 40 CFR 60, Appendix A-1. Hydrocarbon concentrations were measured at the inlet and outlet in accordance with EPA Method 25A - Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer, 40 CFR 60, Appendix A-7. Carbon monoxide concentration was measured at the outlet in accordance with EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources, 40 CFR 60, Appendix A-4. Carbon dioxide was also measured at the outlet using procedures generally described in Method 10 by substituting carbon dioxide gas where the method called for carbon monoxide and omitting the silica gel and carbon dioxide absorbent tubes. The inlet total hydrocarbon analyzer, the carbon monoxide and the

carbon dioxide analyzers were calibrated with an Environics Model 2020 gas dilution system and calibration gases using procedures described in EPA Method 205 - Verification of Gas Dilution Systems for Field Instrument Calibrations, 40 CFR 51, Appendix M. Trucks were checked for leaks using procedures described in EPA Method 21 - Determination of Volatile Organic Compound Emission Leaks, 40 CFR 60, Appendix A-7. The visual determination of fugitive emissions was performed in accordance with EPA Method 22 - Visual Determination of Fugitive Emissions from Material Sources and Smoke Emissions from Flares, 40 CFR 60, Appendix A-7.

4.2 Pretest Preparation

Prior to testing, an eight inch American Meter Company turbine meter was connected in line to measure the total volume of vapor reaching the flare. The vapor flare, terminal vapor recovery lines and testing ductwork were checked for leaks with a combustible gas detector. Any leaks detected were repaired prior to testing. Magnehelic gauges were connected at each loading rack to measure the vapor collection system pressure. Two Gastech Model GT 105 combustible gas detectors were calibrated prior to the test with zero air and 2.5 percent methane calibration gas. Each analyzer was calibrated in accordance with the applicable test method immediately prior to the test.

4.3 Sampling Trains

The inlet Method 25A sampling train consisted of a dilution probe (100:1), a teflor

sample line, heated as necessary to prevent condensation, a California Analytical Model 300HFID(M) heated total hydrocarbon analyzer and a strip chart recorder. The Outlet Method 25A sampling train consisted of a heated stainless steel probe, heated teflon sample line, a California Analytical Model 300HFID(M) heated total hydrocarbon analyzer and a strip chart recorder. A schematic of the hydrocarbon sampling train is shown in Figure 1. The carbon monoxide sampling train consisted of a heated stainless steel probe, condenser, silica gel tube, carbon dioxide absorption tube, teflon sample line, and a Thermo Environmental Instruments, Inc. Model 48 Gas Filter Correlation CO analyzer. A schematic of the carbon monoxide sampling train is shown in Figure 2. The carbon dioxide sampling train consisted of a heated stainless steel sampling probe, condenser, teflon sample line and a California Analytical Model 100 carbon dioxide analyzer.

4.4 Data Collection

Inlet volume, temperature and static pressure measurements were recorded at the inlet to the meter at five minute intervals for the duration of the test to determine volume at standard conditions. Inlet and outlet hydrocarbon concentrations and outlet carbon monoxide and carbon dioxide concentrations were measured continuously throughout the six hour test period. During the testing each applicable tank truck was tested for leaks at all domes and boots. The probe of the gas meter

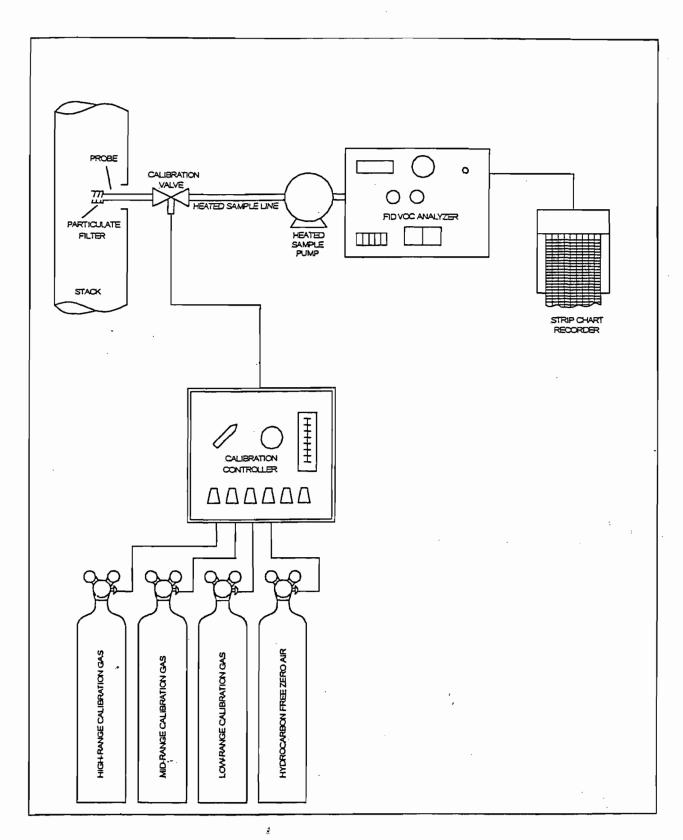


Figure 1. EPA Method 25A Sampling Train

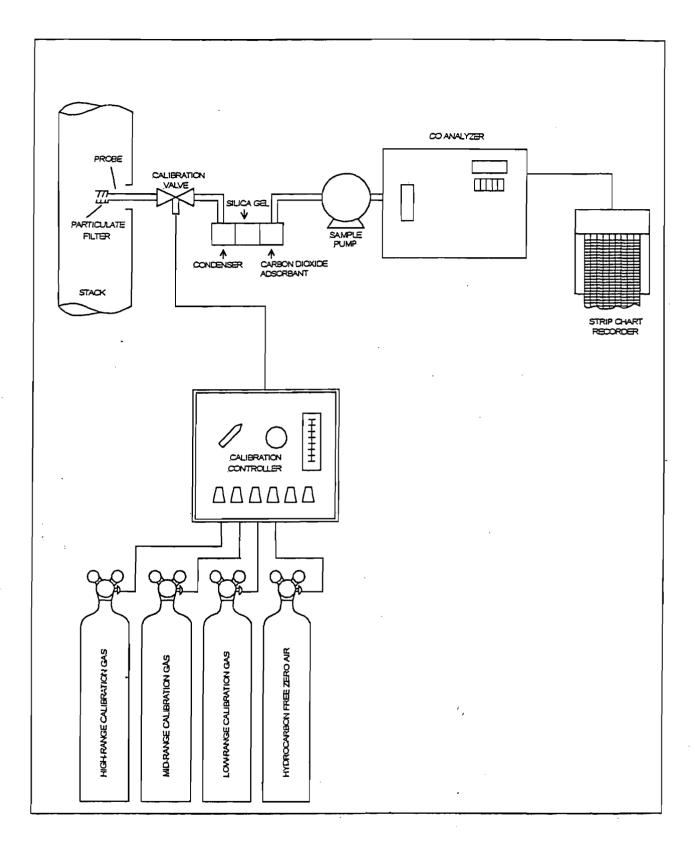


Figure 2. EPA Method 10 Sampling Train.

was held 2.5 centimeters from the potential leak source and probe movement was maintained at 2 centimeters per second. If an increase in concentration was noted at a possible leak, the probe was moved to locate the point of highest meter response. Leaks greater than or equal to 10,000 parts per million (as methane) were documented on field data sheets.

5.0 ANALYTICAL PROCEDURE

5.1 Analysis

Within 2 hours of the start of the test zero and high-level propane calibration gases were introduced into the hydrocarbon analyzers at the calibration valve assembly and the output was adjusted to the appropriate level if necessary. A linear regression was then conducted to calculate the predicted response for the low-level and mid-level gases. The low-level and mid-level gases were then introduced into the measurement system. The difference between the predicted and actual responses were calculated. A difference of less than 5 percent was considered acceptable. To assess the response time of the measurement system, zero gas was introduced into the system. After the output was stabilized, the high-level gas was quickly introduced. The time from the concentration change to the measurement system response equivalent to 95 percent of the step change was determined. The test was repeated three times. Results were recorded on the appropriate strip charts and are included in the appendix. Instrument calibrations were checked periodically during the test by introducing mid-range and zero gases into the instrument through the sampling train. The carbon

monoxide and carbon dioxide analyzers were calibrated immediately before the beginning of the test and checked periodically by introducing mid-range and zero gases into the instruments through the sampling trains.

5.2 Data Reduction

The outlet volume was determined in accordance with equations in EPA Method 2B. Hydrocarbon emissions were determined from the outlet hydrocarbon concentrations and the calculated outlet flowrate. The total countable gasoline loaded during the test was calculated by summing the total gasoline loaded then subtracting the total loaded into trucks on which leaks were encountered.

<u>APPENDIX</u>

Project Participants

Certification

Visual Determination of Fugitive Emissions

Laboratory Data

Field Data Sheets

Calculations and Equations

Strip Charts

Calibration Data

PROJECT PARTICIPANTS AND CERTIFICATION

COASTAL FUELS MARKETING. INC. CAPE CANAVERAL TERMINAL VAPOR COMBUSTION UNIT

Port Canaveral, FL

August 26, 2003

Project Participants:

Kenneth M. Roberts Mark. S. Gierke Terry L. Wilson Dale A. Wingler Conducted the field testing.

Dale A. Wingler

Performed the visual determination of

fugitive emissions.

