Southern Environmental Sciences, Inc.

1204 North Wheeler Street ☐ Plant City, Florida 33563 ☐ (813) 752-5014 Fax (813) 752-2475

July 18, 2012

Mr. Art Pennetta
Environmental Protection and Growth Management Department
Pollution Prevention, Remediation and Air Quality Division
One North University Drive, Suite 203
Ft. Lauderdale, FL 33324
VIA Email at apennetta@broward.org

Re: Test Notification

Vecenergy - Vapor Combustion Unit

Facility ID No: 0112688

Dear Mr. Pennetta:

This is to notify your office that Southern Environmental Sciences, Inc. (SES) is scheduled to perform an emissions test of the above facility on September 13, 2012 beginning at approximately 8:00 A.M. I will be the contact person for this testing.

Testing will be conducted in accordance with procedures described in 40 CFR 60.503 as described in the attached protocol. As per our conversation yesterday, due to safety considerations, the truck leak checks will be conducted from the ground using an extended probe system similar to that represented in the attached image.

If any changes in scheduling become necessary, I will notify your office prior to the testing. If you have questions regarding the testing methods please contact our office at your convenience.

Thank you.

Very truly yours,

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

Kenneth Roberts

Kenneth M. Roberts, QEP Vice President

KMR/mr

cc: Richard Vogel, <u>richard.vogel@vecenergy.com</u>

Jim Estler, estlerj@aol.com

Clifton Bittle, Env.Prot.and Growth Management Department cbittle@broward.org
Paul Sheldon, Env.Prot.and Growth Management Department psheldon@broward.org

Director - Air, Pesticides and Toxics Management Division, EPA Region IV

EMISSIONS TESTING PROTOCOL VECENERGY VAPOR COMBUSTION UNIT

Port Everglades, FL

Test Date September 13, 2012

Facility Permit No. 0112688-006-AO SES Project No. 12S204

Testing to be Conducted by:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. will be conducting an emissions test of the Vecenergy vapor combustion unit (VCU) on September 13, 2012. This facility is located at 1200 SE 32nd Street, Dania Beach, Florida. Testing is being performed to determine if the plant is operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP) and the Broward County Environmental Protection and Growth Management Department (BCEPGMD).

2.0 PROCESS DESCRIPTION

The Vecenergy terminal receives gasoline, ethanol, jet aviation fuel and distillate fuel products for storage and distribution by truck or pipeline. Emissions unit 3 is a four (4) lane truck loading rack equipped with a vapor combustion unit (VCU) to control emissions from the truck loading of all products from the terminal.

3.0 TESTING PROCEDURES

3.1 Methods

VCU testing and analyses will be conducted in accordance with procedures described in 40 CFR 60.503. Volumetric flowrate at the inlet and outlet will be determined in accordance with EPA Method 2B - Determination of Exhaust Gas Volume Flow Rate from Gasoline Vapor Incinerators, 40 CFR 60, Appendix A-1. Hydrocarbon concentrations will be measured at the inlet and outlet in accordance with EPA Method 25A - Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer, 40 CFR 60, Appendix A-7. Carbon monoxide concentration will be measured at the outlet in accordance with EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources, 40 CFR 60, Appendix A-4. Carbon dioxide will also be measured at the outlet in accordance with EPA Method 3A—Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure), 40 CFR 60, Appendix A-1. The inlet total hydrocarbon and carbon dioxide analyzers will be calibrated with an Environics Model 2020 gas dilution system and calibration gases using procedures described in EPA Method 205 - Verification of Gas Dilution Systems for Field Instrument Calibrations, 40 CFR 51, Appendix M. All trucks will be checked for leaks using procedures described in EPA Method 21 - Determination of Volatile Organic Compound Emission Leaks, 40 CFR 60, Appendix A-7.

