

December 18, 1997

Mr. Scott M. Sheplak, P.E. Department of Environmental Protection 111 South Magnolia Drive, Suite 4 Tallahassee, Florida 32301

Dear Mr. Sheplak:

RE: Plant Lansing Smith Title IV Phase II NOx Compliance Plan

ORIS Code: 643

FDEP Draft Permit No: 005014-001-AV

Attached, please find Gulf Power's Phase II NOx Compliance Plan and associated NOx Averaging Plan for the Lansing Smith Electric Generating Plant (ORIS Code 643). Please note that the original signed copy of the averaging plan is attached to Gulf Power's Crist Title IV NOx Compliance Plan submission dated December 18, 1997.

The NOx compliance plan for this unit utilizes a NOx averaging plan that includes other affected units in the Southern Company. Title V permitting authorities with jurisdiction over the units in the plan include the States of Alabama, Georgia and Mississippi, as well as the Jefferson County Department of Health in Alabama. Our sister operating companies within the Southern Company are providing their respective state environmental regulatory agencies a copy of this NOx averaging plan with their Phase II NOx permit compliance plans, thereby fulfilling the requirement of the General Instructions (Item 4a) to provide a copy of the plan to other Title V permitting authorities with jurisdiction over any units in the plan.

If you have any questions or need further information regarding the Lansing Smith Title IV Phase II Compliance and Averaging Plan, please call me at (850) 444.6527.

Sincerely,

G. Dwain Waters, Q.E.P.

Air Quality Programs Coordinator

Page 2 Mr. Scott Sheplack December 18, 1997

cc: Robert G. Moore., <u>Gulf Power Company</u>
James O Vick, <u>Gulf Power Company</u>
L. A. Jeffers, <u>Gulf Power Company</u>
Stan H. Houston, <u>Gulf Power Company</u>
Danny Herrin, <u>Southern Company Services</u>
Brian L. Beals <u>EPA Region IV</u>

Page 1

STEP 1

alternative contemporaneous annual emissions limitation in lb/mmBtu to each unit. In column (c), assign an annual heat input limitation in mmBtu to each unit. Continue to page 3 if

necessary.

STEP 2

latter.

Use the formula to enter the Btu-weighted annual emission rate averaged over the units if they are operated in accordance with the proposed averaging plan and the Btu-weighted annual average emission rate for the same units if they are operated in compliance with 40 CFR 76.5, 76.6, or 76.7. The former must be less than or equal to the

Identify the units participating in this averaging plan by plant name, State, and boiler ID# from NADB. In column (a), fill in each unit's applicable emission limitation from 40 CFR 76.5, 76.6, or 76.7. In column (b), assign an

Phase II NO_x Averaging Plan

For more information, see instructions and refer to 40 CFR 76.11

nis submission is: X New	Revised				Page of
			(a)	(b)	(c)
Plant Name	State	ID#	Emission Limitation	Alt. Contemp. Emission Limitation	Annual Heat Inpu Limit
See Page 3					
					-
				<u> </u>	
Btu-weighted averaged ove operated in a proposed	annual emission ra or the units if they a accordance with the d averaging plan	nte re e	operated in	d annual avera e for same ur compliance w .5, 76.6 or 76	<i>i</i> ith
0.4604	1	٤	0.460)5	
	$\frac{(R_{Li} \times HI_{i})}{P_{Li}}$	٤	$\frac{\sum_{i=1}^{n} [}{\sum_{i=1}^{n}}$	$\frac{R_{11} \times HI_{i}}{HI_{i}}$	
Where, R _{Li} = R _{II} =	Alternative contermodule in the state of the	cified in col	umn (b) of Ste	p 1:	
HI, =	Annual heat inpu	t for unit i, iı	n mmBtu, as si	pecified in col	umn (c) of Step 1

Number of units in the averaging plan

EPA Form 7610-29 (3-97)

n

Southern Company Averaging Plan Participating Plants

Plant Name (from Step 1) as Listed in Step 1.

NO_x Averaging - Page 2

STEP 3

Mark one of the two options and enter dates. This plan is effective for calendar year _____ through calendar year ____ unless notification to terminate the plan is given.

Treat this plan as χ identical plans, each effective for one calendar year for the following calendar years: 2000, 2001, 2002, 2003 and 2004 unless notification to terminate one or more of these plans is given.

STEP 4

Read the special provisions and certification, enter the name of the designated representative, and sign and date.

Special Provisions Emission Limitations

Each affected unit in an approved averaging plan is in compliance with the Acid Rain emission limitation for NO, under the plan only if the following requirements are met:

(i) For each unit, the unit's actual annual average emission rate for the calendar year, in lb/mmBtu, is less than or equal to its alternative contemporaneous annual emission limitation in the averaging plan, and

(a) For each unit with an alternative contemporaneous emission limitation less stringent than the applicable emission limitation in 40 CFR 76.5, 76.6, or 76.7, the actual annual heat input for the calendar year does not exceed the annual heat input limit in the averaging plan,

(b) For each unit with an alternative contemporaneous emission limitation more stringent than the applicable emission limitation in 40 CFR 76.5, 76.6, or 76.7, the actual annual heat input for the calendar year is not less than the annual heat input limit in the averaging plan, or

(ii) If one or more of the units does not meet the requirements of (i), the designated representative shall demonstrate, in accordance with 40 CFR 76.11(d)(1)(ii)(A) and (B), that the actual Btuweighted annual average emission rate for the units in the plan is less than or equal to the Btuweighted annual average rate for the same units had they each been operated, during the same period of time, in compliance with the applicable emission limitations in 40 CFR 76.5, 76.6, or 76.7. (iii) If there is a successful group showing of compliance under 40 CFR 76.11(d)(1)(ii)(A) and (B) for a calendar year, then all units in the averaging plan shall be deemed to be in compliance for that year with their alternative contemporaneous emission limitations and annual heat input limits under (i).