Kenneth M. Roberts

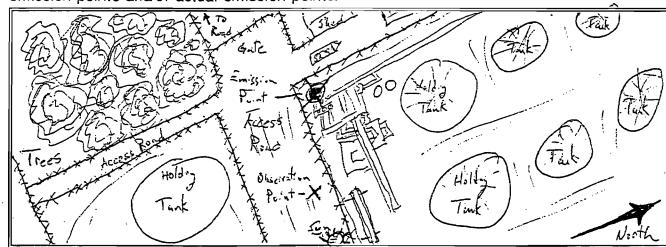
Computed test results.

Kenneth M. Roberts

Prepared the final test report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.


Kenneth M. Roberts, QEP

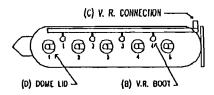
SOUTHERN ENVIRONMENTAL SCIENCES, INC.

EPA METHOD 22 FUGITIVE OR SMOKE EMISSION INSPECTION OUTDOOR LOCATION

COMPANY COASTAL FULLS	DATE	8/26/63
UNIT Port Congress	SKY CONDITIONS	Scattere L
PERMIT NO. 0090024-003-AV	PRECIPITATION	1 low
OBSERVER Dela A. C. Dinder	WIND DIRECTION	Variable
AFFILIATION SFS	WIND SPEED	0-3
ENDUSTRY Gasdine Terminal	PROCESS UNIT	Suroded Hire

Sketch process unit: indicate observer position relative to source and sun: indicate potential emission points and/or actual emission points.

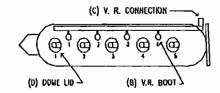
OBSERVATIONS	CLOCK TIME	OBSERVATION PERIOD DURATION (MIN:SEC)	ACCUMULATED EMISSION TIME* (MIN:SEC)
BEGIN OBSERVATION	0718-0738	30.00	00:00
	2743-0303	20 00	00:00
	૦૬૦૬ - ૦૬૪૬	20:00	00.00
	0833-0853	20-00	00:00
	0858-0918	20:00	00100
	0923-0943	20 00	80 00
END OBSERVATION			


^{*} Last reading indicates total duration of observed emissions for the test.

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 N. WHEELER STREET □ PLANT CITY, FLORIDA □ 33566 (813) 752-5014 □ FAX (813) 752-2475

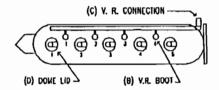
	TRUCKI	LEAK CHECKS		∭
COMPANY	Coastal Fulls	DATE	8/26/03	
LOGATION	Port CanavivaL	OPERATOŘ(S)	DW/TW	
FACILITY	Flare	INSTRUMENT(S)	GT105	


								PRODUCT			LEAK	LEAK LOGATION														
OWNER	R TAUCKING, TIME NO. NO. PRESSUR	V.R.BACK PRESSURE (IN. H2O)		GALLONS LOADED	THIS LOAD	PREV LOAD	NO LEAK																			
Florida Rack	- 4 m \		/		1.0	1	ن 75%	Driel		_																
Rack	9771	0617		1	1.0	2			<u> </u>																	
				1		3																				
					_	4	<u> </u>				<u> </u>															
					TOTAL	-	3800	- 1	 																	
FlitUin	141	0628	1	•		1	2000	Diesel																		
)) 111	OGA	2	J_	2.0	2																				
						3			1																	
					TOTAL	 		- 	-			 														
1 4 0					TOTAL	1;	4160	Dirich		 																
Flect Wing	143	0631	/	3	3	€	1.5	2	1002																	
	112	0931				"."	3					 														
					,	4																				
					TOTAL																					
RC Dunn			,	_		1	5000	Diesel																		
(15	0651	/ /	2))	7)	う)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2						
Mobil	13				'-	,	· .	, -	'	3						<u> </u>										
						4																				
	- "				TOTAL		surl	-				-														
Pena Tank Lines, Inc.			,			1	7500	Diesel			-															
	9587	0708	/	1	1.5	2			-																	
Lines Inc.	,507	0 / 0 %		ι	"	3	<u> </u>																			
\			(TOTAL	-4			-			<u> </u>														
	L	<u> </u>			TOTAL		L			L	<u> </u>															

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. WHEELER STREET | PLANT CITY, FLORIDA | 33566

(813) 752-5014 ☐ FAX (813) 752-2475

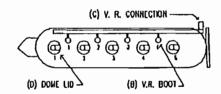
TRUC	K LEAK CHECKS	
COMPANY Cast. / Fueb	DATE	4/30/03
LOCATION Port Congress	OPERATOR(S)	DW/TW
FACILITY Flage	INSTRUMENT(S)	GT105



			RAOK	LANE	ANE V.R.BACK		JACK GALLONS		UCT	NO		LEAK									
OWNER	TRUCK NO.	TIME	NO.	NO.	PAESSURE (IN. HEO)	PRESSURE		DADED	THIS LOAD	PRÉV LOAD	LEAK	LEAK	LOCATION								
,		· /	/				3100	87	645	1/											
KINAN	1303	0725		2	3.5		2800	Pics.			······································										
,	(3			0		4				- - 											
			/		TOTAL			5500:65													
RC .		V	,				1682	Quese!	Dies			<u> </u>									
BC BC	15	0747		2	1.5	3		,				<u> </u>									
1001	•		/			4															
					TOTAL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
0.50		·	,			1 1-	8000	87_	6a5												
Chernical	1126	NODD:		3	3	3	3	3	.2	.2	.2	2	2.5	3	1000	13		- -		-	
cherollal	012	0800								4						 					
<u> </u>															TOTAL		9000				
اء	RN 9935		,				7000	87	Dies	i											
Fla	0026	NOOD		1	2.5		2000	Dies													
Rock	44 2-1	0800		.	0.0	3															
					TOTAL		7000														
				0 -	1			71													
PCT	8443	0807	/ 2	/12	/ 1 2	/ 1 2	/ 1 2	1 7 1	1 2	1 2	7	7	7	3.5		5000 4000	87	655			
\ \	σ,			0		3	4000	3 /													
					TOTAL		-9000														

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. WHEELER STREET | PLANT CITY, FLORIDA | 33566 (813) 752-5014 | FAX (813) 752-2475

	Т	THUCK L	EAK CHECKS			
COMPANY	Coastal	Fuls	DATE	8	261	103
LOCATION	Port Canava	1 si]_	OPERATOR(S)	m	W	
FACILITY	Flare		INSTRUMENT(S)	6	T 10	5


								PRO	DUCT			
OWNER	TRUCK NO.	TIME	RACK NO.	LANE NO.	Y A BAOK PRESSURE (IN: H2O)		BALLONS LOADED	THIS LOAD	PREV LOAD	NO LEAK	LEAK	LEAK LOCATION
PiTYO			/			1	5000 3000	87 87	695	V		
	763994	8180	. /	1	2.0	3	<u> </u>	2				
Chem.				ı		4	(2)					
					TOTAL	7	8000 8000	Res	Diese			
Florizer		0020	· /	~/		2	1000	43	1			
1. X . e S	9772	0853		22	2.5	3		, ,				
"La" Cha		0822	/		TOTAL	4 -	9000		<u>'</u>			
			(1	7000	87	695	V		
102	7 11 7	ألموهما		3	2 ~	2	1000	93	 			ļ
PCT	611te	0904	/ /		2,0	3	1000	07_		 		
10)	·. · · · · · · · · · · · · · · · · · ·				TOTAL	<u></u>	9000		5.6			
Flara			,		20	2	1000 1000	<i>क</i> कि	1595	1		
LOCKET. LOCKET	3370	0925		2	9.0	3						
XXXII		:				4	Qan S					
. \ . \ . (TOTAL	1	9000					
Clovel		2001/1	,	~	2.0	2	345	89	645			
01/2		0944		3	. cx · (/	3	1500	37	Oic S			
Co.					TOTAL	4			<u> </u>			

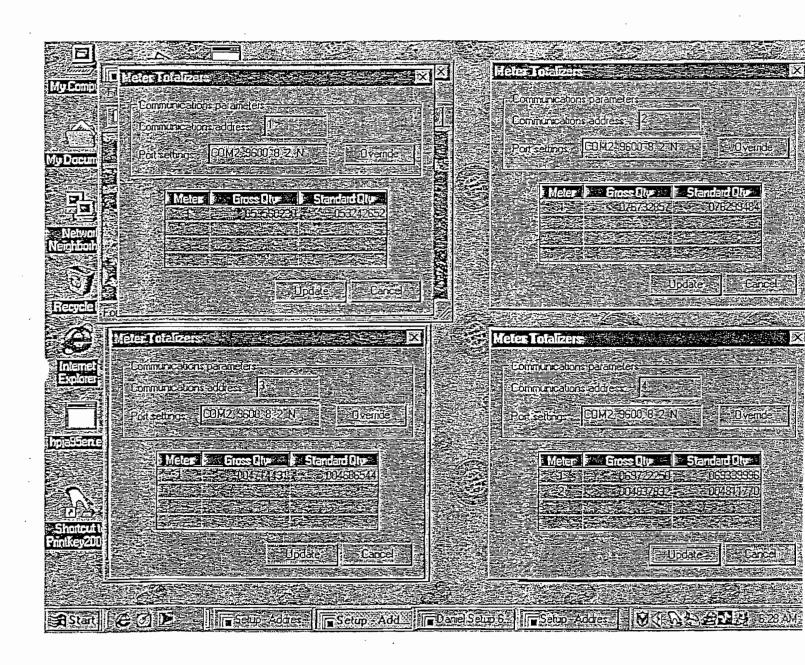
SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 N. WHEELER STREET | PLANT CITY, FLORIDA | 33566 (813) 752-5014 | FAX (813) 752-2475

	TRUCK LEAK CHECKS	
COMPANY	DATE	
LOCATION	OPERATOR(S)	
FACILITY	INSTRUMENT(S)	