3.2 Pretest Preparation

Prior to testing, an eight inch American Meter Company turbine meter will connected in line to measure the total volume of vapor reaching the VCU. The VCU, terminal vapor recovery lines and testing ductwork will be checked for leaks prior to the test. Any leaks above the allowable rate will be repaired prior to testing. The portable FID organic vapor analyzers will be calibrated prior to the test with zero air and a methane calibration gas in the range of the allowable leak rate. Magnehelic gauges will be connected at each loading

station to measure the vapor collection system pressure.

3.3 Sampling Trains

The inlet Method 25A sampling train will consist of a dilution probe (100:1), a teflon sample line, heated as necessary to prevent condensation, a California Analytical Instruments Model 300HFID(M) heated total hydrocarbon analyzer and a strip chart recorder. The outlet Method 25A sampling train consisted of a heated stainless steel probe, heated teflon sample line, a California Analytical Instruments Model 300HFID(M) heated total hydrocarbon analyzer and a strip chart recorder. A schematic of the hydrocarbon sampling trains is shown in Figure 1. The carbon monoxide sampling train will consist of a heated stainless steel probe, condenser, teflon sample line, and a Teledyne 300EM Gas Filter Correlation CO analyzer. A schematic of the carbon monoxide sampling train is shown in Figure 2. The carbon dioxide sampling train will consist of a heated stainless steel sampling probe, condenser, teflon sample line and a California Analytical Instruments Model ZRH carbon dioxide analyzer. Both the carbon monoxide and carbon dioxide trains will use a common probe, condenser and sample line, and sampling manifold.

3.3 Data Collection

Inlet volume, temperature and static pressure measurements will be recorded at the inlet to the turbine meter at five minute intervals for the duration of the test to determine volume at standard conditions. Inlet and outlet hydrocarbon concentrations and outlet carbon monoxide and carbon dioxide concentrations will be measured continuously throughout the six hour test period. During the testing each applicable tank truck will be tested for leaks at all domes, boots and vapor recovery connections. If an increase in concentration is noted at a possible leak, the probe will be moved to locate the point of highest meter response. Leaks greater than or equal to 500 parts per million (as methane) will be documented on field data sheets.

4.0 ANALYTICAL PROCEDURE

4.1 Analysis

Within 2 hours of the start of the test zero and high-level propane calibration gases will be introduced into the hydrocarbon analyzers at the calibration valve assembly and the outputs will be adjusted to the appropriate levels if necessary. A linear regression will then conducted to calculate the predicted response for the low-level and mid-level gases. The low-level and mid-level gases will then be introduced into the measurement system and the difference between the predicted and actual responses will be calculated. A difference of less than 5 percent will be considered acceptable. To assess the response time of the measurement system, zero gas will be introduced into the system. After the output is stabilized, the high-level gas will be quickly introduced. The time from the concentration change to the measurement system response equivalent to 95 percent of the step change will be determined. The test will be repeated three times. Instrument calibrations will be checked periodically during the test by introducing mid-range and zero gases

into the instruments through the sampling train. The carbon monoxide and carbon dioxide analyzers will be calibrated immediately before the beginning of the test and checked periodically by introducing mid-range and zero gases into the instruments through the sampling trains.

4.2 Data Reduction

The outlet volume will be determined in accordance with equations in EPA Method 2B. Hydrocarbon emissions will be determined from the outlet hydrocarbon concentrations and the calculated outlet flowrate. The total countable gasoline loaded during the test will be calculated by summing the total gasoline loaded then subtracting the total loaded into trucks on which leaks were encountered.