Liability

The owners and operators of a unit governed by an approved averaging plan shall be liable for any violation of the plan or this section at that unit or any other unit in the plan, including liability for fulfilling the obligations specified in part 77 of this chapter and sections 113 and 411 of the Act.

Termination

The designated representative may submit a notification to terminate an approved averaging plan, in accordance with 40 CFR 72.40(d), no later than October 1 of the calendar year for which the plan is to be terminated.

Certification

I am authorized to make this submission on behalf of the owners and operators of the affected source or affected units for which the submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

		Bill M Guthrie	Name
 s7	Date /2/5/5-	Ben M Sutto	Signature
-	Date /2/8	Den M Sutto	Signature

Southern Company Averaging Plan Participating Plants

Plant Name (from Step 1)

as Listed in Step 1.

(a)

NO_x Averaging - Page 3

(c)

(b)

STEP 1 Continue the identification of units from Step 1, page 1, here.

Plant Name	State	ID#	Emission Limitation	Alt. Contemp. Emission Limitation	Annual Heat Input Limit
Barry	AL	1	0.40	0.492	10,805,761
Barry	AL	2	0.40	0.492	10,643,159
Barry	AL	3	0.40	0.492	17,148,763
Barry	AL	4	0.40	0.374	25,471,720
Barry	AL	5	0.40	0.448	50,897,853
Bowen	GA	1	0.45	0.421	45,395,755
Bowen	GA	2	0.45	0.434	46,911,826
Bowen	GA	3	0.45	0.430	59,796,338
Bowen	GA	4	0.45	0.430	62,106,898
Branch	GA	1	0.68	0.988	14,906,580
Branch	GA	2	0.50	0.717	16,571,123
Branch	GA	3	0.68	0.842	27,015,768
Branch_	GA	4	0.68	0.842	28,967,878
Crist	FL	4	0.45	0.520	3,062,929
Crist	FL	5	0.45	0.599	4,850,348
Crist	FL	6	0.50	0.455	17,603,755
Crist	FL	7	0.50	0.448	32,267,381
Daniel	MS	1	0.45	0.281	28,010,957
Daniel	MS	2	0.45	0.265	29,025,313
Gadsden	AL	1	0.45	0.648	2,473,380
Gadsden	AL	2	0.45	0.684	2,333,659
Gaston	AL	1	0.50	0.433	15,666,430
Gaston	AL	2	0.50	0.433	15,642,121
Gaston	AL	3	0.50	0.427	16,016,613
Gaston	AL	4	0.50	0.427	15,780,983
Gaston	AL	5	0.45	0.422	43,137,116
Gorgas	AL	6	0.46	0.864	5,058,595
Gorgas	AL	7	0.46	0.864	5,052,447
Gorgas	AL	8	0.40	0.486	11,173,785
Gorgas	AL	9	0.40	0.303	10,939,664
Gorgas	AL	10	0.40	0.763	46,251,622
Greene Co	AL	1	0.68	0.977	19,524,675
Greene Co	AL	2	0.46	0.434	18,839,670

STEP 1 Continue the identification of units from Step 1, page 1, here.

			(a)	(b)	(c)
Plant Name	State	ID#	Emission Limitation	Alt. Contemp. Emission Limitation	Annual Heat Input Limit
Hammond	GA	1	0.50	0.827	4,539,663
Hammond	GA	2	0.50	0.827	6,333,156
Hammond	GA	3	0.50	0.827	6,439,818
Hammond	GA	4	0.50	0.454	26,126,591
Kraft	GA	1	0.45	0.580	2,974,849
Kraft	GA	2	0.45	0.580	2,238,703
Kraft	GA	3	0.45	0.580	3,971,009
L. Smith	FL	1	0.40	0.618	9,199,644
L. Smith	_ FL	2	0.40	0.436	10,154,723
McDonough	GA	1	0.45	0.420	18,934,013
McDonough	GA	2	0.45	0.420	17,338,565
McIntosh	GA	1	0.50	0.858	8,568,975
Miller	AL	1	0.46	0.293	53,814,591
Miller	AL	2	0.46	0.293	52,772,559
Miller	AL	3	0.46	0.293	49,093,163
Miller	AL	4	0.46	0.293	55,722,252
Mitchell	GA	3	0.45	0.615	5,322,072
Scherer	GA	1	0.40	0.500	52,573,864
Scherer	GA	2	0.40	0.500	55,563,600
Scherer	GA	3	0.45	0.295	37,912,770
Scherer	GA	4	0.40	0.300	70,093,731
Scholz	FL	1	0.50	0.682	1,855,434
Scholz	FL	2	0.50	0.774	1,864,795
Wansley	GA	11	0.45	0.413	53,141,279
Wansley	GA	2	0.45	0.421	49,741,786
Watson	MS	4	0.50	0.500	17,100,575
Watson	MS	5	0.50	0.647	33,455,317
Yates	GA	1	0.45	0.481	3,853,527
Yates	GA	2	0.45	0.481	4,687,321
Yates	GA	3	0.45	0.481	3,981,916
Yates	GA	4	0.45	0.396	7,087,706
Yates	GA	5	0.45	0.396	5,186,897
Yates	GA	6	0.45	0.328	13,373,298
Yates	GA	7	0.45	0.303	14,601,869