								PRODUCT				
OWNER	TRUCK NO.	TIME	RACK NO.	LANE NO.	V.R.BACK PRESSURE (IN. H2O)		GALLONS LOADED	THIS LOAD	PREV LOAD	NO LEAK	LEAK	LEAK LOCATION
1.11.						1	4200	Diesel				
Wilkins Oil Co.	2	0950	/	t	2.0	2						
1 6.1 50	. 64			(0.0	3		<u> </u>				
						4						
	2010		<u> </u>		TOTAL	ļ	22.00	<u></u>		<u></u>		
Peters-Chemic Transport, Inc	J763448		_			1	7000	Por Par	L'			
	(13 C	4011		2	2.6	2	1480 500	MITTE	 			
I ransport, Inc		1021		~		3	1000	Figure	 		<u></u>	
'		1021	(TOTAL	4	8500	1 (514)				
.,					TOTAL	1	7000	P.				
Henan				7	1 2 -	2	1900	Per	,			
HEHRIN	335	1011		3	2.0	3						
		. • • • • • • • • • • • • • • • • • • •	/ /			4			1			
32					TOTAL		880D					
Petro Cremical Transput, Inc						1_	\$1000	Pen M.d.	1/			
	6159	سرد ۱۵		, "	2.0	2	4000	M.C.				
Transport, Inc	الماما	1025		1		3			Į.			
						4	^					
					TOTAL		9000	<u>-</u>			~	
Florida Rock	. •					1_	1800	Reg.	Y			
711	W 9135	18110		3	3.0	2	400	1414				
or I will King	140 1700	1048	/	ر ا	5.1	3			ļ			
					TOTAL	4	1800					
· · · · · · · · · · · · · · · · · · ·		L		l	IOIAL		1000					

PRODUCT DISPENSED


COMPANY: COASTAL FUELS - PORT CANAVERAL

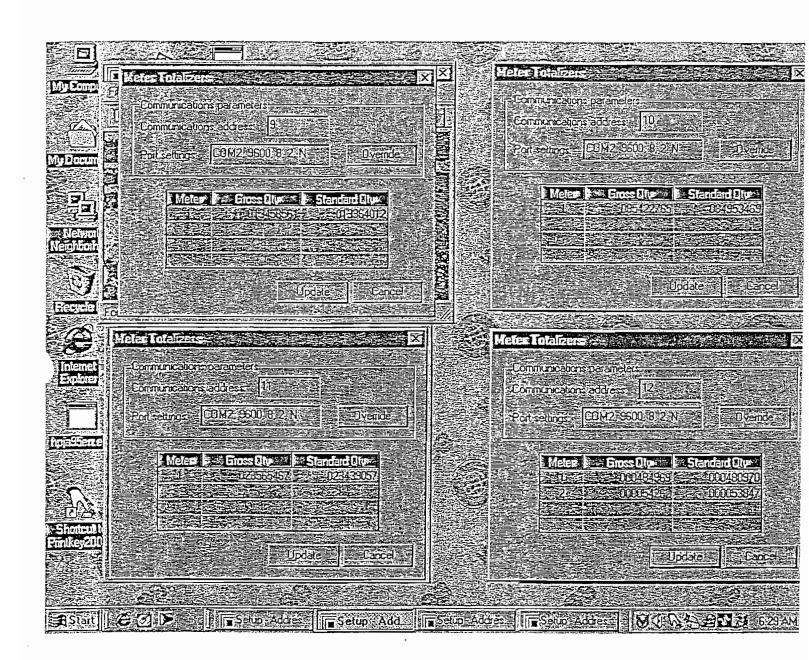
FACILITY: FLARE DATE: 08/26/2003

					T T	RACKTO	OTALS
LOCATION NO	METER NO	PRODUCT	PRODUCT	PRODUCT FINAL	STATION	DIESEL	GASOLINE
1	1	LSD	53560230	53588731	28,501	DICGEL	CAOOLINE
2	1	RNL	76732857	76745567	12,710		
3	1	SNL	4714431	4714431	0		
4	1	RNL	69722250	69733550	11,300		
4	2	SNL	4837832	4837832	0	28,501	24,010
5	1	LSD	45726247	45757210	30,963	20,001	21,010
6	1	RNL	66482028	66504530	22,502		
7	1	SNL	18839350	18842750	3,400		
8	1	RNL	59119623	59132650	13,027		
8	2	SNL	3786399	3788475	2,076	30,963	41,005
9	1	LSD	13458561	13467896	9,335		
10	1	RNL	85422765	85440566	17,801		
11	1 -	SNL	23565467	23569470	4,003		
12	1	RNL	484969	499352	14,383		
12	2	SNL	54262	54740	478	9,335	36,665
		_					r

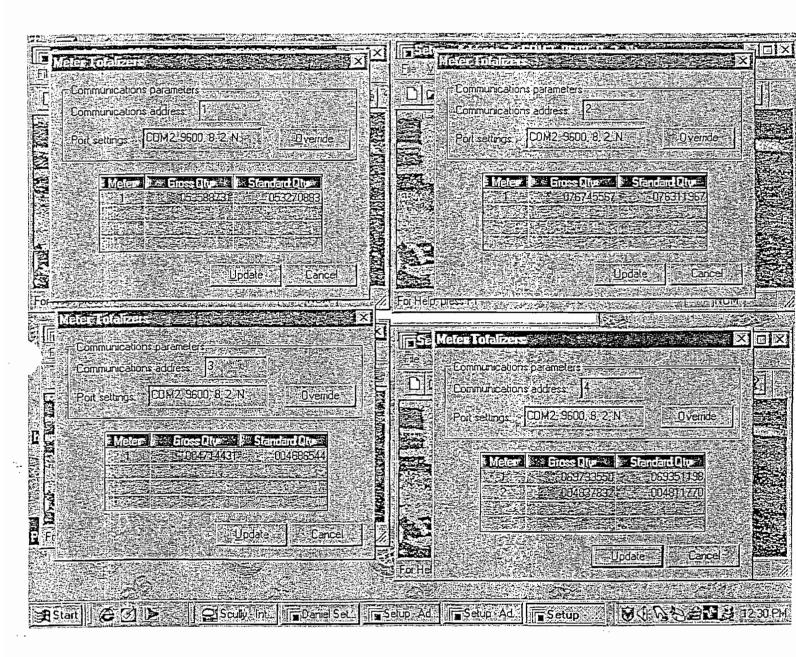
TOTAL PRODUCT DISPENSED (GALLONS)
TOTAL DIESEL DISPENSED (GALLONS)
TOTAL GASOLINE DISPENSED (GALLONS)
TOTAL GASOLINE DISPENSED (LITERS)

170,479 68,799 101,680 384,859 VAPOR TEST

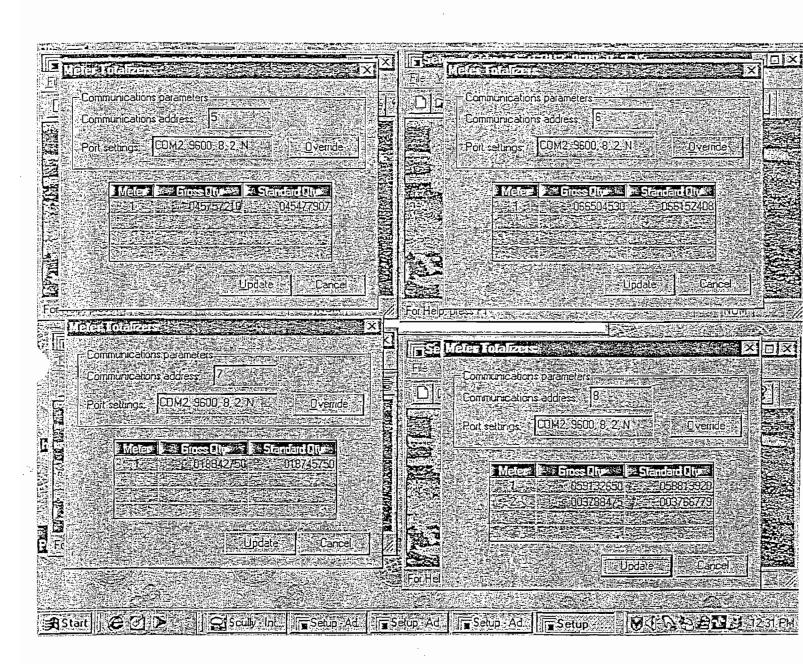
57MRT Pagel

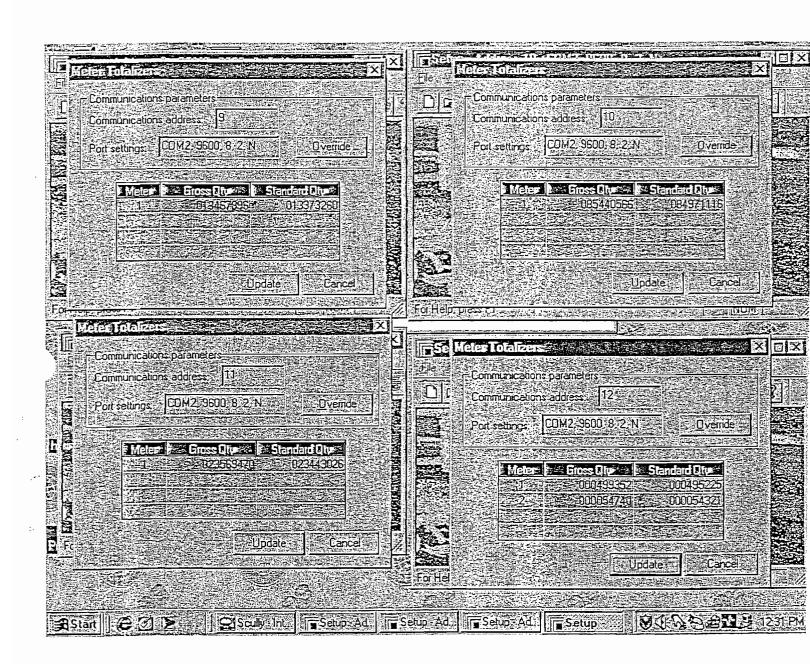

RNL

SNL


LSD

Stant Pagel


Start P. Page 3 TAFOR TEST


FINISH Pagel MALSD . 68,799 DR. DALS.