SAMPLING TRAIN DIAGRAMS

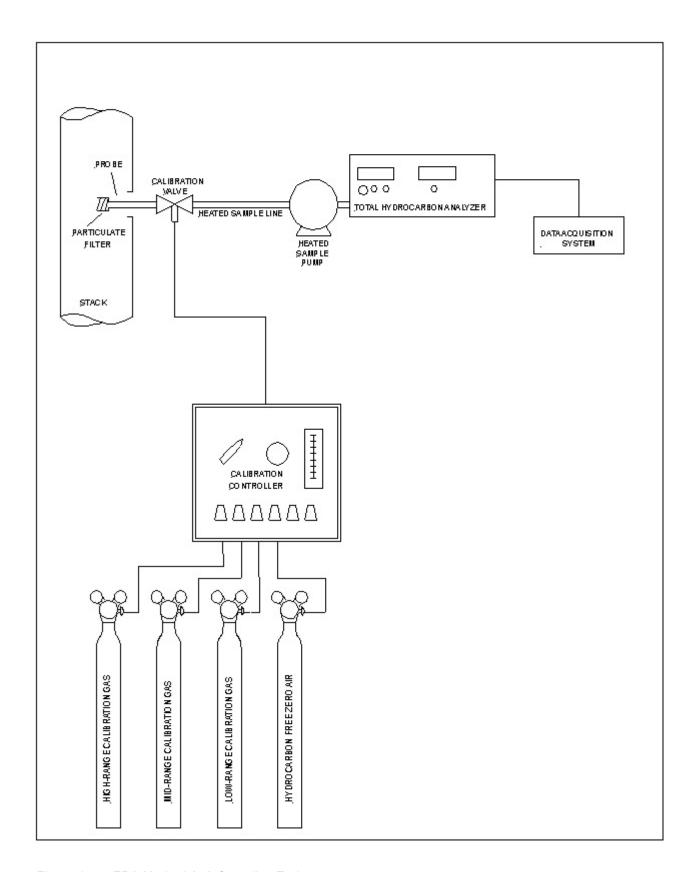
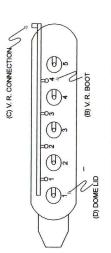


Figure 1. EPA Method 25A Sampling Train.


Figure 2. EPA Method 10 and 3A sampling Trains.

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler Street, Plant City, Florida 33563 (813) 752-5014 FAX (813) 752-2475

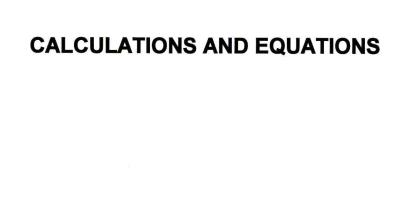
7		_	_	
)KS	DATE	OPERATOR(S)	INSTRUMENT(S)
	TRUCK LEAK CHECKS	ANY	NO	ITY
		COMPANY	LOCATION	FACILITY

LEAK LOCATION DIAGRAM

LEAK	LOCATION																														
	LEAK																														
ON.	LEAK																R														
PRODUCT	LOAD																														
PRC	LOAD																														
GALLONS	LOADED	1	2	3	4	-	1	2	3	4		1	2	3	4		1	2	3	4		-	2	8	4	_	1	2	3		
	_	Ù	.,		7	TOTAL			.,	7	TOTAL	`	, ,	.,	7	TOTAL	`	. 4	.,	7	TOTAL	`	. 4	(,)	7	TOTAL		2	"	4	IOIAL
V.R.BACK PRESSURE	(IN. H2O)					TC					TC				Committee of the Commit	TC					TC					TC				I	2
LANE	NO.												n en																	-	
RACK	NO.					_												er	3												
	TIME																														
	TRUCK NO.																		d		×								V		
	OWNER																														