SNL = 9,957 DR. DALS.

AURIL = 91,723 BR. DALS.

Finish
Payez

Finish Page 3

VRU EMISSION CALCULATIONS

COMPANY: COASTAL FUELS - PORT CANAVERAL

FACILITY: VAPOR COMBUSTION UNIT

DATE: 08/26/2003

	METER				INLET V	OC, (AS PR	OPANE)	OUTLET	VOC, (AS P	ROPANEL	CAR	ON MONO	XIDE	CA	RBON DIOX	IDE	INLE	T	OUTL	ĒΫ	FLARE
	RDG.	STATIC	METER	BAROM.	ANALYZER	INSTRU.	O A ALL	ANALYZER	INSTRU.	TO AILL	ANALYZER	INSTRU.		ANALYZER	INSTRU.	102	GAS	·'	GAS		CONTROL
TIME	cf	PRESSURE	TEMP.	PRESSURE	READING	SCALE '	CONC.	READING	SCALE	CONC.	READING	SCALE	CONC.	READING	SCALE	CONC.	VOLUME	MASS	VOLUME	MASS	EFF.
(min)	#1	(*H2O)	(deg f)	("Hg)	(% CHART)	(%)	(%)	(% CHART)	(PPM)	(PPM)	(% CHART)	(PPM)	(PPM)	(% CHART)	(%)	(%)	(M3)*	(mg)	(M3)°	(mg)	(%)
0		((3-)		,			`	,	, ,	<u>, , , , , , , , , , , , , , , , , , , </u>	(, , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	· · · / _ ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V3)	()	(**3)	
5	1100	1	73	30.05	20	100	20	0	1,000	0	0.5	1,000	5	2	20	0.4	31.07	11,390,041	5031.48	0	100.00
10	1600	1	73	30.05	8	•100	8	0	1,000	0	0.5	1,000	5	1	20	0.2	14.12	2,070,917	1987.91	0	100.00
15	1700	1	73	30.05	6	100	6	2	1,000	20	0.5	1,000	5	1	20	0.2	2.82	310,637	288.05	10,560	96.60
20	2000	1	72	30.05	5	100	5	3	1,000	30	0.5	1,000	5	1	ŽÙ	0.2	8.49	778,053	709.42	39,011	94.99
25	2200	1	72	30.05	4.5	100	4.5	2	1,000	20	0.5	1,000	5	1	20	0.2	5.66	466,832	432.89	15,870	96.60
30	2400	0.5	73	30.05	4	100	4	2		20		1,000	5	1	20	0.2	5.64	413,678	383,60	14,063	96.60
35	2500	0.5	73		3.8	100	3.8	2	1,000	20		1,000	5	1	20	0.2	2.82	196,497	182.21	6,680	
40	2700	0.8	73	30.05	В	100	8	3		30		1,000	5	1	20	0.2	5.65	827,962	754.93	41,513	
45	2900	0.8	73		21	100	21	4	1,000	40		1,000	15		20	0.2	5.65	2,173,401	1938.49	142,130	
50	3200	0.6	74		33	100	33	3	1,000	30		1,000	50			0.5	8.45	5,110,925	1728.28	95,038	98.14
55	3600 4100	0.5	74 75		37.5 40	100	37.5	1.5 4.5		15 45		1,000	90 120	3.5		0.7 1.4	11.26	7,741,934	1853.83 1209.86	50,971 99,795	99.34 99.03
60 65	4800	0.5	75		44	100	44	4.3	1,000	20		1,000	170			1.4	19.67	10,315,874	2176.78	79,801	99.03
70	4800	0.5	75		45	100	45		1,000	20		1,000	10			0.4	19.07	13,001,031	2170.70	19,001	99,50
75	4900	1			44	100	44	1		10		1,000	15			0.8	2.81	2,265,258	478.69	8,774	99.61
80	5200	i			22	100	22			20		1,000	80			0.8	8.43	3,397,887	709.34	26,004	99.23
85	5400				12	100	12	1.5		15		1,000	50			0.5	5.62	1,235,595	421.74	11,596	99.06
90	6200	2	76	30.05	10	100	10	2	1,000			1,000	40	3	20	0.6	22.52	4,128,704	1165.05	42,711	98.97
95	7000	1	77	30.05	18		18	3.5				1,505	60			1	22.43	7,399,767	1227.66	78,761	98.94
100	7700	1	78		35		35	3.5					150			1.2	19.59	12,566,479	1720.37	110,371	99.12
105	7900	0.5			43		43	0.5			~	1,000	80		20	0.8	5.58	4,397,533	923.32	8,462	99.81
110	7900	0.5	80		43		43	2	1,000			1,000	10			0,3					
115	8100	1	78		42		42	3				1,000	30			0.4	5.60	4,308,507	1845.96	101,509	
120	9100	1			46		46	3					200			1.6		23,550,432	2410.51	132,554	
125	9700				41	100	41	2.5				1,000	150			1.2	16.77	12,602,723	1729.68	79,262	
130	10200	0.5	82		34		34	2.5				1,000	150			0.9	13.95	8,693,071	1433,51	65,691	99.24
140	10600	1			46.5			 ¦	1,000				100				11.10	8,548,660	1579.15	28,946	99.66
145	10700		83		45.5	100	45.5	1					100				2.77	2,313,820	988.76	18.124	99.22
150	11000	1	84		35			3									8.31	5,329,770	1783.85	98.094	
155	11600	1			25		25	13	11222									7,613,957	1579.40	86.851	98.86
160	12000	1.5	83	30.07	27	100	27	3		30			180	7			33,33	16,496,530	1932.66	106,277	99.36
165	13200	0.8	88	30.07	-29	100	29	2	1,000	20	12	1,000	120	5	20	1	10.99	5,842,296	967.80	35,480	99.39
170	. 13200	0.5	97	30.07	36.5	100	36.5	0	1,000			1,000	10					_			
175		0.5	101	30.07	35		35	0	-14			1,000	0								
180	13800	0.5	89		28		28	4				1,000				0.8	16.44	8,439,661	1755.13	128,686	98.48
185	13800	0.5	92		40		40	3									10.12	10044 154	2207.22	405.625	60.05
190	14500 14800	0.6	89 89		47.5 45		47.5 45	3	1,000			1,000	140			1.2		6,790,152	2287.92 860.15	125,813 47,300	
200	14800	1	90		25		25	3		1		· ·	100					0,790,152	000.13	47,300	99.30
200	15400	l	90	,	16		16		1,000	10		1,000	80					4,802,310	497.14	9,113	99.81
210	15800	0.5			10		10		1,000	20		1,000	20					1,973,496	330.26	12,107	99.39
215	15800	0.5	105		9													1,070,490	- 550.20	12,101	33.33
220	15800	1	100		9		9		1,000	30											†
225	16400	1			20				1,000	40		1,000					16.32	5,981,217	1420.79	104,172	98.26
230	17 100	i			34			1 3	1,000								19.14	11,927,335	1961.91	107,885	
235	17900	1			40			4	1,000	40		-11			20		21.91	16,065,911	1752.96	128,527	99.20
240	18200	0,4	99	30.07	48	100		1	1,000	10	15				20		8.07	7,102,850	837.53	15,352	99.78
245	18200	0.4	100		47		47	0	1,000	0	0	1,000									
250	18200	0.3	100	30.07	45	100	45	0	1,000	0	0	1,000	0	10	20						