VCU EMISSION CALCULATIONS

COMPANY: VECENEREGY
FACILITY: VAPOR COMBUSTION UNIT
DATE: 09/14/11


FLARE	CONTROL	EFF.	(%)				98.70	97.95	97.46					99.16	99.99	96.00		90.06	99.87	100.00	99.67	99.43	100.00	99.82	98.64	98.71	99.29	98.74	97.50	99.12	99.22	96.66	98.25								99.47	99 49
ET		MASS	(mg)				235,873	143,952	47,725					119,957	3,422	591,884		64,801	28,484	40	22,750	42,783	1,026	23,430	37,194	38,912	84,716	58,033	66,491	167,314	201,997	7,203	61,795								76.974	51 882
OUTLET	GAS	VOLUME	(M3)*				1373.63	1163.98	475.20					1345.18	2666.96	11724.93		563.12	878.44	732.13	407.86	529.98	1017.80	643.62	305.27	406.21	1032.10	557.98	624.45	1349.08	1682.45	710.61	372.10								1031.28	778 03
ET		MASS	(mg)				18,211,884	7,018,996	1,881,077					14,352,383	27,449,869	14,800,680		6,929,097	21,588,634	20,464,708	6,792,902	7,512,267	26,451,437	12,848,543	2,729,721	3,016,218	11,874,163	4,608,307	2,663,034	19,108,611	25,775,224	19,232,221	3,531,792								14,587,224	10 119 678
INLET	GAS	VOLUME	(M3)*				18.90	8.11	2.69					16.28	32.51	16.17		13.48	54.15	26.92	10.79	21.57	34.96	18.74	8.02	10.64	13.26	7.95	5.31	21.40	29.50	23.92	5.32								18.65	
DIOXIDE		CONC.	(%)				2.14	0.98	0.65					1.75	1.69	0.19		1.99	4.03	4.59	2.72	2.32	4.26	3.27	1.45	1.21	1.86	1.34	0.7	2.28	2.48	4.43	1.53								2.3	2.12
CARBON DIOXIDE	INSTRU.	SCALE	(%)				20	20	20					20	20	20		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20								20	20
ONOXIDE		CONC.	(PPM)				318.19	166.94	114.29					116.35	243.36	383.38		350.5	169.47	148.53	267.38	166.82	233.18	212.75	235.64	195.91	395.26	246.78	105.41	478.99	377.29	278.9	262.44								328.05	278.66
CARBON MONOXIDE	INSTRU.	SCALE	(PPM)				1,000	1,000	000	1				1,000	1,000	1,000		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000								1,000	1,000
_		CONC.	(PPM)				93.68	67.47	54.79	1			5)	48.65	0.70	27.54		62.78	17.69	0.03	30.43	44.04	0.55	19.86	66.47	52.26	44.78	56.74	58.09	99.79	65.50	5.53	90.60								40.72	36.38
(AS PROPANE)	INSTRU.	SCALE	(PPM)				1,000	1,000	1,000			ľ		000	000,	1,000		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000								1,000	1.000
OPANE)		CONC.	(%)				52.57	47.20	38.08					48.10	46.06	49.94		28.04	21.75	41.47	34.33	19.00	41.27	37.41	18.58	15.46	48.86	31.64	27.36	48.70	47.67	43.86	36.24								42.67	51.90
(AS PROPAN	INSTRU.	SCALE	(%)				100	100	100					100	100	100		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100								100	100
	BAROM.	PRESSURE	("Hg)		29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94
	METER		(deg f)		101	102	94	96	95	105	105	105	103	93	93	98	103	26	95	97	26	86	98	100	101	104	106	107	105	102	100	105	105	108	108	108	108	108	115	117	103	104
	STATIC	PRESSURE	("H2O)		0.1	0.1	0.1	1.5	0.1	0.1	0.1	0.1	0.1	4.1	0.8	0.1	0.1	1.8	2	1.2	2.1	2.5	1.5	1	-	1.5	1.5	1.8	1	2	1.5	1.5	1.5	0.5	0.1	0.1	0.1	0.1	0.1	0.1	1	-
METER	RDG.	(c)	#1		0	0	700	1000	1100	1100	1100	1100	1100	1700	2900	3500	3500	4000	0009	7000	7400	8200	9500	10200	10500	10900	11400	11700	11900	12700	13800	14700	14900	14900	14900	14900	14900	14900	14900	14900	15600	16000
		TIME	(min)	0		10	15		25					20											105		115			130	135	140	145		155		165	170	175	180	185	190
	OCK TIME			10:10	10:15	10:20	10:25	10:30	10:35	10:40	10:45	10:50	10:55	11:00	11:05	11:10	11:15	11:20	11:25	11:30	11:35	11:40	11:45	11:50	11:55	12:00	12:05	12:10	12:15	12:20	12:25	12:30	12:35	12:40	12:45	12:50	12:55	13:00	13:05	13:10	13:15	13:20

VCU EMISSION CALCULATIONS

COMPANY: VECENERGY
FACILITY: VAPOR COMBUSTION UNIT
DATE: 09/14/11

	FLARE	CONTROL	EFF.	(%)	98.20	98.30		98.42	99.29	98.29			69.66	98.98	00.66	98.93	98.01	98.81	99.11	99.36	99.41	99.10										96.82	99.61	99.99	98.89	98.41	99.90	99.95		98.86
	ET		MASS	(mg)	113,120	46,071		17.214	44.209	203,196			48.244	120,392	93.184	73,175	39,849	138,392	116,642	102,357	101,420	21.428										331,090	36,814	2,420	87,101	94,306	24.091	11.115	56,077 4,044,470	
	OUTLET	GAS	VOLUME	(M3)*	701.68	284.10		110.89	463.28	1199.33			869.49	1049.21	931.08	566.57	406.43	968.70	922.64	1085.57	1131.26	273.13										7772.26	418.51	663.57	708.59	1017.98	1116.66	1043.72	56,077 4	
	INLET		MASS	(mg)	6,299,392	2,706,533		1,090,452	6,228,911	11,890,453			15,585,692	11,860,086	9,321,423	6,856,668	2,005,543	11,613,998	13,129,626	15,987,038	17,332,539	2.380.381										10,409,429	9,445,747	16,890,092	7,843,609	5,945,690	24.641.394	24,318,134	727.818 537,331,497	
	Z	GAS	VOLUME	(M3)*	7.95	10.72		7.91	13.35	13.28			18.64	13.20	10.67	10.65	2.63	13.35	13.38	16.03	18.69	2.64										13.58	21.72	24.39	8.11	8.15	24.49	24.40	727.818 5	
	NOXIDE		CONC.	(%)	1.45	1.54		1.59	2.18	1.6			2.93	1.83	1.63	1.96	0.81	1.94	2.3	2.39	2.48	1.42										0.24	3.68	4.17	1.79	96.0	3.6	3.81		2.14
	CARBON DIOXIDE	INSTRU.	SCALE	(%)	20	20		20	20	20			20	20	20	20	20	20	20	20	20	20										20	20	20	20	20	20	20		
	ONOXIDE		CONC.	(PPM)	229.4	226.46		240.79	349.05	248.93			246.38	312.8	221.47	295.49	115.77	288.55	383.63	348.66	429.33	235.34										22.27	295.54	252.74	315.45	107.58	381.07	315.94		259.50
	CARBON MONOXIDE	INSTRU.	SCALE	(PPM)	1,000	1,000		1,000	1,000	1,000	0	1	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000										1,000	1,000	1,000	1,000	1,000	1,000	1,000		
T VOC	DPANE)		CONC.	(PPM)	87.95	88.47		84.69	52.06	92.43			30 27	62.60	54.60	70.46	53.49	77.94	68.97	51.44	48.91	42.80										23.24	47.99	1.99	90.79	50.54	11.77	5.81		48.44
OUTLET VOC	(AS PROPANE)	INSTRU.	SCALE	(PPM)	1,000	1,000		1,000	1,000	1,000			1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000										1,000	1,000	1,000	1,000	1,000	1,000	1,000		
INLET VOC	(AS PROPANE)		CONC	(%)	43.21	13.78		7.52	25.45	48.84			45.62	49.03	47.65	35.14	41.64	47.47	53.52	54.42	50.60	49.25										41.80	23.73	37.78	52.76	39.78	54.88	54.37		39.92
INLE	(AS PR	INSTRU.	SCALE	(%)	100	100		100	100	100			100	100	100	100	100	100	100	100	100	100										100	100	100	100	100	100	100		
		BAROM.	PRESSURE	("Hg)	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.94	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91		29.92
		METER	TEMP.	(deg f)	106	102	111	109	103	104	112	119	102	107	103	103	109	102	102	101	101	107	112	114	114	114	113	113	113	113	113	93	93	93	93	92	93	92		104
		STATIC	PRESSURE	("H2O)	1.2	2.5	2	1	2	0.5	0.1	_	0	0.1	2	1	0.1	1.5	2.6	-	0.8	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2.1	1.8	1	0.1	1.5	2.8	0.5		0.9
	METER	RDG.		#1	16300	16700	16700	17000	17500	18000	18000	18000	18700	19200	19600	20000	20100	20600	21100	21700	22400	22500	22500	22500	22500	22500	22500	22500	22500	22500	22500	23000	23800	24700	25000	25300	26200	27100	27100	Ш
			TIME	(min)	195	200	205	210	215	220	225	230	235	240	245	250	255	260	265	270	275	280	285	290	295	300	305	310	315	320	325	330	335	340	345	350	355	360	TOTAL	AVERAGE
		CLOCK TIME			13:25	13:30	13:35	13:40	13:45	13:50	13:55	14:00	14:05	14:10	14:15	14:20	14:25	14:30	14:35	14:40	14:45	14:50	14:55	15:00	15:05	15:10	15:15	15:20	15:25	15:30	15:35	15:40	15:45	15:50	15:55	16:00	16:05	16:10		•