VEV EMISSION CALCULATIONS

COMPANY: COASTAL FUELS - PORT CANAVERAL FACILITY: VAPOR COMBUSTION UNIT

DATE: 08/26/2003

	METER				INLET V	OC, (AS PR	OPANE)	OUTLET	OC, (AS P	ROPANE)	CARI	BON MON	OXIDE	CAI	RBON DIO	IDE	INL	ET	OUTL	ET	FLARE
l l	RDG.	STATIC	METER	BAROM.	ANALYZER	INSTRU.	\mathcal{A}	ANALYZER	INSTRU.		ANALYZER	INSTRU.		ANALYZER	INSTRU.		GAS		GAS		CONTROL
TIME	cf	PRESSURE	TEMP.	PRESSURE	READING	SCALE	CONC.	READING	SCALE	CONC.	READING	SCALE	CONC.	READING	SCALE	CONC.	VOLUME	MASS	VOLUME	MASS	EFF.
(min)	#1	(°H2O)	(deg f)	("Hg)	(% CHART)	(%)	(%)	(% CHART)	(PPM)	(PPM)	(% CHART)	(PPM)	(PPM)	(% CHART)	(%)	(%)	(M3)*	(mg)	(M3)*	(mg)	(%)
255	18700	1	94		43			2	1,000	20	5	1,000			20	1.2	13.60	10,716,347	1485.10	54,444	99.49
260	19500	1	94		32	100	32	5	1,000	50	20				20	0,6	21.75	12,759,929		316,362	97.52
265	20700	1.5		30,07	37.5	100	37.5	2	1,000	20	16				20		32.67	22,456,919		343,728	98.47
270	21800	1	95		40		40	2.5	1,000	25	15				20	1.4	29.86	21,891,613	2573.01	117,908	99.46
275	21800	0.5			31	100	31	2.5	1,000	25	9	1,000			20	1					
280	22100	0.7	101	30.07	15			2	1,000	20	4	1,000	40		20	1	8.05	2,213,348	369.64	13,551	99.39
285	22500	0.4	103		10		10	1	1,000	10	3	1,000		7	20		10.69	1,958,996	233.01	4,271	99.78
290	22700	0.4			7.5	100	7.5	3	1,000	30	0.5	1,000	5	- 3	20	0.6	5.32	732,023	206.74	11,369	98.45
295	23100	0.6		30.07	8	100	8	3	1,000	30	<u> </u>	1,000	0	6	20		10.62	1,556,901	216.13	11,885	99.24
300	23100	0			9		9		.,	0	0	1,000		4	20	0.8			 		
305	23100	0			8,5	, , , , , ,	8.5	0	1,000	- 0	- 0	1,000		3	20	0.6			 		
310	23100	0.5		30.07		100	8	0	1,000	<u> </u>	- V	1,000		4					 		
315	23100	0			7.5	100	7.5		1,1000		<u>u</u>	1,000			20 20	0,4			\longmapsto		
320	23100	0		30.07			7.5	0	1,000	0	0	1,000							 		
325	23100	Ū			7.5			0	-,		<u> </u>	1,000		2	20	0.4		776 806	I		
330	23300	0.5			8	100	10	6	1,000		0.5			1	20			775,525	673.35	74,055	90.45
335	23400	0.5			10			4	1,000		2	1,000			20		2.65	485,556	80.76	5,921	98.78
340	24300		105		19			3	1,000			1,000			20			8,357,295	988.30	54,347	99.35
345	24700	1	105		20		13	I4	1,000			-1	-		20		10.67	3,909,846	645.07	47,297	98.79
350	24900	0.5		30.07	13		20	$-\frac{3}{2}$	1,000		4	1,000			20			1,264,673	540.43	29,718	97.65
355 360	25600	0.5		30.07	25		25		1,000		4	1,000			20			6,809,779	1921.60	70,446	98.97
TOTAL		0.5	107	30.07		100		2	1,000	20	1 4	1,000	40	1 4	20	U.8	705,166	364,003,677	1 30 040	3 165 155	
AVERA		0.7	90	30.06	25.6		. 26	2.2		22	6		63			0.0		364,003,677	76,040	3,469,155	00.40
AVERA	UE	0,7	90	30,06	23.6		. 20	2.2		22	Ь		63	4		0.8					98. 48

^{*} At standard conditions of 68 deg F and 29.92in. Hg)

EQUATIONS

VOLUME

$$V_{std} = (V_f - V_i) \times Y_m \times [P_{bar} + (P_g/13.6)]/P_{std} \times [T_{std}/T_m]$$

where:

V_{std} = Meter volume at standard conditions, ft.³ at 528°Rankin and 29.92 in. Hg

 Y_m = Meter correction factor

 V_f = Final meter reading (ft. 3)

 $V_i = Initial meter reading (ft.³)$

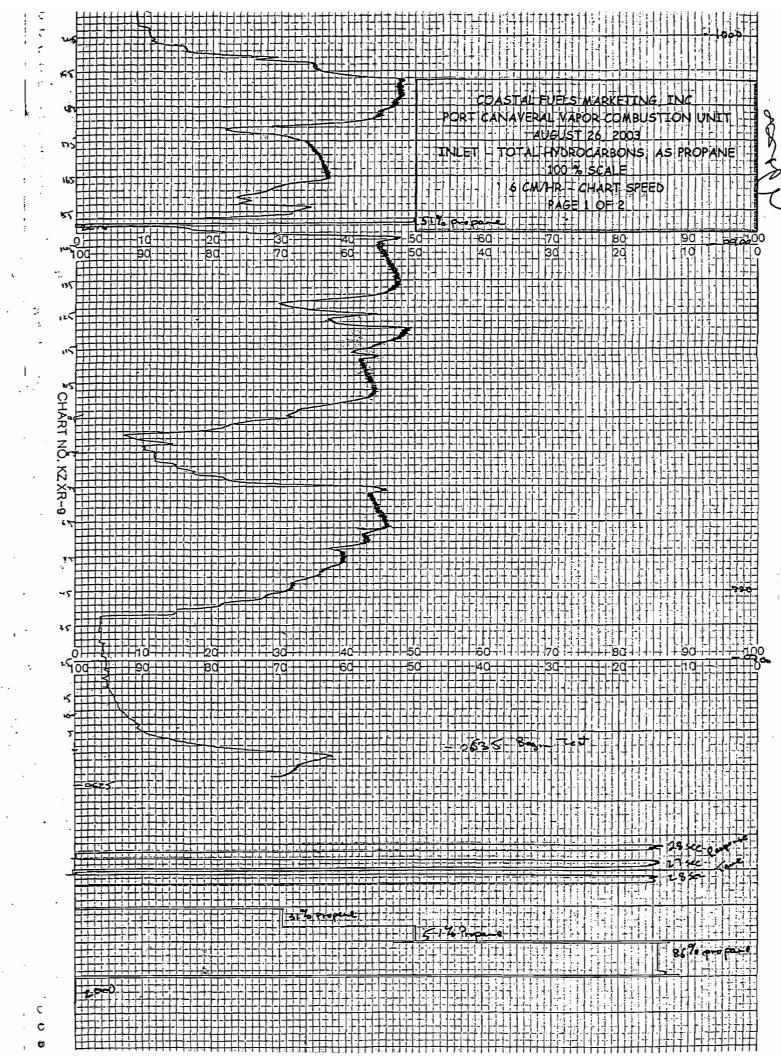
P_{har} = Barometric pressure (in. Hg)

 P_g = Static pressure in duct (in. H_2O)

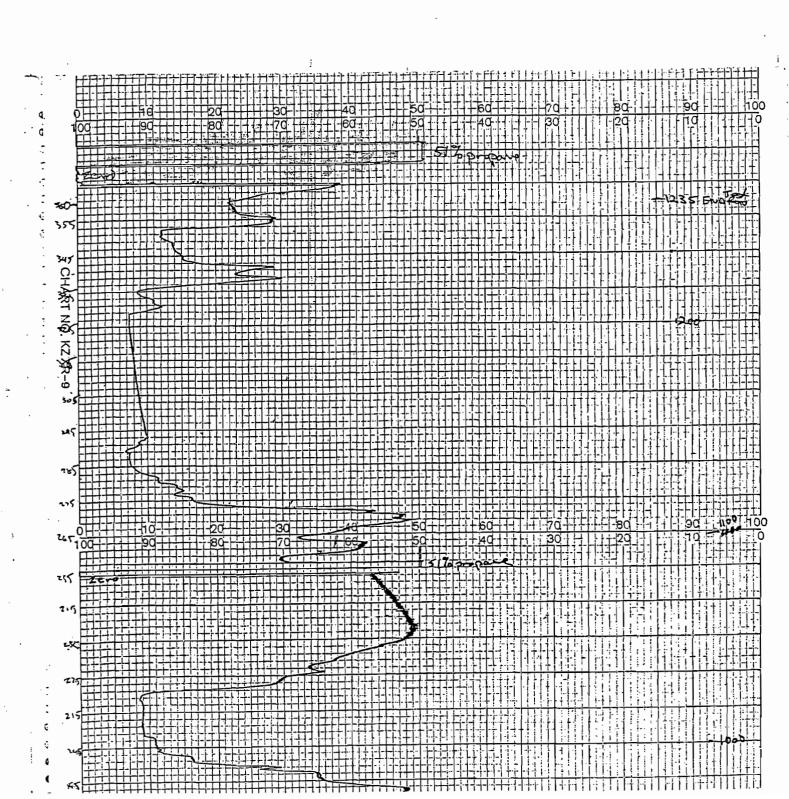
 P_{std} = Standard pressure, 29.92 in. Hg