At standard conditions of 68 deg F and 29.92in. Hg)

Inlet Gas Volume

$$V_{is} = (V_f - V_i) \times (Y_m) \times [P_{bar} + (P_g / 13.6)] / P_{std} \times (T_{std} / T_m)]$$

Where:

V_{is} = Inlet Flow, ft3 at standard conditions $Y_m =$ Turbine meter correction factor $V_f =$ Final meter reading (ft3) $V_i =$ Initial Meter Volume (ft3) P_{bar} = Barometric pressure (in, Hg) $P_g =$ Static pressure in duct (in. Hg) P_{std} = Standard Pressure, 29.92 in. Hg $T_{std} =$ Absolute standard temperature, 528 Deg Rankin $T_m =$ Absolute meter pressure (Deg Rankin)

Outlet Gas Volume

$$V_{es} = V_{is} \times \{(K_i \times (HC_i)/[(K_e \times (HC_e) + [(CO_2)_e - (CO_2)_a] + CO_a)]\}$$

Where:

CO _e =	Mean carbon monoxide concentration in system exhaust, ppm.
$(CO_2)_a =$	Ambient carbon dioxide concentration, ppm (if not measured during the test period, may
	be assumed to equal 300 ppm).
$(CO_2)_e =$	Mean carbon dioxide concentration in system exhaust, ppm.
HC _e =	Mean organic concentration in system exhaust as defined by the calibration gas, ppm.
HC _i =	Mean organic concentration in system inlet as defined by the calibration gas, ppm.
K _e =	Hydrocarbon calibration gas factor for the exhaust hydrocarbon analyzer, unitless [equal
	to the number of carbon atoms per molecule of the gas used to calibrate the analyzer (2
	for ethane, 3 for propane, etc.)].
K _i =	Hydrocarbon calibration gas factor for the inlet hydrocarbon analyzer, unitless.
V _{es} =	Exhaust gas volume, m3.
$V_{is} =$	Inlet gas volume, m3.
Q _{es} =	Exhaust gas volume flow rate, m3/min.
$Q_{is} =$	Inlet gas volume flow rate, m3/min.
θ =	Sample run time, min.