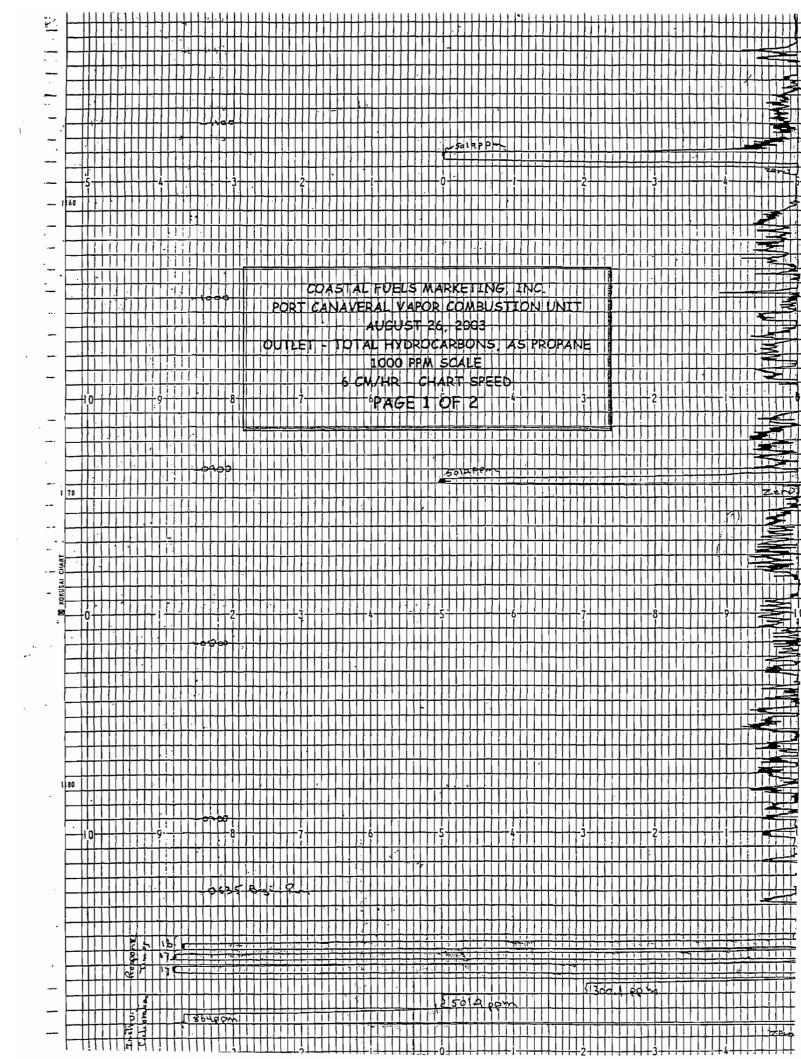
 T_{std} = Absolute standard temperature, 528°Rankin

T_m = Absolute meter temperature (°Rankin)


ORIFICE VELOCITY (5 MINUTE INTERVAL)

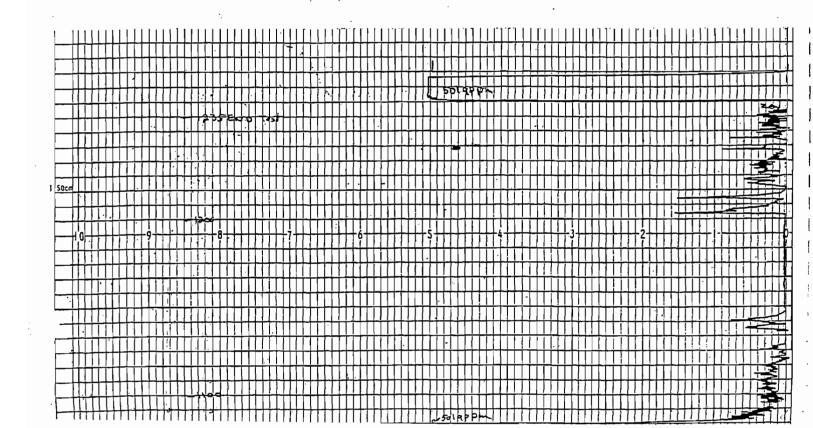
$$V_{o} = V_{std} / (A_{o} x 5 min x 60 sec/min)$$

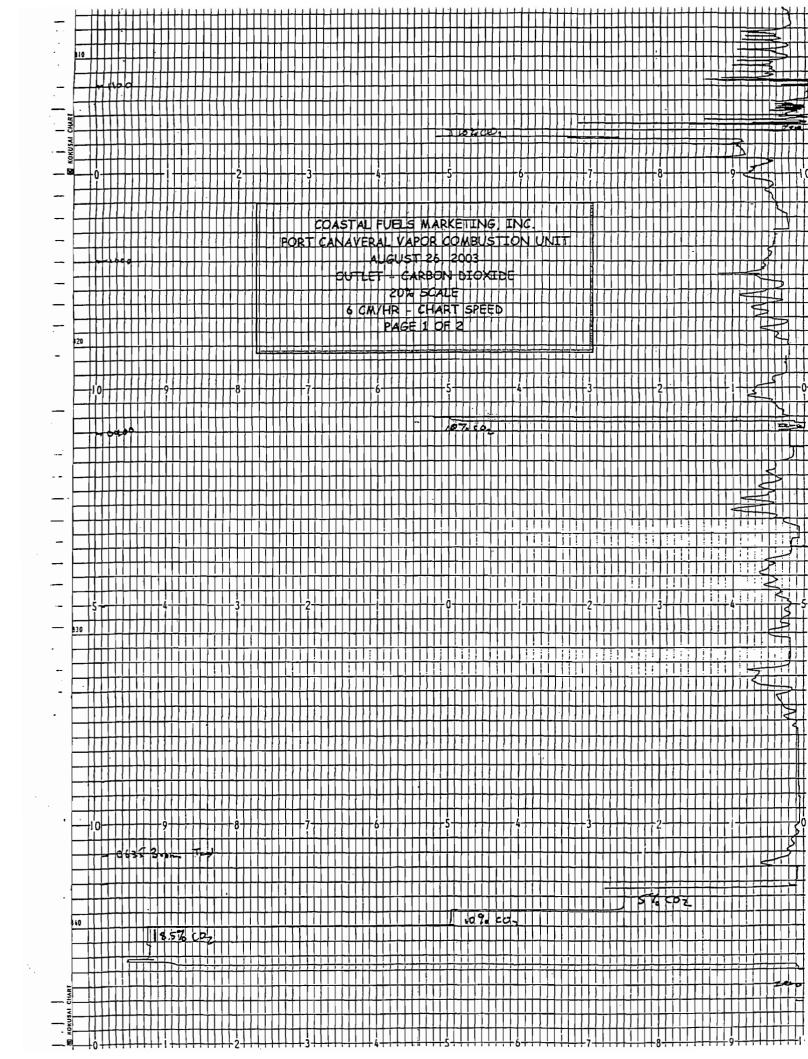

where:


 V_{O} = Velocity at flare burner orifice (ft./sec.)

 A_0 = Total area of orifice openings (ft.²)

COASTAL FUELS MARKETING, INC.
PORT CANAVERAL VAPOR COMBUSTION UNIT
AUGUST 26, 2003
INLET - TOTAL HYDROCARBONS, AS PROPANE
100 % SCALE
6 CM/HR - CHART SPEED
PAGE 2 OF 2



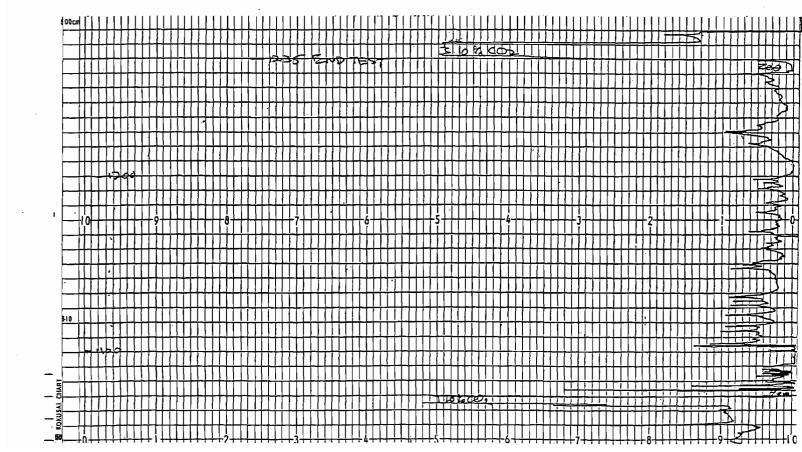


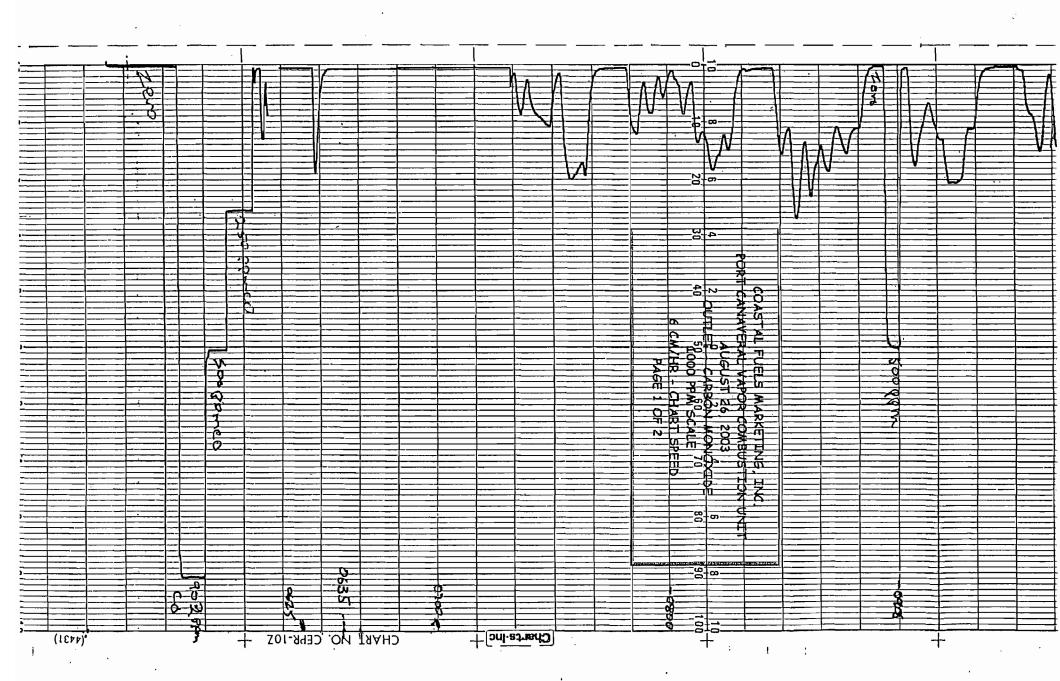
COASTAL FUELS MARKETING, INC.
PORT CANAVERAL VAPOR COMBUSTION UNIT
AUGUST 26, 2003

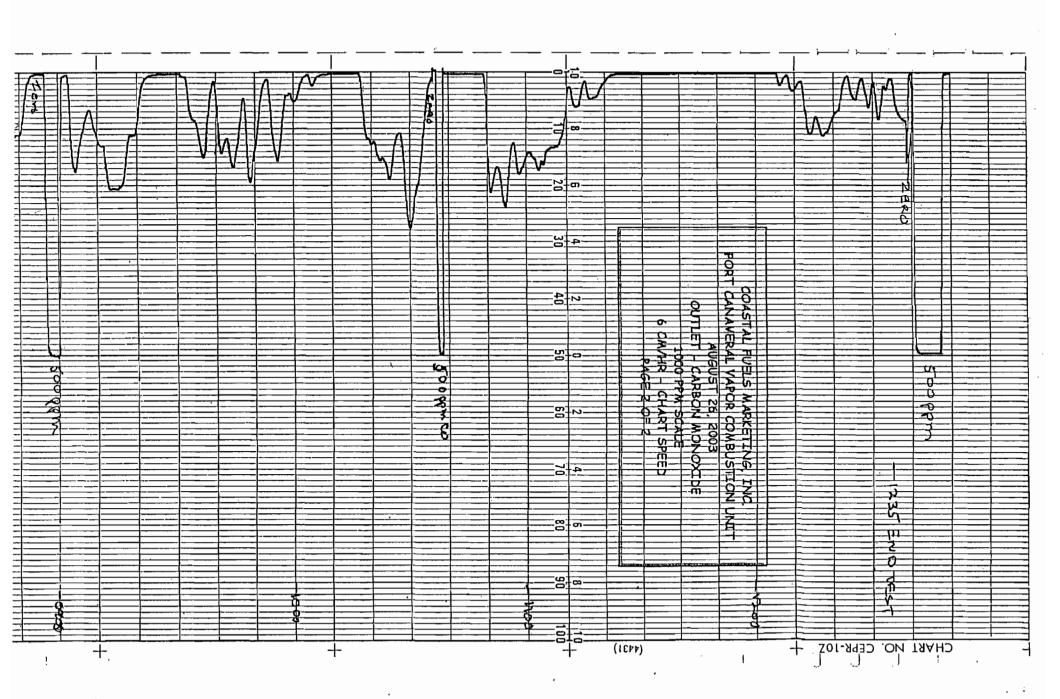
OUTLET - TOTAL HYDROCARBONS, AS PROPANE
1000 PPM SCALE
6 CM/HR - CHART SPEED

PAGE 2 OF 2

COASTAL FUELS MARKETING, INC.
PORT CANAVERAL VAPOR COMBUSTION UNIT


AUGUST 26, 2003


OUTLET - CARBON DIOXIDE


20% SCALE

6 CM/HR - CHART SPEED

PAGE 2 OF 2

GAS DILUTION SYSTEM FIELD EVALUATION

COMPANY	COASTAL FUELS MARKETING, INC.
SOURCE	PORT CANAVERAL VAPOR COMBUSTION UNIT
	08/26/2003
DILUTION INSTRUMENT	ENVIRONICS MODEL 2020
SERIAL#	1899
MEASUREMENT INSTRUMENT	CALIFORNIA ANALYTICAL
SERIAL#	
SUPPLY GAS	8606 PPM

SUPPLY		PREDICTED		INJECTION						
GAS		GAS CONC.	#1	#2	#3	AVERAGE	ACC	EPTA	ABLE	%
(PPM)	MFM#	. (PPM)	(PPM)	(PPM)	(PPM)	(PPM)	ļ ,	RANG	E	DIFFERENCE
8606	2	8100	8100	8050	8060	8070.0	8231.4	to	7908.6	-0.4%
8606	2	2500	2520	2520	2520	2520.0	2570.4	to	2469.6	0.8%
								to		
								to		
MID RANGE		5143	5100	5050	5100	5083.3	5185.0	to	4981.7	-1.2%

EPA METHOD 205 - VERIFICATION OF GAS DILUTION SYSTEMS FOR FIELD INSTRUMENT CALIBRATIONS 40 CFR 51, APPENDIX M

1204 North Wheeler Street St. Plant City, Florida 33566 (813) 752-5014

METHOD 25A CALIBRATION

TEST DATA	
DATE	04/26/2003
COMPANY	COASTAL FUEL MARKETING, INC.
SOURCE	PORT CANAVERAL VAPOR COMBUSTION UNIT

	MONITOR	RECORDER
MANUFACTURER	CALIF. ANAL.	YOKAGAWA
MODEL NO.	HID300(M)	302111
SERIAL NO		
RANGE (%)	100	6 CM/HR

CALIBRATION GAS	ES		
SUPPLIER	AIR PRODUCTS		
CYLINDER #	PROPANE		
CONCENTRATION	99.95	,	
EXPIRATION DATE			

RESPONSE TIME TEST 1)	28	SECONDS	2)	27	SECONDS	3)	28	seconds	
Low-level	gas response	Predicted:	31	%	Actual:	30.5	%	% diff.	-1.6
Mid-level	gas response	Predicted:	51	%	Actual:	50.3	%	% diff.	-1.4
Linear Regres	sion Analysis	Slope:	1	Intercept:	0				
Adjusted span (jas response	86	%						
Adjusted zero	gas response	0	%						
Se	elected Range	100	%						

DRIFT DETERMINA	TION						
	Zero	Spart					
	Response		Response	Actual			
Tine	(ppm)	% diff.(span)	(%)	(%)	% diff.(span		
0910	. 0	0	50	51	-2.0		
1050	0	0	50.3	51	-1.4		
1240	0	0	50.7	51	-0.6		
<u> </u>							
					<u> </u>		

1204 North Wheeler Street St. Plant City, Florida 33566 (813) 752-5014

METHOD 25A CALIBRATION

TEST DATA	
DATE	08/26/2003
COMPANY	COASTAL FUELS MARKETING, INC.
SOURCE	PORT CANAVERAL VAPOR COMBUSTION UNIT

	MONITOR	RECORDER
MANUFACTURER	CALIF. ANAL.	YOKOGAWA
MODEL NO	HID300(M)	BD211
INSTR. NO.		
RANGE (PPM)	1,000	6 CM/HR

CALIBRATION GAS	E\$		
SUPPLIER	AIRGAS	AIRGAS	AIRGAS
CYLINDER #	SG91655331	SG9102825	SG896044
CONCENTRATION	- 864	501.9	300.1
EXPIRATION DATE	04/05/2006	07/07/2005	04/02/2006

TEST PERIOD Start Time:	0635								
1)	17	SECONDS	2)	17	SECOND	3)	17	seconds	3
RESPONSE TIME TEST									
Low-level gas res	ponse	Predicted:	300.1	ppm	Actual:	295	ppm	% diff.	-1.7
Mid-level gas res	ponse	Predicted:	501.9	ppm	Actual:	498	ppm	% diff.	-0.8
Linear Regression Ar	nalysis	Slope:	1	Intercept:	0				-
Adjusted span gas res	oonse	864	ppm						
Adjusted zera gas res	ponse	0	ppm]					
Selected	Range	1000	ppm						

DRIFT DETERMINA	FION				
	Zero			Span	
	Response		Response	Actual	
Time	(ppm)	% diff.(span)	(ppm)	(ppm)	34fb %
0855	0	0	500	501.9	-0.4
1048	0	0	500	501.9	-0.4
1240	0	0	502	501.9	0.0
					,

1204 North Wheeler Street St. Plant City, Florida 33563 (813) 752-5014

INSTRUMENT CALIBRATION

TEST DATA				
DATE	08/26/2003			
COMPANY	COASTAL FUELS MARKETING			
SOURCE	PORT CANAVERAL VAPOR COMBUSTION UNIT			
PARAMETER	CARBON DIOXIDE			
TECHNICIAN	X. 208EZ7S			

INSTRUMENT DATA		
	MONITOR	RECORDER
MANUFACTURER	CALIF. ANAL.	YOKAGAWA
MODEL NO.	110	SINGLE PEN
SERIAL NO.		
RANGE (%)	20	6 CM/HR

CALIBRATION GASE	S	
SUPPLIER	Spectra Gases	
CYLINDER #	CC83934	
CONC. (%)	19.9	
EXPIRATION DATE	03/23/2004	

POINT	OBSERVED CONC.	ACTUAL CONC.	PERCENT DIFF.
1	0	0	0.00
2	5	5	0.00
3	9.9	10	-0.50
4	18.5	18.5	0.00

Regression Output:

,	
	-0.0177
	0.0607
	1.0000
	4
	2
0.9991	
0.0044	

1204 North Wheeler Street St. Plant City, Florida 33566 (813) 752-5014

INSTRUMENT CALIBRATION

TEST DATA	
DATE	08/26/2003
COMPANY	COASTAL FUELS MARKETING
SOURCE	PORT CANAVERAL VAPOR COMBUSTION UNIT
PARAMETER	CARBON MONOXIDE
TECHNICIAN	T. ROBERTS

INSTRUMENT DATA		_
	MONITOR	RECORDER
MANUFACTURER	TECO	METRONIC
MODEL NO.	48	
SERIAL NO.	48-27158-228	
RANGE (PPM)	1000	6CM/HR

CALIBRATION GASE	S	
SUPPLIER	SPECTRA GASES	
CYLINDER #	CC-126519	
· CONC. (%)	902	
EXPIRATION DATE	07/03 <u>/</u> 2006	

POINT	OBSERVED CONC.	ACTUAL CONC.	PERCENT DIFF.
1	0	0	0.00
2	255	250	0.50
3	505	500	0.50
4	908	902	. 0.60

Regression Output:

<u> </u>	1.6234
	1.9109
	1.0000
	4
	2
1.0058	
0.0029	

Device Type	Magnehelic	Calibration Date	04/01/2003
Range	0 - 5" H2O	Calibrated by	K. Roberts
Manufacturer	Dwyer_	Reference Device	Manometer
Serial No.	R890411RR3	Measurement Units	" H2O

Device Reading	Reference Device Reading	% Difference*
. 0.0	0.0	0.00
1	1	0.00
2.5	2.5 ·	0.00
4.1	4	2.50
5.1	5	2.00

^{* %} difference shall not exceed +/- 5%

Device Type	Magnehelic	Calibration Date	04/01/2003
Range	0 - 20" H2O	Calibrated by	K. Roberts
Manufacturer	Dwyer	Reference Device	Manometer
Serial No.	R9602025L4	Measurement Units	" H2O

Device Reading	Reference Device Reading	% Difference*
. 0	0	0.00
5.1	. 5	2.00
10	10	0.00
15.3	15	2.00
19.9	20	-0.50

^{* %} difference shall not exceed +/- 5%

Device Type	Magnehelic	Calibration Date	04/01/2003
Range	0 - 20" H2O (M2)	Calibrated by	K. Roberts
Manufacturer	Dwyer	Reference Device	Manometer
Serial No.	R940629LPB12	Measurement Units	" H2O

Device Reading	Device Reading Reference Device Reading		
- 0	0	0.00	
5	5	0.00	
10.1	10	1.00	
14.9	15	-0.67	
20	20	0.00	

^{* %} difference shall not exceed +/- 5%

Device Type	Magnehelic	Calibration Date	04/01/2003
Range	0 - 20" H2O (M3)	Calibrated by	K. Roberts
Manufacturer	Dwyer	Reference Device	Manometer
Serial No.	R940629LPD23	Measurement Units	" H2O

Device Reading	Reference Device Reading	% Difference*
0	_ 0	0.00
5	5	0.00
10	10	0.00
15.2	15	1.33
19.6	20	-2.00

^{* %} difference shall not exceed +/- 5%

SOUTHERN ENVIRONMENTAL SCIENCES, INC. THERMOMETER CALIBRATIONS

Calibrated By/Date: T. Wilson 3/31/03

ALL TEMPERATURES ARE DEGREES RANKIN

			7, 7711007	ICE BATH		TE	PID WAT	ER	BOII	ING WA	TER	ŀ	IOT OII	
ID No.	Туре	Range	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff .	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff
T1	PT	2000° F	495	496	0.2%	539	537	0.1%	672	670	0.2%	860	861	0.3%
T2	PT	2000° F	495	497	0,2%	539	537	0.1%	673	672	0.2%	870	872	0,3%
тз	PT	2000° F	495	497	0.2%	539	538	0.1%	673	671	0.3%	870	872	0.2%
T4	PT	2000° F	494	496	0.2%	539	538	0.1%	674	672	0.3%	863	864	0.2%
Т6	PT	2000° F	494	498	0.2%	539	538	0.2%	672	670	0.2%	860	862	0.2%
Т6	РТ	2000° F	494	498	0.2%	539	537	. 0.3%	672	674	0.3%	852	854	0.2%
Т7	PT	2000° F	495	497	0.2%	539	538	0.3%	673	671	0.2%	853	854	0.3%
Т8	PT	2000° F	495	496	0.1%	539	537	0.2%	674	672	0.1%	864	865	0.2%
Т9	PT	2000° F	495	497	0.1%	539	538	0.3%	673	671	0.1%	854	856	0.3%
Lab 14	ВМ	212° F	494	495	1°	536	635	1°	672	673	2°	-	-	
15	8M	250° F	494	495	1°	536	535	1°	672	672	2°	•	-	
16	ВМ	220° F	494	496	1°	536	536	2°	672	672	3°		-	•
SS110	8M	220° F	494	496	1°	540	539	2°	670	672	2°	-	-	_
SS300	PT	2000 °F	495	497	0.2%	540	538	0.1%	674	672	0.2%	850	852	0.2%
SS301_	PT	2000° F	495	497	0.2%	540	638	0.2%	672	670	0.1%	856	858	0.2%
55306	PT	2000° F	495	496	0.2%	540	538	0.2%	672	670	0.2%	856	858	0.2%
2.5'PA	PT	2000° F	495	496	0.2%	541	538	0.0%	673	672	0.2%	862	854	0.3%
2.5'PB	PT	2000° F	495	. 497	0.2%	541	638 .	0.0%	672	674	0.3%	856	858	0.3%
3'Р	PT	2000° F	. 495	497	0.2%	541	539	0.1%	673	675	0.2%	858	860	0.3%
3'INC	РТ	2000° F	494	498	0.1%	540	638	0.1%	676	678	0,2%	852	854	0.3%
5'PA	РТ	2000° F	494	496	0.3%	540	539	0.0%	672	674	0.3%	856	858	0.2%
5'P8	PT	2000° F	495	497	0.3%	540	538	0.1%	674	672	0.3%	856	858	0.3%
5'PC	PΤ	2000° F	495	497	0.3%	540	538	0.2%	674	672	0.1%	856	858	0.3%
5'VP	PT	2000° F	495	497	0.2%	541	540	0.2%	676	678	0.2%	856	858	0.2%
5'INC	РT	2000° F	494	496	0.3%	542	540	0.1%	674	676	0.1%	850	852	0.3%
B'PA.	РТ	2000° F	494	496	0.3%	541	538	0.0%	676	678	0.2%	856	858	0.2%
8'PB	РТ	2000° F	494	495	0.3%	541	539 '	0.1%	676	678	0.3%	856	858	0.2%
10'P	РТ	2000° F	494	495	0.2%	541	539	0.0%	674	676	0.3%	854	856	0.2%
	Quality Control Limits: Impinger Thermometers 2°F, Bimetalic Thermometers(8m) + 5°F, Pyrometers/Thermocouples(PT) + 1.5%													

Southern Environmental Sciences, Inc. 1204 North Wheeler Street Plant City, Florida 33566 (813)752-5014

COMBUSTIBLE GAS DETECTOR CALIBRATION

INSTRUMENT

Manufacturer	Gastech	
Model No.	G-7105	
Serial No.	9708311	

CALIBRATION GAS DATA

	Zero	Span
Gas Type	Zeno Air	methane
Concentration (PPM)	0	25,370
Supplier	Airgas	AinProducts

CALIBRATION

	Observed Conc. (PPI	Actual Conc. (PPM)	Percent Diff.
ZERO	6	0	O
SPAN	50% LEL	50% LEL	0
Response Time	6		
Calibration Date	8/26/03	Signature: \alpha	ales

Note: For methane 10,000 PPM = 20% LEL

Southern Environmental Sciences, Inc. 1204 North Wheeler Street Plant City, Florida 33566 (813)752-5014

COMBUSTIBLE GAS DETECTOR CALIBRATION

INSTRUMENT

Manufacturer	Gastech	-	
Model No.	G-7105		
Serial No.	9709402		

CALIBRATION GAS DATA

	Zero	Span
Gas Type	zero Ain	Methane
Concentration (PPM)	0	25,370
Supplier	AirGas	An Products

CALIBRATION

	Observed Conc. (PPM)	Actual Conc. (PPM)	Percent Diff.
ZERO	6	0	0
SPAN	50% LEL	50% LEL	0
Response Time	5.5		
Calibration Date	812-61.03	Signature: Can	-lest

Note: For methane 10,000 PPM = 20% LEL

BEST AVAILABLE COPY

Southern Environmental Sciences, Inc.

1204 North Wheeler Street Plant City, Florida 33566 (813) 752-5014

TURBINE METER CALIBRATION

Turbine Meter No	94-54464
Pipot Cp	0.99
Calibration Date	04/25/2003
Serial No.	B. Nelson

	Run 1	Run 2	Run 3
P1	0.03	0.03	0.03
P2	0.03	0.03	0.02
Paragraphic Property Paragraph	0.03	0.03	0.03
Delta P. Readings ("H2O)	0.03	0.03	0.03
P5	0.03	0.02	0.03
R6.	0.03	0.03	0.03
	0.02	0.02	0.02
P81	0.02	0.03	0.03
Avg Sg-Rt-of Delta P-("H2O)-	0.1653	0.1653	0.1653
	74	75	74
	74	75	75
	74	75	75
Temp: Readings (Deg F): 54-5514	74	75	75
15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	74	75	75
16.	74	75	76
	74	75	76
- T8:	75	75	75
-Avg Temperature	74.125	75.0	75.1
Static Pressure ("H2O)	0.68	0.65	0.64
元 Barometric Pressure ("月g)、	30.02	30.02	30.02
Moisture (%)	2.0	2.0	2.0
Total Pressure (FHg)	30.07	30.07	30.07
Molecular Weight	28.54	28.54	28.54
Duct-Diameter (inches)	12	, 12	12
Duct Area (sq. ft)	0.7854	0.7854	0.7854
Duct Velocity (ft/min).	11.04	11.05	11.05
Reference Flowrate (ACFM)	520.4	520.9	520.9
Test Meter Flowrate (ACFM):	530	530	530
Difference (%)	1.8	1.7	1.7

Average Difference (%)	1.75
Tolerance (%)	5